JP2014202511A - Method and device for inspecting drum - Google Patents

Method and device for inspecting drum Download PDF

Info

Publication number
JP2014202511A
JP2014202511A JP2013076603A JP2013076603A JP2014202511A JP 2014202511 A JP2014202511 A JP 2014202511A JP 2013076603 A JP2013076603 A JP 2013076603A JP 2013076603 A JP2013076603 A JP 2013076603A JP 2014202511 A JP2014202511 A JP 2014202511A
Authority
JP
Japan
Prior art keywords
drum
side plate
cross
detecting
sectional defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013076603A
Other languages
Japanese (ja)
Other versions
JP6173745B2 (en
Inventor
原 徹
Toru Hara
原  徹
甫 羽田野
Hajime Hatano
甫 羽田野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANAGAWA NORIYO
Original Assignee
KANAGAWA NORIYO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANAGAWA NORIYO filed Critical KANAGAWA NORIYO
Priority to JP2013076603A priority Critical patent/JP6173745B2/en
Publication of JP2014202511A publication Critical patent/JP2014202511A/en
Application granted granted Critical
Publication of JP6173745B2 publication Critical patent/JP6173745B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inspection method capable of detecting a cross-sectional defect part of a drum in a stacked state from an external surface side.SOLUTION: A drum inspection method for allowing an SH wave to be incident on a side plate side of a drum includes: a fixing step of fixing a side plate ultrasonic probe on an upper side part and/or a lower side part of the side plate surface; a first detection step of allowing the SH wave to be incident on the side plate surface at this fixing position and detecting a cross-sectional defect part as an echo height; a second detection step of causing the probe to rotate with this fixing position as a center, causing the SH wave having an angle of a different incident direction to be incident and detecting the cross-sectional defect part as the echo height; and a first position detection step of detecting the position of the cross-sectional defect part from the direction of the cross sectional defect part estimated by a difference of a distance time to the echo of the cross-sectional defect part at the same place with the first detection step and the second detection step, and from the distance to the defect part.

Description

本発明は、ドラム缶の欠損部と腐食を検査するドラム缶検査方法及びその装置に関するものである。   The present invention relates to a drum can inspection method and apparatus for inspecting a defective portion and corrosion of a drum can.

ドラム缶は石油等の液体を一時的に貯蔵して搬送する際に用いられる。その他にも、低レベル放射性廃棄物を収納するドラム缶内面と外面に発生する腐食、あるいは錆、あるいは物理的な要因による磨耗などの断面欠損部を外面側から検出し、その発生位置が特定できる検査手法を確立するとともに、断面欠損部の残厚を測定し、残余寿命のデータを得ることが可能なドラム缶検査方法及び装置が提案されている(例えば、特許文献1参照)。   The drum can is used when temporarily storing and transporting a liquid such as petroleum. In addition, inspections that can detect cross-sectional defects such as corrosion or rust generated on the inner and outer surfaces of drum cans containing low-level radioactive waste from the outer surface, such as wear due to physical factors, can be identified. There has been proposed a drum inspection method and apparatus capable of establishing a technique, measuring a remaining thickness of a cross-sectional defect portion, and obtaining data on a remaining life (see, for example, Patent Document 1).

このドラム缶検査方法は、横波の超音波によりドラム缶に発生する断面欠損部の検出および範囲を推定する1次検査を行い、縦波の超音波により1次検査で得た範囲を垂直探傷することにより減肉の程度を検出する2次検査を行う検査方法である。1次検査は、横波の超音波をドラム缶の側板の上端部から下端部へ伝播させかつ下端部から上端部へ伝播させるか、又は、横波の超音波をドラム缶の天板及び底板の円周外縁部から中心部へ伝播させるものである。   This drum can inspection method performs a primary inspection to detect a cross-sectional defect portion generated in a drum can by a transverse wave ultrasonic wave and estimate a range, and performs a vertical flaw detection on a range obtained by the primary inspection by a longitudinal wave ultrasonic wave. This is an inspection method for performing a secondary inspection to detect the degree of thinning. In the primary inspection, transverse wave ultrasonic waves are propagated from the upper end to the lower end of the side plate of the drum can and from the lower end to the upper end, or the ultrasonic waves of the transverse wave are transmitted to the outer peripheral edges of the top and bottom plates of the drum can. It propagates from the center to the center.

