JP2013079843A - Method for inspecting metal drum and apparatus therefor - Google Patents

Method for inspecting metal drum and apparatus therefor Download PDF

Info

Publication number
JP2013079843A
JP2013079843A JP2011219231A JP2011219231A JP2013079843A JP 2013079843 A JP2013079843 A JP 2013079843A JP 2011219231 A JP2011219231 A JP 2011219231A JP 2011219231 A JP2011219231 A JP 2011219231A JP 2013079843 A JP2013079843 A JP 2013079843A
Authority
JP
Japan
Prior art keywords
drum
bottom plate
wave
side plate
inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011219231A
Other languages
Japanese (ja)
Other versions
JP5883605B2 (en
Inventor
Toru Hara
原  徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANAGAWA NORIYO
Original Assignee
KANAGAWA NORIYO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANAGAWA NORIYO filed Critical KANAGAWA NORIYO
Priority to JP2011219231A priority Critical patent/JP5883605B2/en
Publication of JP2013079843A publication Critical patent/JP2013079843A/en
Application granted granted Critical
Publication of JP5883605B2 publication Critical patent/JP5883605B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for inspecting any sectional flaws of a metal drum from the outer surface side even when metal drums are piled and substantially 1/3 of the side face thereof are exposed to the outside.SOLUTION: A metal drum inspection method for detecting from the outer surface side any sectional flaws occurring on the inner surface side of a metal drum includes: projecting SH wave for a side plate of the metal drum in the circumferential direction of the side plate by ultrasonic flaw detection means attached to a side plate surface; and detecting thinned wall portions. Further, a method for detecting a bottom plate includes: projecting the SH wave in the horizontal direction along a bottom plate plane by the ultrasonic flaw detection means attached to a fitting edge portion of the bottom plate peripheral edge; and detecting the thinned wall portions.

Description

本発明は、ドラム缶の欠陥を検査するドラム缶検査方法及びその装置に関するものである。   The present invention relates to a drum can inspection method and apparatus for inspecting a drum can for defects.

ドラム缶は石油等の液体を一時的に貯蔵して搬送する際に用いられる。その他にも、低レベル放射性廃棄物を収納するドラム缶の内面側に発生する腐食、あるいは錆、あるいは物理的な要因による磨耗などの断面欠損を外面側から検出し、その発生位置が特定できる検査手法を確立するとともに、断面欠損部の残厚を測定し、残余寿命のデータを得ることが可能なドラム缶検査方法及びその装置が提案されている(例えば、特許文献1参照)。   The drum can is used when temporarily storing and transporting a liquid such as petroleum. In addition, inspection methods that can detect cross-sectional defects such as corrosion or rust generated on the inner surface of drums that store low-level radioactive waste from the outer surface, such as wear due to physical factors, and identify the location of the occurrence. In addition, a drum can inspection method and apparatus capable of measuring the remaining thickness of the cross-sectional defect and obtaining the remaining life data have been proposed (for example, see Patent Document 1).

このドラム缶検査方法は、横波の超音波によりドラム缶の内面に発生する減肉箇所の検出および範囲を推定する1次検査を行い、縦波の超音波により1次検査で得た範囲の垂直探傷することにより減肉の程度を検出する2次検査を行う検査方法である。1次検査は、横波の超音波をドラム缶の側板の上端部から下端部へ伝播させかつ下端部から上端部へ伝播させるか、又は、横波の超音波をドラム缶の天板及び底板の円周外縁部から中心部へ伝播させるものである。   In this drum can inspection method, a primary inspection is performed to detect a thinned portion generated on the inner surface of the drum can by a transverse wave ultrasonic wave and to estimate a range, and a vertical flaw detection is performed in a range obtained by the primary inspection by a longitudinal wave ultrasonic wave. This is an inspection method for performing a secondary inspection to detect the degree of thinning. In the primary inspection, transverse wave ultrasonic waves are propagated from the upper end to the lower end of the side plate of the drum can and from the lower end to the upper end, or the ultrasonic waves of the transverse wave are transmitted to the outer peripheral edges of the top and bottom plates of the drum can. It propagates from the center to the center.

また、ドラム缶検査装置としては、横波の超音波によりドラム缶の内面に発生する減肉箇所の検出および範囲を推定する1次調査を行う1次検査超音波器と、縦波の超音波により1次検査で得た範囲の垂直探傷することにより減肉の程度を検出する2次調査を行う2次検査超音波器とを備えるドラム缶検査装置である。   In addition, the drum inspection apparatus includes a primary inspection ultrasonic device that performs a primary inspection for detecting a thinned portion generated on the inner surface of the drum can by using ultrasonic waves of a transverse wave and estimating a range thereof, and a primary inspection by using ultrasonic waves of a longitudinal wave. A drum inspection apparatus including a secondary inspection ultrasonic device that performs a secondary inspection to detect the degree of thinning by performing a vertical flaw detection in a range obtained by inspection.

特開2008−175796号公報JP 2008-17596A

しかしながら、例えば低レベル放射性廃棄物を収納するドラム缶の保管状態の現状は、多数のドラム缶自体が山積みの状態となっており、実質的に側面の1/3程度が表に出ている状態であるため、この表出面が実際の作業範囲となり、底面は実質的に作業ができない状態である。また、特定の廃棄物を保管する際にも山積み状態となっている。   However, for example, the current state of storage of drum cans containing low-level radioactive waste is a state in which a large number of drum cans are piled up, and about 1/3 of the side surface is substantially exposed. Therefore, this exposed surface is the actual work range, and the bottom surface is in a state where the work cannot be performed substantially. It is also piled up when storing specific waste.

本発明は、山積みの状態となり、実質的に側面の1/3程度が表に出ている状態であっても、ドラム缶の断面欠損を外面側から検出することができる検査方法及びその装置を得ることを目的とする。   The present invention provides an inspection method and apparatus capable of detecting a cross-sectional defect of a drum can from the outer surface side even when it is in a piled state and substantially 1/3 of the side surface is exposed. For the purpose.

請求項1に記載された発明に係るドラム缶検査方法は、ドラム缶の内面側に発生する断面欠損を外面側から検出するドラム缶検査方法であって、
前記ドラム缶の側板について、側板面に取付けた超音波探傷手段よりSH波を側板の円周方向に入射して減肉箇所の検出を行う側板検査を行うことを特徴とするものである。
The drum can inspection method according to the invention described in claim 1 is a drum can inspection method for detecting a cross-sectional defect generated on the inner surface side of the drum can from the outer surface side,
The side plate of the drum can is subjected to a side plate inspection in which a SH wave is incident in a circumferential direction of the side plate from an ultrasonic flaw detector attached to the side plate surface to detect a thinned portion.