また、ドラム缶検査装置としては、横波の超音波によりドラム缶に発生する断面欠損部の検出および範囲を推定する1次調査を行う1次検査超音波器と、縦波の超音波により1次検査で得た範囲の垂直探傷することにより減肉の程度を検出する2次調査を行う2次検査超音波器とを備えるドラム缶検査装置である。   In addition, the drum can inspection apparatus includes a primary inspection ultrasonic device for performing a primary inspection for detecting and detecting a cross-sectional defect portion generated in a drum can by a transverse wave ultrasonic wave, and a primary inspection by a longitudinal wave ultrasonic wave. A drum inspection apparatus including a secondary inspection ultrasonic device for performing a secondary inspection for detecting the degree of thinning by performing a vertical flaw detection in the obtained range.

特開2008−175796号公報JP 2008-17596A

しかしながら、例えば低レベル放射性廃棄物を収納するドラム缶の保管状態の現状は、多数のドラム缶自体が山積みの状態となっており、実質的に側面の1/3程度が表に出ている状態であるため、この表出面が実際の作業範囲となり、底面は実質的に作業ができない状態である。また、特定の廃棄物を保管する際にも山積み状態となっている。   However, for example, the current state of storage of drum cans containing low-level radioactive waste is a state in which a large number of drum cans are piled up, and about 1/3 of the side surface is substantially exposed. Therefore, this exposed surface is the actual work range, and the bottom surface is in a state where the work cannot be performed substantially. It is also piled up when storing specific waste.

本発明は、山積みの状態となり、実質的に側面の1/3程度が表に出ている状態であっても、ドラム缶の断面欠損部を外面側から検出することができる検査方法及びその装置を得ることを目的とする。   The present invention provides an inspection method and apparatus capable of detecting a cross-sectional defect portion of a drum can from the outer surface side even in a state of being piled up and substantially 1/3 of the side surface being exposed. The purpose is to obtain.

請求項1に記載された発明に係るドラム缶検査方法は、ドラム缶に発生した断面欠損部を外面側から検出する検査方法であって、前記ドラム缶の側板について、超音波探傷手段より側板面にSH波を入射して前記欠損部の検出を行うドラム缶検査方法において、
超音波探傷手段としての側板超音波探触子を側板面の上辺部及び/又は下辺部に取付ける取付け工程と、この取付け位置で側板面にSH波を入射させて断面欠損部をエコー高さとして検出する第1検出工程と、この取付け位置を中心に側板超音波探触子を回転させて入射方向の角度を相違させたSH波を入射させて断面欠損部をエコー高さとして検出する第2検出工程と、第1検出工程と第2検出工程との同一地点での断面欠損部のエコーまでの距離時間の差異によって推察された当該断面欠損部の方向と、当該欠損部までの距離とから断面欠損部の位置を検出する第1位置検出工程とを備えたことを特徴とするものである。
A drum can inspection method according to the invention described in claim 1 is an inspection method for detecting a cross-sectional defect portion generated in a drum can from the outer surface side, and the SH plate has a SH wave on the side plate surface from the ultrasonic flaw detection means. In a drum inspection method for detecting the defect by entering the
A mounting process for mounting a side plate ultrasonic probe as an ultrasonic flaw detection means on the upper side and / or lower side of the side plate surface, and SH waves are incident on the side plate surface at this mounting position, and the cross-sectional defect portion is set as the echo height. A first detection step for detecting, and a second detection for detecting the cross-sectional defect as the echo height by rotating the side plate ultrasonic probe around the mounting position and causing the SH wave having a different angle in the incident direction to enter. From the detection step, the direction of the cross-sectional defect portion inferred from the difference in distance time to the echo of the cross-sectional defect portion at the same point in the first detection step and the second detection step, and the distance to the defect portion And a first position detecting step for detecting the position of the cross-sectional defect portion.