請求項2に記載された発明に係るドラム缶検査方法は、請求項1に記載のドラム缶の底板について、底板周縁の嵌合縁部に取付けた超音波探傷手段よりSH波を底板平面に沿った水平方向に入射して減肉箇所の検出を行う底板検査を更に行うことを特徴とするものである。   A drum can inspection method according to a second aspect of the present invention is directed to a drum can inspection method according to the first aspect of the present invention, in which the SH wave is horizontally aligned along the bottom plate plane by ultrasonic flaw detection means attached to the fitting edge of the bottom plate periphery. Further, a bottom plate inspection for detecting a thinned portion by entering in the direction is further performed.

請求項3に記載された発明に係るドラム缶検査方法は、請求項1又は2に記載のドラム缶が、鉄板の両面に亜鉛メッキし、この亜鉛メッキの表面に樹脂膜を施したものであることを特徴とするものである。   A drum can inspection method according to the invention described in claim 3 is that the drum can of claim 1 or 2 is obtained by galvanizing both surfaces of an iron plate and applying a resin film on the surface of the galvanization. It is a feature.

請求項4に記載された発明に係るドラム缶検査装置は、ドラム缶の内面側に発生する断面欠損を外面側から検出するドラム缶検査装置であって、
前記ドラム缶の側板面に取付けて、SH波を側板の円周方向に入射させて減肉箇所の検出を行う側板超音波探傷手段を備えるものである。
The drum can inspection apparatus according to the invention described in claim 4 is a drum can inspection apparatus for detecting a cross-sectional defect generated on the inner surface side of the drum can from the outer surface side,
It is attached to the side plate surface of the drum can and includes side plate ultrasonic flaw detection means for detecting a thinned portion by causing SH waves to enter the circumferential direction of the side plate.

請求項5に記載された発明に係るドラム缶検査装置は、請求項4に記載のドラム缶の底板周縁の勘合縁部に取付けて、SH波を底板平面に沿った水平方向に入射させて減肉箇所の検出を行う底板超音波探傷手段を更に備えることを特徴とするものである。   The drum inspection apparatus according to the invention described in claim 5 is attached to the fitting edge portion of the bottom plate periphery of the drum can according to claim 4, and the SH wave is incident in the horizontal direction along the bottom plate plane to reduce the thickness. It further comprises a bottom plate ultrasonic flaw detection means for detecting the above.

請求項6に記載された発明に係るドラム缶検査装置は、請求項4又は5に記載の底板超音波探傷手段が、前記底面周縁の勘合縁部の曲面に合致する当接片を備えたことを特徴とするものである。   In the drum inspection apparatus according to the invention described in claim 6, the bottom plate ultrasonic flaw detection means according to claim 4 or 5 is provided with a contact piece that matches the curved surface of the mating edge of the bottom edge. It is a feature.

本発明は、山積みの状態となり、実質的に側面の1/3程度が表に出ている状態であっても、ドラム缶の断面欠損を外面側から検出することができる検査方法及びその装置を得ることができるという効果がある。   The present invention provides an inspection method and apparatus capable of detecting a cross-sectional defect of a drum can from the outer surface side even when it is in a piled state and substantially 1/3 of the side surface is exposed. There is an effect that can be.

ドラム缶の正面図である。It is a front view of a drum can. ドラム缶の平面図である。It is a top view of a drum can. 測線1からR1〜R9に向かって水平にSH波を照射した結果の探傷波形を示す線図である。It is a diagram which shows the flaw detection waveform as a result of irradiating a SH wave horizontally toward the measurement line 1 toward R1-R9. 測線2からS1〜S9に向かって水平にSH波を照射した結果の探傷波形を示す線図である。It is a diagram which shows the flaw detection waveform as a result of irradiating SH wave horizontally from the survey line 2 toward S1-S9. 測線3からS1〜S9に向かって水平にSH波を照射した結果の探傷波形を示す線図である。It is a diagram which shows the flaw detection waveform as a result of irradiating SH wave horizontally from the measurement line 3 toward S1-S9. 溶接線Aから200mm離れた新たな測線から水平にSH波を照射した結果の探傷波形を示す線図である。It is a diagram which shows the flaw detection waveform as a result of irradiating a SH wave horizontally from the new measurement line 200 mm away from the welding line A. 側板での探傷位置を示す側板展開図である。It is a side plate development view showing a flaw detection position on the side plate. は底板の勘合部からR1〜R9に向かってSH波を照射した結果の探傷波形を示す線図である。These are the diagrams which show the flaw detection waveform as a result of irradiating SH wave toward R1-R9 from the fitting part of a baseplate. アクリル治具を装着したSH波探傷子の構成を示す説明図である。It is explanatory drawing which shows the structure of SH wave flaw detector with which the acrylic jig | tool was mounted | worn. 側板探査時と同じ感度(40dB)での底板の勘合部からR1〜R9に向かってSH波を照射した結果の探傷波形を示す線図である。It is a diagram which shows the flaw detection waveform as a result of irradiating SH wave toward R1-R9 from the fitting part of the baseplate with the same sensitivity (40 dB) at the time of side plate search. 感度を上げた場合での底板の勘合部からR1〜R9に向かってSH波を照射した結果の探傷波形を示す線図である。It is a diagram which shows the flaw detection waveform as a result of having irradiated the SH wave toward R1-R9 from the fitting part of the baseplate in the case of raising a sensitivity.

本発明においては、ドラム缶の内面側に発生する断面欠損を外面側から検出するドラム缶検査方法であって、ドラム缶の側板について側板面に取付けた超音波探傷手段よりSH波を側板の円周方向に入射して減肉箇所の検出を行う側板検査を行う方法である。これにより、山積みの状態となり、実質的に側面の1/3程度が表に出ている状態であっても、ドラム缶の側壁面の断面欠損を外面側から検出することができる。   In the present invention, there is provided a drum can inspection method for detecting a cross-sectional defect occurring on the inner surface side of a drum can from the outer surface side. This is a method for performing a side plate inspection for detecting a thinned portion upon incidence. Thereby, even if it is in the state where it piles up and about 1/3 of the side surface has come out to the surface, the cross-sectional defect | deletion of the side wall surface of a drum can can be detected from an outer surface side.

また好ましくは、ドラム缶の底板について底板周縁の嵌合縁部に取付けた超音波探傷手段よりSH波を底板平面に沿った水平方向に入射して減肉箇所の検出を行う底板検査を更に行うことにより、山積みの状態となり、実質的に側面の1/3程度が表に出ている状態であっても、ドラム缶の底板部の断面欠損を外面側から検出することができる。   Further preferably, the bottom plate of the drum can further be subjected to a bottom plate inspection for detecting a thinning portion by injecting SH waves in the horizontal direction along the bottom plate plane from ultrasonic flaw detection means attached to the fitting edge of the bottom plate periphery. Thus, even when the state is a piled up state and approximately 1/3 of the side surface is exposed, the cross-sectional defect of the bottom plate portion of the drum can can be detected from the outer surface side.