請求項2に記載された発明に係るドラム缶検査方法は、請求項1に記載の取付け工程における取付け位置に対向する辺部に側板超音波探触子を取付ける第2取付け工程と、この第2取付け位置で側板面に前記第1検出工程と反対方向にSH波を入射させて断面欠損部をエコー高さとして検出する反第1検出工程と、この第2取付け位置を中心に側板超音波探触子を回転させて入射方向の角度を相違させたSH波を入射させて断面欠損部をエコー高さとして検出する反第2検出工程と、反第1検出工程と反第2検出工程との同一地点での断面欠損部のエコーまでの距離時間の差異によって推察された当該断面欠損部の方向と、当該欠損部までの距離とから断面欠損部の位置を検出する第2位置検出工程と、前記第1位置検出工程と第2位置検出工程とから断面欠損部の位置を検出する統合位置検出工程とを更に備えたことを特徴とするものである。   According to a second aspect of the present invention, there is provided a drum can inspection method comprising: a second attachment step of attaching a side plate ultrasonic probe to a side opposite to an attachment position in the attachment step according to claim 1; An anti-first detection step in which a SH wave is incident on the side plate surface in the opposite direction to the first detection step to detect the cross-sectional defect as the echo height, and the side plate ultrasonic probe is centered on the second mounting position. The anti-second detection step in which the SH wave having a different angle in the incident direction by rotating the element is made incident to detect the cross-sectional defect portion as the echo height is the same as the anti-first detection step and the anti-second detection step. A second position detecting step for detecting the position of the cross-sectional defect portion from the direction of the cross-sectional defect portion estimated from the difference in distance time to the echo of the cross-sectional defect portion at the point and the distance to the defect portion; First position detection step and second position detection It is characterized in that it comprises extent further the integration position detection step of detecting a position of the cross defect from.

請求項3に記載された発明に係るドラム缶検査方法は、請求項1又は2に記載のドラム缶の底板について、底板周縁の側板との嵌合縁部に取付けた底板超音波探触子よりSH波を底板平面に対する垂直方向に入射して断面欠損部の検出を行う底板検査を更に行うことを特徴とするものである。   A drum can inspection method according to a third aspect of the present invention is directed to an SH wave from a bottom plate ultrasonic probe attached to a fitting edge of a bottom plate of the drum can according to claim 1 or 2 with a side plate at the periphery of the bottom plate. Further, a bottom plate inspection for detecting a cross-sectional defect portion by entering the substrate in a direction perpendicular to the bottom plate plane is further performed.

請求項4に記載された発明に係るドラム缶検査装置は、ドラム缶に発生した断面欠損部を外面側から検出する超音波探傷手段を備えたドラム缶検査装置であって、
超音波探傷手段として、SH波を側板の円周方向に入射させて断面欠損部の検出を行う側板超音波探触子と、前記側板超音波探触子を前記ドラム缶の側板面の上辺部及び/又は下辺部に取付け、この取付け位置で側板超音波探触子を少なくとも1/4回転可能な探触子取付け治具とを備えたことを特徴とするものである。
A drum can inspection device according to the invention described in claim 4 is a drum can inspection device provided with ultrasonic flaw detection means for detecting a cross-sectional defect portion generated in the drum can from the outer surface side,
As ultrasonic flaw detection means, a side plate ultrasonic probe that detects a cross-sectional defect by making SH waves incident in the circumferential direction of the side plate, and the side plate ultrasonic probe is connected to the upper side of the side plate surface of the drum can and And / or a probe mounting jig that can be attached to the lower side portion and can rotate the side-plate ultrasonic probe at least 1/4 at this mounting position.

請求項5に記載された発明に係るドラム缶検査装置は、請求項4に記載の超音波探傷手段として、側板面の予め定められた一周上の上辺部と下辺部と各々に2つずつ離反方向にSH波を側板の円周方向に入射させて断面欠損部の検出を行う4つの側板超音波探触子と、前記側板超音波探触子の各々の取付け位置で1/4回転可能な4つの探触子取付け治具とを備えたことを特徴とするものである。   According to a fifth aspect of the present invention, there is provided the drum inspection apparatus according to the fourth aspect, wherein the ultrasonic flaw detection unit according to the fourth aspect is separated from the upper side and the lower side on a predetermined circumference of the side plate surface by two. 4 side plate ultrasonic probes for detecting a cross-sectional defect by making SH waves incident on the side plate in the circumferential direction, and 4 can be rotated by a quarter at each of the mounting positions of the side plate ultrasonic probes. And two probe mounting jigs.

請求項6に記載された発明に係るドラム缶検査装置は、請求項4又は5に記載のドラム缶の底板周縁の嵌合縁部に間隔を開けて取付けて、SH波を底板平面に対する垂直方向に入射させて断面欠損部の検出を行う一組の底板超音波探触子を更に備えることを特徴とするものである。   A drum can inspection apparatus according to the invention described in claim 6 is attached to the fitting edge of the periphery of the bottom plate of the drum can according to claim 4 or 5 at an interval, and the SH wave is incident in a direction perpendicular to the plane of the bottom plate. And a pair of bottom plate ultrasonic probes for detecting a cross-sectional defect portion.

本発明は、山積みの状態となり、実質的に側面の1/3程度が表に出ている状態であっても、ドラム缶の断面欠損部を外面側から正確に検出することができる検査方法及びその装置を得ることができるという効果がある。   INDUSTRIAL APPLICABILITY The present invention provides an inspection method capable of accurately detecting a cross-sectional defect portion of a drum can from the outer surface side even when it is in a piled state and substantially 1/3 of the side surface is on the surface. There is an effect that an apparatus can be obtained.

ドラム缶の正面図である。It is a front view of a drum can. ドラム缶の平面図である。It is a top view of a drum can. 測線1からR1〜R9に向かって水平にSH波を照射した結果の探傷波形を示す線図である。It is a diagram which shows the flaw detection waveform as a result of irradiating a SH wave horizontally toward the measurement line 1 toward R1-R9. 測線2からS1〜S9に向かって水平にSH波を照射した結果の探傷波形を示す線図である。It is a diagram which shows the flaw detection waveform as a result of irradiating SH wave horizontally from the survey line 2 toward S1-S9. 測線3からS1〜S9に向かって水平にSH波を照射した結果の探傷波形を示す線図である。It is a diagram which shows the flaw detection waveform as a result of irradiating SH wave horizontally from the measurement line 3 toward S1-S9. 溶接線Aから200mm離れた新たな測線から水平にSH波を照射した結果の探傷波形を示す線図である。It is a diagram which shows the flaw detection waveform as a result of irradiating a SH wave horizontally from the new measurement line 200 mm away from the welding line A. 超音波探触子とこの超音波探触子をスムーズに回転できるように作成した回転補助アクリル治具との構成を示す説明図である。It is explanatory drawing which shows the structure of the rotation auxiliary | assistant acrylic jig created so that this ultrasonic probe and this ultrasonic probe could be rotated smoothly. 探傷試験に用いた側板モデルの展開図である。It is an expanded view of the side plate model used for the flaw detection test. 探傷試験の結果の探傷波形を示す線図であり、a図は水平から22.5度の結果を示し、b図は水平から52.5度の結果を示す。It is a diagram which shows the flaw detection waveform of the result of a flaw detection test, a figure shows the result of 22.5 degrees from horizontal, and b figure shows the result of 52.5 degrees from horizontal. 4つの探触子を用いる探傷試験の取付け位置を示す正面図及び側板展開図である。It is the front view and side plate development view which show the attachment position of the flaw detection test using four probes. 側板探査時と同じ感度(40dB)での底板の嵌合部からR1〜R9に向かってSH波を照射した結果の探傷波形を示す線図である。It is a diagram which shows the flaw detection waveform as a result of irradiating SH wave toward the R1-R9 from the fitting part of the baseplate with the same sensitivity (40 dB) at the time of side plate search. 感度を上げた場合での底板の嵌合部からR1〜R9に向かってSH波を照射した結果の探傷波形を示す線図である。It is a diagram which shows the flaw detection waveform as a result of irradiating SH wave toward the R1-R9 from the fitting part of the baseplate in the case of raising sensitivity.