本発明の検査対象物はドラム缶である。このドラム缶は当初原油や灯油の運搬に使用されていたが、近年は化学製品、塗料等の運搬にも使用されるようになってきた。また、低レベル放射性廃棄物を収納したり、特定の廃棄物を収納して保存する目的にも使用されている。   The inspection object of the present invention is a drum can. This drum was originally used for transporting crude oil and kerosene, but has recently been used for transporting chemical products and paints. It is also used for storing low-level radioactive waste or storing and storing specific waste.

このドラム缶は、円柱の側壁にあたる側板と、この側板の上下に天板、底板を有するものである。ドラム缶の各壁面の内側及び外側については、メッキや樹脂膜による塗装が施されたものであってもよい。例えば、ドラム缶の多くは、側板、天板、底板の両面に亜鉛メッキが施され、この亜鉛メッキ層の表面に樹脂膜が設けられている。より具体的には、鉄板の厚さは1.6mm、亜鉛メッキ層の厚さは0.02mmが施され、樹脂膜層の厚さは0.03mmが主流である。尚、樹脂膜層は、例えばエポキシ樹脂を用いるが、これに限定されない。低レベル放射性廃棄物を収納するためのドラム缶では、天板については取り外し可能なオープン型のドラム缶が主流である。   This drum can has a side plate corresponding to a side wall of a cylinder, and a top plate and a bottom plate above and below the side plate. The inside and outside of each wall surface of the drum can may be plated or coated with a resin film. For example, many drums are galvanized on both sides of the side plate, top plate, and bottom plate, and a resin film is provided on the surface of the galvanized layer. More specifically, the iron plate has a thickness of 1.6 mm, the galvanized layer has a thickness of 0.02 mm, and the resin film layer has a thickness of 0.03 mm. In addition, although an epoxy resin is used for a resin film layer, for example, it is not limited to this. In drums for storing low-level radioactive waste, open-type drums that can be removed are mainly used for the top plate.

ドラム缶は、次のようにして形成される。まず、側板は鋼板を円筒形に曲げて両端辺を溶接した後、円筒の両端を鍔出しを行い、円筒の側方から力に対向するために円筒内部の2カ所に輪帯を形成させる。天板及び底板は円形のお盆状に打ち抜いた鋼板の周囲を折り曲げるプリカール処理が行われる。側板、天板及び底板の表面を処理・塗装した後、側板の下縁部と底板の周縁部を巻き閉め加工してドラム缶が成形される。巻き締め加工により、側板の下縁部と底板の周縁部とが2〜3重に巻き締められて勘合部が形成される。オープン型のドラム缶では、側板の上縁部と天板の周縁部とが互いに掛合可能なように曲げ加工が施される。   The drum can is formed as follows. First, after bending the steel plate into a cylindrical shape and welding both ends, the side plates are squeezed at both ends, and ring zones are formed at two locations inside the cylinder to face the force from the side of the cylinder. The top plate and the bottom plate are subjected to a pre-curl process in which the periphery of a steel plate punched into a circular tray is bent. After the surface of the side plate, the top plate and the bottom plate is treated and painted, the lower edge of the side plate and the peripheral edge of the bottom plate are wound and processed to form a drum can. By the tightening process, the lower edge portion of the side plate and the peripheral edge portion of the bottom plate are wound two to three times to form a fitting portion. In an open-type drum can, bending is performed so that the upper edge portion of the side plate and the peripheral portion of the top plate can be engaged with each other.

ドラム缶の側板については、溶接により円筒形を形作っており、この天板−底板の上下方向に形成された溶接部が、この溶接部を横切る超音波探傷に対して、どのような影響があるかは不明であったが、後述するように本発明によって溶接部を超えて超音波が伝達されて欠損を検知することが初めて確認された。   The side plate of the drum can is formed into a cylindrical shape by welding, and what effect does the weld formed in the vertical direction of this top plate-bottom plate have on ultrasonic flaw detection across this weld? However, as described later, it was confirmed for the first time that ultrasonic waves were transmitted beyond the welded portion and the defect was detected by the present invention.

更に、好ましい本発明では側板以外の壁面についても腐食等の断面欠損を検出するため、内部の廃棄物と接触して腐食が発生し易い側板と底板との探傷手段を行う。尚、天板については低レベル放射性廃棄物を収納した後であっても取り外して腐食の有無を検査することが可能な場合もあるが、底板と同様の操作で外面側から検出することが可能である。   Further, in the present invention, in order to detect cross-sectional defects such as corrosion on the wall surface other than the side plate, flaw detection means for the side plate and the bottom plate, which are likely to be corroded due to contact with internal waste, is performed. Note that the top plate may be removed and inspected for corrosion even after low-level radioactive waste is stored, but it can be detected from the outside by the same operation as the bottom plate. It is.

ドラム缶の底板については、山積みの状態での実質的に側面の1/3程度が表に出ている状態であっても探知するために、後述するように本発明によってドラム缶の勘合縁部からSH波を底板平面に沿った水平方向に入射することにより、ドラム缶底板に超音波が伝達されて欠損を検知することが初めて確認された。   In order to detect the bottom plate of the drum can even in the state where substantially 1/3 of the side surface in the piled state is on the surface, as will be described later, according to the present invention, from the fitting edge portion of the drum can It was confirmed for the first time that a wave was incident in the horizontal direction along the bottom plate plane, and ultrasonic waves were transmitted to the drum can bottom plate to detect defects.

本発明の超音波探傷手段は、横波の一つであるSH波を照射するものであればよい。具体的には、一般的に超音波探傷に用いられる超音波としては、縦波、横波の1種であるSV波、同じく横波の1種であるSH波等がある。縦波は伝搬方向に振動する波であり、伝搬方向と垂直な方向には振動しない特徴を持つ。   The ultrasonic flaw detection means of the present invention only needs to irradiate SH waves that are one of transverse waves. Specifically, as ultrasonic waves generally used for ultrasonic flaw detection, there are SV waves that are one type of longitudinal waves and transverse waves, and SH waves that are also one type of transverse waves. Longitudinal waves are waves that vibrate in the propagation direction, and do not vibrate in a direction perpendicular to the propagation direction.

一方、SV波は伝搬方向に垂直な方向に振動する横波であり、探傷面に垂直な方向に振動している波である。横波であるため方向性がある。SH波は、SV波と同じ方向性のある横波であるが、探傷面と平行な方向に振動している波である。SH波はSV波と異なり、屈折角90°に近い方向にも横波を強く対象物に入射させることができる特性を有する。このため、本発明では、対象とするドラム缶の板厚が薄いこと、また、超音波をある程度の距離を伝播させることを考慮し、SH波を適用した。   On the other hand, the SV wave is a transverse wave that vibrates in a direction perpendicular to the propagation direction, and a wave that vibrates in a direction perpendicular to the flaw detection surface. There is directionality because it is a transverse wave. The SH wave is a transverse wave having the same direction as the SV wave, but is a wave oscillating in a direction parallel to the flaw detection surface. Unlike the SV wave, the SH wave has a characteristic that allows the transverse wave to be strongly incident on the object even in a direction near a refraction angle of 90 °. Therefore, in the present invention, the SH wave is applied in consideration of the fact that the plate thickness of the target drum can is thin and that the ultrasonic wave is propagated to some extent.