本発明においては、超音波探傷手段としての側板超音波探触子を側板面の上辺部及び/又は下辺部に取付ける取付け工程と、この取付け位置で側板にSH波を入射させて断面欠損部をエコー高さとして検出する第1検出工程と、この取付け位置を中心に側板超音波探触子を回転させて入射方向の角度を相違させたSH波を入射させて断面欠損部をエコー高さとして検出する第2検出工程と、第1検出工程と第2検出工程との同一地点での断面欠損部のエコーまでの距離時間の差異によって推察された当該断面欠損部の方向と、当該欠損部までの距離とから断面欠損部の位置を検出する第1位置検出工程とを備える。これにより、山積みの状態となり、実質的に側面の1/3程度が表に出ている状態であっても、ドラム缶の側壁面の断面欠損部を外面側から検出することができる。   In the present invention, a side plate ultrasonic probe as an ultrasonic flaw detector is attached to the upper side and / or the lower side of the side plate surface, and a SH wave is incident on the side plate at this attachment position to form a cross-sectional defect portion. A first detection step for detecting the echo height and a SH wave having a different angle in the incident direction by rotating the side-plate ultrasonic probe around the attachment position to make the cross-sectional defect portion an echo height The second detection step to detect, the direction of the cross-sectional defect portion inferred by the difference in distance to the echo of the cross-sectional defect portion at the same point in the first detection step and the second detection step, and to the defect portion And a first position detecting step for detecting the position of the cross-sectional defect portion from the distance. Thereby, even if it is in the state where it piles up and the about 1/3 of side surface has come out to the surface, the cross-sectional defect | deletion part of the side wall surface of a drum can can be detected from an outer surface side.

また好ましくは、取付け工程における取付け位置に対向する辺部に側板超音波探触子を取付ける第2取付け工程と、この第2取付け位置で側板に前記第1検出工程と反対方向にSH波を入射させて断面欠損部をエコー高さとして検出する反第1検出工程と、この第2取付け位置を中心に側板超音波探触子を回転させて入射方向の角度を相違させたSH波を入射させて断面欠損部をエコー高さとして検出する反第2検出工程と、反第1検出工程と反第2検出工程との同一地点での断面欠損部のエコーまでの距離時間の差異によって推察された当該断面欠損部の方向と、当該欠損部までの距離とから断面欠損部の位置を検出する第2位置検出工程と、前記第1位置検出工程と第2位置検出工程とから断面欠損部の位置を検出する統合位置検出工程とを更に備えることにより、断面欠損部をドラム缶の全周に亘ってより正確に特定することが可能となる。   Preferably, a second mounting step of attaching a side plate ultrasonic probe to a side opposite to the mounting position in the mounting step, and SH waves are incident on the side plate in the opposite direction to the first detection step at the second mounting position. Then, the anti-first detection step of detecting the cross-sectional defect portion as the echo height, and the SH wave with the angle of the incident direction different from each other by rotating the side plate ultrasonic probe around the second attachment position. The anti-second detection step of detecting the cross-sectional defect portion as the echo height and the difference in time between the anti-first detection step and the anti-second detection step to the echo of the cross-sectional defect portion at the same point The position of the cross-sectional defect portion from the second position detection step of detecting the position of the cross-sectional defect portion from the direction of the cross-sectional defect portion and the distance to the defect portion, and the first position detection step and the second position detection step. Integrated position detection process to detect By further comprising, it is possible to more accurately identify over the cross cut portion all around the drum.

本発明の超音波探傷手段は、横波の一つであるSH波を照射するものであればよい。具体的には、一般的に超音波探傷に用いられる超音波としては、縦波、横波の1種であるSV波、同じく横波の1種であるSH波等がある。縦波は伝搬方向に振動する波であり、伝搬方向と垂直な方向には振動しない特徴を持つ。一方、SV波は伝搬方向に垂直な方向に振動する横波であり、探傷面に垂直な方向に振動している波である。横波であるため方向性がある。   The ultrasonic flaw detection means of the present invention only needs to irradiate SH waves that are one of transverse waves. Specifically, as ultrasonic waves generally used for ultrasonic flaw detection, there are SV waves that are one type of longitudinal waves and transverse waves, and SH waves that are also one type of transverse waves. Longitudinal waves are waves that vibrate in the propagation direction, and do not vibrate in a direction perpendicular to the propagation direction. On the other hand, the SV wave is a transverse wave that vibrates in a direction perpendicular to the propagation direction, and a wave that vibrates in a direction perpendicular to the flaw detection surface. There is directionality because it is a transverse wave.