本発明において対象物に入射させるSH波の周波数については、好ましくは0.3MHz〜0.8MHzの範囲から選定されればよい。0.3MHzより小さい周波数では、ドラム缶の傷・欠損に対して波長が大きくなり、十分な精度で検査できず、0.8MHzより大きい周波数では、減衰が大きくなり、十分な距離を伝搬せずに十分な精度で検査ができないからである。より好ましい周波数は、0.4MHz〜0.6MHz、最も好ましい周波数は0.5MHzである。   In the present invention, the frequency of the SH wave incident on the object is preferably selected from the range of 0.3 MHz to 0.8 MHz. If the frequency is less than 0.3 MHz, the wavelength will be large with respect to scratches / defects in the drum, and it will not be possible to inspect with sufficient accuracy. If the frequency is greater than 0.8 MHz, the attenuation will be large and will not propagate a sufficient distance. This is because the inspection cannot be performed with sufficient accuracy. A more preferable frequency is 0.4 MHz to 0.6 MHz, and a most preferable frequency is 0.5 MHz.

実施例1(SH波の横方向入力によるドラム缶減肉探査の検討)
1.検査法
探査対象となるドラム缶の現地の保管状態では、側面の1/3程度が実際の作業範囲で、底面は実質的に作業ができない状態である。このため、ドラム缶の側面に対して縦方向からSH波を入力する方法では、探査が不可能である。これを回避するために、側板では探触子の超音波入射方向を円周に沿った水平とし、底版は勘合部から入射すると言う方法を考案し、探査の可能性を確認する実験を行うこととした。
Example 1 (examination of drum can thinning exploration by lateral input of SH wave)
1. Inspection method In the local storage state of the drum can to be surveyed, about 1/3 of the side surface is the actual work range, and the bottom surface is in a state where the work is practically impossible. For this reason, the method of inputting the SH wave from the vertical direction with respect to the side surface of the drum can cannot be searched. To avoid this, devise a method in which the ultrasonic wave incident direction of the probe is horizontal along the circumference on the side plate and the bottom plate is incident from the fitting part, and an experiment to confirm the possibility of exploration is performed. It was.

2.ドラム缶の構成
図1はドラム缶の正面図である。図2はドラム缶の平面図である。ドラム缶の形状・寸法・内径は次の通りである。ドラム缶内径(567±3mm)、外高(890±5mm)、容量(212L以上)、板厚(1.6mm)である。
2. Configuration of Drum Can FIG. 1 is a front view of the drum can. FIG. 2 is a plan view of the drum. The shape, dimensions, and inner diameter of the drum can are as follows. Drum can inner diameter (567 ± 3 mm), outer height (890 ± 5 mm), capacity (212L or more), plate thickness (1.6 mm).

3.検査装置
超音波探傷装置は、菱電湘南エレクトロニクス社(株)製低周波汎用超音波探査機UI−23LFを用い、SH波探触子の周波数は、0.5MHzとした。
3. Inspection device The ultrasonic flaw detector uses a low-frequency general-purpose ultrasonic probe UI-23LF manufactured by Ryoden Shonan Electronics Co., Ltd., and the frequency of the SH wave probe is 0.5 MHz.

4.実験手順
(1) ドラム缶側板に貫通孔及び非貫通の円錐状のきずを加工した。具体的には、図1に示したドラム缶の正面図で黒四角印の貫通孔S1〜S9である。尚、図示してはいないが図1の裏面側に溶接線Aから測線2を通過した約700mm離れた地点にドラム缶内側にS1〜S9と同様に非貫通孔R1〜R9が形成されている。
(2) ドラム缶底版に貫通孔及び非貫通の円錐状のきずを加工した。具体的には、図2に示したドラム缶の平面図で黒丸印の非貫通のきずA1〜A8と黒四角印の貫通孔B1〜B8である。
4). Experimental procedure
(1) A through hole and a non-penetrating conical flaw were processed on the drum can side plate. Specifically, it is the through holes S1 to S9 indicated by black squares in the front view of the drum shown in FIG. Although not shown, non-through holes R1 to R9 are formed on the inner side of the drum can at about 700 mm away from the welding line A through the measurement line 2 on the back side of FIG.
(2) A through hole and a non-penetrating conical flaw were processed on the drum can bottom plate. Specifically, in the plan view of the drum shown in FIG. 2, there are non-through flaws A1 to A8 indicated by black circles and through holes B1 to B8 indicated by black squares.

5.側板の計測
ドラム缶側板の計測を行った。溶接部Aを介して超音波が伝搬するかを検証するため、溶接部Aを挟んで、測線1と測線2とのを2本を設定した。図1に示す通り、測線1はドラム缶側板の貫通孔S1が形成されており、表面の溶接線Aから約95mmの地点である。測線2は表面の溶接線Aに対して測線1の対向側に配され、溶接線Aに対してから約410mmの地点とした。また、S9から218mm離れた測線3を設定した。
5. Measurement of side plate Drum can side plate was measured. In order to verify whether the ultrasonic wave propagates through the welded part A, two of the survey line 1 and the survey line 2 are set with the welded part A interposed therebetween. As shown in FIG. 1, the survey line 1 is formed with a through hole S1 of the drum can side plate, and is a point of about 95 mm from the weld line A on the surface. The measurement line 2 is arranged on the opposite side of the measurement line 1 with respect to the surface welding line A, and is about 410 mm from the welding line A. Moreover, the survey line 3 which was 218 mm away from S9 was set.

測線毎に、端部とリム間、或いは、リム間の計3箇所に側板超音波探傷手段としての超音波探触子11に横波専用の接触媒質を介して側板に固定し、SH波を照射した。   For each survey line, the ultrasonic probe 11 as the side plate ultrasonic flaw detection means is fixed to the side plate through a contact medium exclusively for transverse waves and irradiated with SH waves at a total of three locations between the end and the rim or between the rims. did.

尚、側板における超音波探傷の条件は次の通りであった。
ゲイン : 40.0dB 試験周波数 : 0.5MHz
測定範囲 : 1000mm 屈折角 : 90.0°
音速 : 3.22km/s
The conditions for ultrasonic flaw detection on the side plate were as follows.
Gain: 40.0 dB Test frequency: 0.5 MHz
Measurement range: 1000 mm Refraction angle: 90.0 °
Speed of sound: 3.22 km / s

(5-1) 測線1での測定
図3は測線1から非貫通孔R1〜R9に向かってSH波を照射した結果の探傷波形を示す線図である。a図は測線1上の上端部と第1リム間に超音波探触子を設置した結果を示し、b図は測線1上の第1リムと第2リム間に超音波探触子を設置した結果を示し、c図は測線1上の第2リムと下端部間に超音波探触子を設置した結果を示す。
(5-1) Measurement at Survey Line 1 FIG. 3 is a diagram showing a flaw detection waveform as a result of irradiating SH waves from the survey line 1 toward the non-through holes R1 to R9. Fig. a shows the result of installing an ultrasonic probe between the upper end of the survey line 1 and the first rim, and Fig. b shows the result of installing the ultrasonic probe between the first rim and the second rim on the survey line 1. The figure c shows the result of installing an ultrasonic probe between the second rim on the survey line 1 and the lower end.

a図〜c図に示す通り、折れ線部が反射エコー、高さが反射エコー高さで0〜100%で表示される。下の数字が探触子からの距離である(mm)。各図に示される通り、溶接線Aを超えてSH波の超音波が伝達されて非貫通孔を検知することが示された。   As shown in FIGS. a to c, the broken line portion is displayed as a reflection echo, and the height is displayed as a reflection echo height of 0 to 100%. The number below is the distance from the probe (mm). As shown in each figure, it was shown that the ultrasonic wave of the SH wave is transmitted beyond the weld line A to detect the non-through hole.

(5-2) 測線2での測定
図4は測線2からS1〜S9に向かってSH波を照射した結果の探傷波形を示す線図である。図は測線2上の上端部と第1リム間に超音波探触子を設置した結果を示す。図に示す通り、折れ線部が反射エコー、高さが反射エコー高さで0〜100%で表示される。下の数字が探触子からの距離である(mm)。溶接線Aを超えてSH波の超音波が伝達されて非貫通孔を検知することが示された。
(5-2) Measurement at Survey Line 2 FIG. 4 is a diagram showing a flaw detection waveform as a result of irradiating SH waves from the survey line 2 toward S1 to S9. The figure shows the result of installing an ultrasonic probe between the upper end on the survey line 2 and the first rim. As shown in the figure, the broken line portion is displayed as a reflection echo, and the height is displayed as a reflection echo height of 0 to 100%. The number below is the distance from the probe (mm). It was shown that SH wave ultrasonic waves are transmitted beyond the weld line A to detect non-through holes.

(5-3) 測線3での測定
図5は測線3からS1〜S9に向かってSH波を照射した結果の探傷波形を示す線図である。a図は測線1上の上端部と第1リム間に超音波探触子を設置した結果を示し、b図は測線1上の第1リムと第2リム間に超音波探触子を設置した結果を示し、c図は測線1上の第2リムと下端部間に超音波探触子を設置した結果を示す。
(5-3) Measurement at Survey Line 3 FIG. 5 is a diagram showing a flaw detection waveform as a result of irradiating SH waves from the survey line 3 toward S1 to S9. Fig. a shows the result of installing an ultrasonic probe between the upper end of the survey line 1 and the first rim, and Fig. b shows the result of installing the ultrasonic probe between the first rim and the second rim on the survey line 1. The figure c shows the result of installing an ultrasonic probe between the second rim on the survey line 1 and the lower end.

a図〜c図に示す通り、折れ線部が反射エコー、高さが反射エコー高さで0〜100%で表示される。下の数字が探触子からの距離である(mm)。各図に示す通り、溶接線Aを超えてSH波の超音波が伝達されて非貫通孔を検知することが示された。   As shown in FIGS. a to c, the broken line portion is displayed as a reflection echo, and the height is displayed as a reflection echo height of 0 to 100%. The number below is the distance from the probe (mm). As shown in each figure, it was shown that the ultrasonic wave of the SH wave is transmitted beyond the weld line A to detect the non-through hole.

(5-4) 新たな測線での測定
溶接線Aを跨いだ反射エコーを更に検証した。溶接線Aを中心として貫通孔S1から200mm離れた測線上に超音波探触子11に横波専用の接触媒質を介して側板に固定し、SH波を照射した。図6はその結果の探傷波形を示す線図である。図に示す通り、折れ線部が反射エコー、高さが反射エコー高さで0〜100%で表示される。下の数字が探触子からの距離である(mm)。
(5-4) Measurement on a new survey line The reflected echo that crossed the weld line A was further verified. The ultrasonic probe 11 was fixed to the side plate via a contact medium dedicated to transverse waves on a measurement line 200 mm away from the through hole S1 with the welding line A as the center, and SH waves were irradiated. FIG. 6 is a diagram showing a flaw detection waveform as a result. As shown in the figure, the broken line portion is displayed as a reflection echo, and the height is displayed as a reflection echo height of 0 to 100%. The number below is the distance from the probe (mm).

図6に示す通り、200、340、380、635mmの地点に明確なきずがあることが示されている。ここで200mmの反射エコーは溶接部からのものである。実際の測定では、2箇所からの測定で得られた反射エコーの数値を半径とした2つの円をドラム缶表面に描けば、その交点にきずがあることになる。   As shown in FIG. 6, it is shown that there are clear flaws at points of 200, 340, 380, and 635 mm. Here, the 200 mm reflection echo is from the weld. In actual measurement, if two circles with the radius of the value of the reflected echo obtained by measurement from two places are drawn on the drum can surface, there will be a flaw at the intersection.

340mmはS2のきずであり、380mmはS3のきずであることが確認された。また、635mmについては、きずを示すエコーか、ノイズかが不明であったが、実際に確かめると635mmは名称未設定のきずであったことが確認された。以上のように、側板については水平方向の探査が十分可能であることが確認された。   It was confirmed that 340 mm was a S2 flaw and 380 mm was a S3 flaw. Further, although it was unknown whether 635 mm was an echo indicating a flaw or noise, it was confirmed that 635 mm was an unnamed flaw. As described above, it was confirmed that the horizontal exploration was sufficiently possible for the side plate.

(5-5) 側板での伝播範囲の確認
測線2から非貫通孔R1を狙って探触子を置く。この場合、探触子11を上端に付けた位置では感度がないので、上端から52mm下げた測線地点で200mmの位置にR1を見つけていることから、側板に横方向で入力する場合のSH波伝播角度は約29度となることが確認された。尚、縦方向に入力する場合の同角度が約18度であることを考えると、この角度は大きい。その原因は次の2つが考えられた。
(5-5) Confirming the propagation range on the side plate Place the probe from the survey line 2 to the non-through hole R1. In this case, since there is no sensitivity at the position where the probe 11 is attached to the upper end, since R1 is found at a position of 200 mm at a survey point 52 mm lower than the upper end, the SH wave when inputting laterally to the side plate It was confirmed that the propagation angle was about 29 degrees. Note that this angle is large considering that the same angle when inputting in the vertical direction is about 18 degrees. The following two causes were considered.