一方、SH波は、SV波と同じ方向性のある横波であるが、探傷面と平行な方向に振動している波である。SH波はSV波と異なり、屈折角90°に近い方向にも横波を強く対象物に入射させることができる特性を有する。このため、本発明では、対象とするドラム缶の板厚が薄いこと、また、超音波をある程度の距離を伝播させることを考慮し、SH波を適用した。   On the other hand, the SH wave is a transverse wave having the same direction as the SV wave, but is a wave oscillating in a direction parallel to the flaw detection surface. Unlike the SV wave, the SH wave has a characteristic that allows the transverse wave to be strongly incident on the object even in a direction near a refraction angle of 90 °. Therefore, in the present invention, the SH wave is applied in consideration of the fact that the plate thickness of the target drum can is thin and that the ultrasonic wave is propagated to some extent.

このSH波については、方向性があり、超音波探触子においては、その伝播角度は約29度である。このため、ドラム缶の1箇所ではなく、相違する箇所で側板面に存在する欠損部からの反射を検出することにより、その欠損部の位置を計測することが可能となる。尚、本発明の側板超音波探触子の回動の中心となる取付け位置は、厳密には探触子からドラム缶側板へのSH波の入射点と一致することが好ましい。入射点を中心に探触子を回動させれば、入射点の近傍に欠損部がある場合も検出可能であり、離れた欠損部に対しても入射点からの距離のズレが生じないためである。   This SH wave has directionality, and the propagation angle is about 29 degrees in the ultrasonic probe. For this reason, it becomes possible to measure the position of the defect | deletion part by detecting the reflection from the defect | deletion part which exists in a side plate surface not in one place of a drum can but in a different place. In addition, it is preferable that the mounting position which becomes the center of rotation of the side plate ultrasonic probe of the present invention coincides strictly with the incident point of the SH wave from the probe to the drum can side plate. If the probe is rotated around the incident point, even if there is a defect near the incident point, it can be detected, and the distance from the incident point does not shift even for a defect that is far away. It is.

加えて、ドラム缶の底板について、底板周縁の嵌合縁部に取付けた底板超音波探触子よりSH波を底板平面に対する垂直方向に入射して断面欠損部の検出を行う底板検査を更に行うことにより、山積みの状態となり、実質的に側面の1/3程度が表に出ている状態であっても、ドラム缶の底板部の断面欠損部を外面側から検出することができる。   In addition, for the bottom plate of the drum can, further bottom plate inspection is performed in which a SH wave is incident in a direction perpendicular to the bottom plate plane from the bottom plate ultrasonic probe attached to the fitting edge of the bottom plate periphery to detect a cross-sectional defect portion. Thus, even when the state is a state of being piled up and substantially 1/3 of the side surface is exposed, the cross-sectional defect portion of the bottom plate portion of the drum can can be detected from the outer surface side.

このSH波をドラム缶の側板及び底板に入射して欠損部の検出を行うものとしては、超音波探触子と側板面との接触部からSH波を側板面に入射し、側板面に存在する欠損部からの反射波を超音波探触子によって検出するものであればよい。   The SH wave is incident on the side plate and the bottom plate of the drum can to detect the defect portion. The SH wave is incident on the side plate surface from the contact portion between the ultrasonic probe and the side plate surface and exists on the side plate surface. What is necessary is just to detect the reflected wave from a defect | deletion part with an ultrasonic probe.