(1) 縦方向入力の場合は、平面である探触子と円筒形の側板との接線が縦に一直線となり、SH波の振動方向と直交するため、入力損失が大きくなる。横方向入力では振動方向に平行な接線となるため、入力損失が小さい。
(2) 縦方向入力では、振動方向に沿って曲率が大きくなるため、伝播損失が大きい。
(1) In the case of longitudinal input, the tangent line between the flat probe and the cylindrical side plate is vertically aligned and perpendicular to the direction of vibration of the SH wave, so input loss increases. In the lateral input, the input loss is small because the tangent line is parallel to the vibration direction.
(2) Longitudinal input has a large propagation loss because the curvature increases along the vibration direction.

(5-6) 側板での探傷位置
側板において、溶接線を越えてSH波が伝播され、尚且つSH波伝播角度は約29度となることが確認された。そのため、山積みの状態となり、実質的に側面の1/3程度が表に出ている状態であっても、1つの測線上で少なくとも3カ所で探傷することにより、側板の欠損を外面側から検出することができることがわかった。具体的には、図7は側板での探傷位置を示す側板展開図である。図に示す通り、ドラム缶の側板の中央高さ位置でSH波を側板の円周方向に入射させて減肉箇所の検出を行い、同じ測線上の上端及び下端部で中央部と反対側に円周方向に入射させて減肉箇所の検出を行うことにより、側板の全面を計測することができる。
(5-6) Flaw detection position on the side plate It was confirmed that on the side plate, the SH wave propagates beyond the weld line, and the SH wave propagation angle is about 29 degrees. Therefore, even if it is in a piled state and substantially 1/3 of the side surface is on the surface, defects on the side plate are detected from the outer surface side by flaw detection at at least three locations on one survey line. I found out that I can do it. Specifically, FIG. 7 is a developed side plate showing a flaw detection position on the side plate. As shown in the figure, the SH wave is incident in the circumferential direction of the side plate at the center height position of the side plate of the drum can to detect the thinned portion, and the upper and lower ends on the same line of measurement are circular on the opposite side to the center portion. The entire surface of the side plate can be measured by detecting the thinned portion by entering in the circumferential direction.

6.底坂での測定
(6-1) 底坂での測定1
図2に示す平面図において、6時に該当する位置に底板超音波探傷手段としての超音波探触子21に横波専用の接触媒質を介して側板に固定し、SH波を照射した。尚、超音波探傷子21は底板の勘合部に当接させて照射させた。
6). Measurement at the bottom slope
(6-1) Measurement at bottom slope 1
In the plan view shown in FIG. 2, the ultrasonic probe 21 as the bottom plate ultrasonic flaw detector is fixed to the side plate via a contact medium exclusively for the transverse wave at the position corresponding to 6 o'clock, and the SH wave was irradiated. The ultrasonic flaw detector 21 was irradiated while being brought into contact with the fitting portion of the bottom plate.

尚、底板における超音波探傷の条件は次の通りであった。
ゲイン : 40.0dB 試験周波数 : 0.5MHz
測定範囲 : 2730mm 屈折角 : 90.0°
音速 : 3.22km/s
The conditions for ultrasonic flaw detection on the bottom plate were as follows.
Gain: 40.0 dB Test frequency: 0.5 MHz
Measurement range: 2730 mm Refraction angle: 90.0 °
Speed of sound: 3.22 km / s

図8は底板の勘合部からR1〜R9に向かってSH波を照射した結果の探傷波形を示す線図である。図に示す通り、折れ線部が反射エコー、高さが反射エコー高さで0〜100%で表示される。下の数字が探触子からの距離である(mm)。勘合部からの超音波の照射であっても、SH波の超音波が伝達されて少なくとも4点の貫通孔及び非貫通孔を検知することが示された。   FIG. 8 is a diagram showing a flaw detection waveform as a result of irradiating SH waves from the fitting portion of the bottom plate toward R1 to R9. As shown in the figure, the broken line portion is displayed as a reflection echo, and the height is displayed as a reflection echo height of 0 to 100%. The number below is the distance from the probe (mm). It was shown that even when ultrasonic waves are irradiated from the fitting portion, ultrasonic waves of SH waves are transmitted to detect at least four through holes and non-through holes.

図8に示した計測では、探傷子の接触する面積が小さい上に、ドラム缶のカーブに対して直線で接触するため、入力が小さく、また、勘合部での入力であるため、折りたたまれた鉄板での減衰が大きいことが示された。これを改善するためは、ドラム缶のカーブに合わせたアクリル樹脂の治具を製作し、再度実験を試みことにした。   In the measurement shown in FIG. 8, the contact area of the flaw detector is small, and since the contact is made in a straight line with respect to the curve of the drum, the input is small, and since the input is at the fitting portion, the folded iron plate It was shown that the attenuation at is large. In order to improve this, we decided to make an acrylic resin jig that matched the curve of the drum and tried the experiment again.

(6-2) 底坂での測定2(アクリル治具の有効性)
図9はアクリル治具を装着したSH波探傷子の構成を示す説明図であり、a図は平面図、b図は正面図、c図は側面図である。勘合部から接触面積が小さいことを補完する目的から底板側面の曲率に合わせたアクリル製の治具を製作し、これを用いて測定を行った。具体的には、図9に示す通り、アクリル治具91の凹部93にSH波探触子21を装着させた。この際に、SH波探触子21の超音波発振面22をドラム缶底板の側面の曲率に合わせた曲面92の上部に形成された凹部93の底面に接触するように凹部93に嵌合させてSH波探触子21を装着した。
(6-2) Measurement at Sokosaka 2 (Effectiveness of acrylic jig)
FIG. 9 is an explanatory view showing a configuration of an SH wave flaw detector to which an acrylic jig is attached. FIG. 9A is a plan view, FIG. 9B is a front view, and FIG. 9C is a side view. For the purpose of complementing that the contact area is small from the mating part, an acrylic jig matched with the curvature of the side surface of the bottom plate was manufactured, and measurement was performed using this jig. Specifically, as shown in FIG. 9, the SH wave probe 21 was attached to the recess 93 of the acrylic jig 91. At this time, the ultrasonic wave oscillating surface 22 of the SH wave probe 21 is fitted into the concave portion 93 so as to come into contact with the bottom surface of the concave portion 93 formed on the upper surface of the curved surface 92 in accordance with the curvature of the side surface of the drum can bottom plate. The SH wave probe 21 was attached.

図10は側板探査時と同じ感度(40dB)での底板の勘合部からR1〜R9に向かってSH波を照射した結果の探傷波形を示す線図である。図に示す通り、複数の反射エコーと対面端部からの反射エコーが確認された。SH波は角度をもって入射するため、アクリル治具91とSH波探触子21の位置をずらし、最適な関係を探る必要があるが、この治具により適切に勘合部に接触させることができ、探触子単体で使用するよりも感度はよくなった。尚、当接片としては、図9に示すアクリル治具に限定するものではなく、SH波探触子からの超音波を底板側面の曲率に合わせた曲面から入射させる構成のものであればよい。   FIG. 10 is a diagram showing a flaw detection waveform as a result of irradiating SH waves from the mating portion of the bottom plate toward R1 to R9 with the same sensitivity (40 dB) as in the side plate search. As shown in the figure, a plurality of reflected echoes and reflected echoes from the facing end were confirmed. Since the SH wave is incident at an angle, it is necessary to shift the positions of the acrylic jig 91 and the SH wave probe 21 to find the optimum relationship, but this jig can be brought into contact with the fitting portion appropriately. The sensitivity was better than using the probe alone. Note that the contact piece is not limited to the acrylic jig shown in FIG. 9, and any contact piece may be used as long as the ultrasonic wave from the SH wave probe is incident from a curved surface matching the curvature of the bottom plate side surface. .

(6-3) 底坂での測定3(底板での反射エコーと実際のきずの対応)
勘合部の巻き込み部と端部までの長さを測定した。巻き込み部は40mmであり、対面の端部までは620mmであった。図10の測定画面では615mmでエコーがあるが、巻き尺測定での緩みの誤差と思われた。そこで、感度を上げて、エコー位置を確認した(+10dB)。図11は感度を上げた場合での底板の勘合部からR1〜R9に向かってSH波を照射した結果の探傷波形を示す線図である。
(6-3) Measurement at the bottom slope 3 (correspondence between the reflection echo on the bottom plate and the actual flaw)
The length to the entrainment part and end part of the fitting part was measured. The entrainment part was 40 mm, and it was 620 mm up to the end of the facing surface. In the measurement screen of FIG. 10, there was an echo at 615 mm, but it seemed to be a looseness error in measuring the tape measure. Therefore, the sensitivity was increased and the echo position was confirmed (+10 dB). FIG. 11 is a diagram showing a flaw detection waveform as a result of irradiating SH waves from the mating portion of the bottom plate toward R1 to R9 when sensitivity is increased.

図に示す通り、145、180、200、220、240、265、300mmに複数の反射エコーが確認された。実際のものと比較すると、145mmはB6(誤差5mm)であり、180mmはB5、200mmはB4、220はB3、240はB2、265はB1であることが確認された。尚、300は直接確認ができないが、A1と思われた。   As shown in the figure, a plurality of reflected echoes were confirmed at 145, 180, 200, 220, 240, 265, and 300 mm. Compared with the actual one, it was confirmed that 145 mm was B6 (error 5 mm), 180 mm was B5, 200 mm was B4, 220 was B3, 240 was B2, and 265 was B1. Although 300 could not be confirmed directly, it was thought to be A1.

以上の通り、超音波探傷子21を底面の勘合部に沿って約1/3周移動させることにより、底面のほぼ全面を探傷することが可能となることが確認された。   As described above, it was confirmed that the entire flaw bottom surface can be flawed by moving the ultrasonic flaw detector 21 about one third round along the fitting portion on the bottom surface.

7.まとめ
以上の通り、側板検査により、側板面に取付けた超音波探傷手段よりSH波を側板の円周方向に入射して減肉箇所の検出を行うことにより、ドラム缶側板の溶接部を超えて超音波が伝達されて欠損を検知することができ、これにより、山積みの状態となり、実質的に側面の1/3程度が表に出ている状態であっても、ドラム缶の断面欠損を外面側から検出することができることが確認できた。尚、この側板検査を精密な検査の予備検査として用いることにより、検査時間の短縮が達成される。即ち、欠損の検出が無いドラム缶については、精密な検査を行う必要が無く、欠損の検出が疑われたドラム缶については、円周方向を逆にして欠損位置の距離を計測したり、従来のより精密な検査を行ってその欠損位置を特定する。これにより、検査時間の短縮と検査費用の低減が達成される。
7). Summary As described above, by inspection of the side plate, the ultrasonic wave detecting means attached to the side plate surface is irradiated with the SH wave in the circumferential direction of the side plate to detect the thinned portion, so that the ultrasonic wave exceeds the welded portion of the drum can side plate. Sound waves can be transmitted and defects can be detected. As a result, even if the surface is piled up and substantially 1/3 of the side surface is exposed, the cross-sectional defects of the drum can can be detected from the outer surface side. It was confirmed that it could be detected. By using this side plate inspection as a preliminary inspection for precise inspection, the inspection time can be shortened. In other words, it is not necessary to conduct a precise inspection for drums that do not have defects detected, and for drums that are suspected of having defects detected, the distance of the defect position can be measured by reversing the circumferential direction. A precise inspection is performed to identify the position of the defect. Thereby, shortening of inspection time and reduction of inspection cost are achieved.

底板検査により、底板周縁の嵌合縁部に取付けた超音波探傷手段よりSH波を底板平面に沿った水平方向に入射して減肉箇所の検出を行うことにより、ドラム缶の勘合縁部からでもドラム缶底板に超音波が伝達されて欠損を検知することができ、これにより、山積みの状態となり、実質的に側面の1/3程度が表に出ている状態であっても、ドラム缶底板の断面欠損を外面側から検出することができることが確認できた。この底板検査を精密な検査の予備検査として用いることにより、検査時間の短縮と検査費用の低減が達成されることは前述の側板検査と同様である。   Even from the mating edge of the drum can by detecting the thinned portion by injecting the SH wave into the horizontal direction along the bottom plate plane from the ultrasonic flaw detector attached to the fitting edge of the bottom plate periphery by the bottom plate inspection. The ultrasonic waves are transmitted to the drum can bottom plate, so that the defect can be detected. As a result, the cross section of the drum can bottom plate can be obtained even in a state where about 1/3 of the side surface is exposed. It was confirmed that the defect could be detected from the outer surface side. Similar to the above-described side plate inspection, the bottom plate inspection is used as a preliminary inspection for precise inspection, thereby reducing the inspection time and the inspection cost.