本発明において対象物に入射させるSH波の周波数については、好ましくは0.3MHz〜0.8MHzの範囲から選定されればよい。0.3MHzより低い周波数では、ドラム缶の傷・欠損部に対して波長が大きくなり、十分な精度で検査できず、0.8MHzより高い周波数では、減衰が大きくなり、十分な距離を伝搬せずに十分な精度で検査ができないからである。より好ましい周波数は、0.4MHz〜0.6MHz、最も好ましい周波数は0.5MHzである。   In the present invention, the frequency of the SH wave incident on the object is preferably selected from the range of 0.3 MHz to 0.8 MHz. When the frequency is lower than 0.3 MHz, the wavelength becomes large with respect to the scratched / defected portion of the drum can and cannot be inspected with sufficient accuracy. When the frequency is higher than 0.8 MHz, the attenuation is increased and the sufficient distance cannot be propagated. This is because the inspection cannot be performed with sufficient accuracy. A more preferable frequency is 0.4 MHz to 0.6 MHz, and a most preferable frequency is 0.5 MHz.

また、本発明の検査対象物はドラム缶である。このドラム缶は当初原油や灯油の運搬に使用されていたが、近年は化学製品、塗料等の運搬にも使用されるようになってきた。また、低レベル放射性廃棄物を収納したり、特定の廃棄物を収納して保存する目的にも使用されている。   The inspection object of the present invention is a drum can. This drum was originally used for transporting crude oil and kerosene, but has recently been used for transporting chemical products and paints. It is also used for storing low-level radioactive waste or storing and storing specific waste.

このドラム缶は、円柱の側壁にあたる側板と、この側板の上下に天板、底板を有するものである。ドラム缶の各壁面の内側及び外側については、メッキや樹脂膜による塗装が施されたものであってもよい。例えば、ドラム缶の多くは、側板、天板、底板の両面に亜鉛メッキが施され、この亜鉛メッキ層の表面に樹脂膜が設けられている。より具体的には、鉄板の厚さは1.6mm、亜鉛メッキ層の厚さは0.02mmが施され、樹脂膜層の厚さは0.03mmが主流である。尚、樹脂膜層は、例えばエポキシ樹脂を用いるが、これに限定されない。低レベル放射性廃棄物を収納するためのドラム缶では、天板については取り外し可能なオープン型のドラム缶が主流である。   This drum can has a side plate corresponding to a side wall of a cylinder, and a top plate and a bottom plate above and below the side plate. The inside and outside of each wall surface of the drum can may be plated or coated with a resin film. For example, many drums are galvanized on both sides of the side plate, top plate, and bottom plate, and a resin film is provided on the surface of the galvanized layer. More specifically, the iron plate has a thickness of 1.6 mm, the galvanized layer has a thickness of 0.02 mm, and the resin film layer has a thickness of 0.03 mm. In addition, although an epoxy resin is used for a resin film layer, for example, it is not limited to this. In drums for storing low-level radioactive waste, open-type drums that can be removed are mainly used for the top plate.

ドラム缶は、次のようにして形成される。まず、側板は鋼板を円筒形に曲げて両端辺を溶接した後、円筒の両端を鍔出しを行い、円筒の側方からの力に対向するために円筒内部の2カ所に輪帯を形成させる。天板及び底板は円形のお盆状に打ち抜いた鋼板の周囲を折り曲げるプリカール処理が行われる。側板、天板及び底板の表面を処理・塗装した後、側板の下縁部と底板の周縁部を巻き閉め加工してドラム缶が成形される。巻き締め加工により、側板の下縁部と底板の周縁部とが2〜3重に巻き締められて嵌合部が形成される。オープン型のドラム缶では、側板の上縁部と天板の周縁部とが互いに掛合可能なように曲げ加工が施される。   The drum can is formed as follows. First, after bending the steel plate into a cylindrical shape and welding both ends, the side plates are squeezed out at both ends, and ring zones are formed at two locations inside the cylinder to face the force from the side of the cylinder. . The top plate and the bottom plate are subjected to a pre-curl process in which the periphery of a steel plate punched into a circular tray is bent. After the surface of the side plate, the top plate and the bottom plate is treated and painted, the lower edge of the side plate and the peripheral edge of the bottom plate are wound and processed to form a drum can. By the tightening process, the lower edge portion of the side plate and the peripheral edge portion of the bottom plate are wound twice or three times to form a fitting portion. In an open-type drum can, bending is performed so that the upper edge portion of the side plate and the peripheral portion of the top plate can be engaged with each other.