Claims (6)

ドラム缶の内面側に発生する断面欠損を外面側から検出するドラム缶検査方法であって、
前記ドラム缶の側板について、側板面に取付けた超音波探傷手段よりSH波を側板の円周方向に入射して減肉箇所の検出を行う側板検査を行うことを特徴とするドラム缶検査方法。
A drum can inspection method for detecting a cross-sectional defect occurring on the inner surface side of a drum can from the outer surface side,
A drum can inspection method for performing side plate inspection on a side plate of the drum to detect a thinned portion by introducing SH waves in the circumferential direction of the side plate from an ultrasonic flaw detector attached to the side plate.
前記ドラム缶の底板について、底板周縁の嵌合縁部に取付けた超音波探傷手段よりSH波を底板平面に沿った水平方向に入射して減肉箇所の検出を行う底板検査を更に行うことを特徴とする請求項1に記載のドラム缶検査方法。   The bottom plate of the drum can is further subjected to a bottom plate inspection in which a SH wave is incident in a horizontal direction along the bottom plate plane from an ultrasonic flaw detector attached to a fitting edge of the bottom plate periphery to detect a thinned portion. The drum can inspection method according to claim 1. 前記ドラム缶が、鉄板の両面に亜鉛メッキし、この亜鉛メッキの表面に樹脂膜を施したものであることを特徴とする請求項1又は2に記載のドラム缶検査方法。   The drum can inspection method according to claim 1 or 2, wherein the drum can is obtained by galvanizing both surfaces of an iron plate and applying a resin film to the surface of the galvanized surface. ドラム缶の内面側に発生する断面欠損を外面側から検出するドラム缶検査装置であって、
前記ドラム缶の側板面に取付けて、SH波を側板の円周方向に入射させて減肉箇所の検出を行う側板超音波探傷手段を備えることを特徴とするドラム缶検査装置。
A drum inspection apparatus for detecting a cross-sectional defect generated on the inner surface side of a drum can from the outer surface side,
A drum inspection apparatus, comprising: a side plate ultrasonic flaw detection unit which is attached to a side plate surface of the drum can and detects a thinning portion by causing an SH wave to enter the circumferential direction of the side plate.
前記ドラム缶の底板周縁の勘合縁部に取付けて、SH波を底板平面に沿った水平方向に入射させて減肉箇所の検出を行う底板超音波探傷手段を更に備えることを特徴とする請求項4に記載のドラム缶検査装置。   5. A bottom plate ultrasonic flaw detection unit, which is attached to a mating edge portion of a peripheral edge of the bottom plate of the drum, and detects a thinning portion by causing SH waves to enter the horizontal direction along the bottom plate plane. The drum inspection apparatus described in 1. 前記底板超音波探傷手段が、前記底面周縁の勘合縁部の曲面に合致する当接片を備えたことを特徴とする請求項4又は5に記載のドラム缶検査装置。   The drum inspection apparatus according to claim 4 or 5, wherein the bottom plate ultrasonic flaw detection means includes an abutting piece that matches a curved surface of a mating edge portion of the bottom surface periphery.
JP2011219231A 2011-10-03 2011-10-03 Drum can inspection method and apparatus Active JP5883605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011219231A JP5883605B2 (en) 2011-10-03 2011-10-03 Drum can inspection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011219231A JP5883605B2 (en) 2011-10-03 2011-10-03 Drum can inspection method and apparatus

Publications (2)

Publication Number Publication Date
JP2013079843A true JP2013079843A (en) 2013-05-02
JP5883605B2 JP5883605B2 (en) 2016-03-15

Family

ID=48526340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011219231A Active JP5883605B2 (en) 2011-10-03 2011-10-03 Drum can inspection method and apparatus

Country Status (1)

Country Link
JP (1) JP5883605B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014202511A (en) * 2013-04-02 2014-10-27 金川 典代 Method and device for inspecting drum
CN110656665A (en) * 2019-09-24 2020-01-07 江苏大学 Automatic detection system and method for multi-pipeline ultrasonic nondestructive detection and three-dimensional modeling positioning dead pixel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0972887A (en) * 1995-09-07 1997-03-18 Sakai Tekkosho:Kk Flaw detection of pipe by ultrasonic surface acoustic sh wave
JP2004301613A (en) * 2003-03-31 2004-10-28 Idemitsu Eng Co Ltd Method for inspecting tube by using sh wave
JP2008175796A (en) * 2006-12-18 2008-07-31 Chiyoda Technol Corp Drum inspection method, and device therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0972887A (en) * 1995-09-07 1997-03-18 Sakai Tekkosho:Kk Flaw detection of pipe by ultrasonic surface acoustic sh wave
JP2004301613A (en) * 2003-03-31 2004-10-28 Idemitsu Eng Co Ltd Method for inspecting tube by using sh wave
JP2008175796A (en) * 2006-12-18 2008-07-31 Chiyoda Technol Corp Drum inspection method, and device therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014202511A (en) * 2013-04-02 2014-10-27 金川 典代 Method and device for inspecting drum
CN110656665A (en) * 2019-09-24 2020-01-07 江苏大学 Automatic detection system and method for multi-pipeline ultrasonic nondestructive detection and three-dimensional modeling positioning dead pixel
CN110656665B (en) * 2019-09-24 2021-08-20 江苏大学 Automatic detection system and method for multi-pipeline ultrasonic nondestructive detection and three-dimensional modeling positioning dead pixel

Also Published As

Publication number Publication date
JP5883605B2 (en) 2016-03-15

Similar Documents

Publication Publication Date Title
JP4747172B2 (en) Scratch height measuring method and apparatus in ultrasonic flaw detection test
RU2485388C2 (en) Device and group of sensors for pipeline monitoring using ultrasonic waves of two different types
US7926349B2 (en) Detection of defects in welded structures
Sargent Corrosion detection in welds and heat-affected zones using ultrasonic Lamb waves
Liu et al. Guided waves based diagnostic imaging of circumferential cracks in small-diameter pipe
CN109196350A (en) Pass through the method for the defects of ultrasound detection material
US20180017533A1 (en) An apparatus and method for inspecting a pipeline
JP5883605B2 (en) Drum can inspection method and apparatus
EP3985387A1 (en) Ultrasound flaw detection method, ultrasound flaw detection device, manufacturing equipment line for steel material, manufacturing method for steel material, and quality assurance method for steel material
JP6173745B2 (en) Drum can inspection method and apparatus
Cawley Guided waves in long range nondestructive testing and structural health monitoring: Principles, history of applications and prospects
US20220099629A1 (en) Method and device for non-destructive testing of a plate material
JP2017053637A (en) Nondestructive checkup apparatus
JP2004077292A (en) Method and device for inspecting stress corrosion cracking
JP2008164397A (en) Flaw detection method and flaw detector used therein
Pei et al. Development and application of guided wave technology for buried piping inspection in nuclear power plant
Alleyne et al. An introduction to long-range screening using guided waves
Trushkevych et al. Towards guided wave robotic NDT inspection: EMAT size matters
JP3662231B2 (en) Inspection method for steel drums
US20220146460A1 (en) Guided wave testing of welds in pipelines and plate structures
JP6953953B2 (en) A method for evaluating the soundness of oblique ultrasonic flaw detection, and a method for oblique ultrasonic flaw detection using this method.
JPS60205356A (en) Ultrasonic flaw detecting method of steel tube weld zone
Lee et al. Use of EMAT for Monitoring Pipe Support Corrosion Detected by an Internal PIG
US20230049260A1 (en) Acoustic Detection of Defects in a Pipeline
Volker et al. Annular plate inspection using guided wave tomography

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140911

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160208

R150 Certificate of patent or registration of utility model

Ref document number: 5883605

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250