ドラム缶の側板については、溶接により円筒形を形作っており、この天板−底板の上下方向に形成された溶接部が、この溶接部を横切る超音波探傷に対しては後述するように溶接部を超えて超音波が伝達されて欠損部を検知する。   The side plate of the drum can is formed into a cylindrical shape by welding, and the welded portion formed in the vertical direction of the top plate-bottom plate is welded as described later for ultrasonic flaw detection crossing the welded portion. Ultrasonic waves are transmitted beyond it to detect the defect.

更に、好ましい本発明では底板周縁の嵌合縁部に取付けた底板超音波探触子よりSH波を底板平面に対する垂直方向に入射して断面欠損部の検出を行う底板検査を更に行う。これにより、山積みの状態での実質的に側面の1/3程度が表に出ている状態であっても探知することができる。   Furthermore, in the present invention, a bottom plate inspection is further performed in which a SH wave is incident in a direction perpendicular to the bottom plate plane from a bottom plate ultrasonic probe attached to the fitting edge of the bottom plate periphery to detect a cross-sectional defect portion. Thereby, even if it is in the state where about 1/3 of the side surface in the piled up state is appearing on the surface, it can be detected.

また、本発明のドラム缶検査装置は、超音波探傷手段として、SH波を側板の円周方向に入射させて断面欠損部の検出を行う側板超音波探触子と、側板超音波探触子をドラム缶の側板面の上辺部及び/又は下辺部に取付け、この取付け位置で側板超音波探触子を少なくとも1/4回転可能な探触子取付け治具とを備え、より好ましくは、側板面の予め定められた一周上の上辺部と下辺部と各々に2つずつ離反方向にSH波を側板の円周方向に入射させて断面欠損部の検出を行う4つの側板超音波探触子と、側板超音波探触子の各々の取付け位置で1/4回転可能な4つの探触子取付け治具とを備える。   Moreover, the drum inspection apparatus of the present invention includes, as ultrasonic flaw detection means, a side plate ultrasonic probe for detecting a cross-sectional defect portion by making SH waves incident in the circumferential direction of the side plate, and a side plate ultrasonic probe. A probe mounting jig that can be attached to the upper side and / or the lower side of the side surface of the drum can and at least 1/4 turn of the side surface ultrasonic probe at the mounting position; Four side plate ultrasonic probes for detecting a cross-sectional defect portion by causing SH waves to enter the circumferential direction of the side plate in two circumferential directions apart from each other on an upper side and a lower side on a predetermined circle; And four probe mounting jigs that can be rotated by 1/4 at each mounting position of the side plate ultrasonic probe.

実施例1(SH波の側板への周方向入力によるドラム缶欠損部探査の検討)
1−1.検査法
探査対象となるドラム缶の現地の保管状態では、側面の1/3程度が実際の作業範囲で、底面は実質的に作業ができない状態である。このため、ドラム缶の側面に対して縦方向からSH波を入力する方法では、探査が不可能である。これを回避するために、側板では探触子の超音波入射方向を円周に沿った水平とし、底板は嵌合部から入射すると言う方法を考案し、探査の可能性を確認する実験を行った。
Example 1 (Investigation of exploration of missing drum can by inputting SH wave side plate in circumferential direction)
1-1. Inspection method In the local storage state of the drum can to be surveyed, about 1/3 of the side surface is the actual work range, and the bottom surface is in a state where the work is practically impossible. For this reason, the method of inputting the SH wave from the vertical direction with respect to the side surface of the drum can cannot be searched. In order to avoid this, we devised a method in which the ultrasonic wave incident direction of the probe is horizontal along the circumference on the side plate and the bottom plate is incident from the fitting part, and an experiment to confirm the possibility of exploration was conducted. It was.

1−2.ドラム缶の構成
図1はドラム缶の正面図である。図2はドラム缶の平面図である。用いたドラム缶の形状・寸法・内径は次の通りである。ドラム缶内径(567±3mm)、外高(890±5mm)、容量(212L以上)、板厚(1.6mm)である。
1-2. Configuration of Drum Can FIG. 1 is a front view of the drum can. FIG. 2 is a plan view of the drum. The shape, dimensions, and inner diameter of the used drum can are as follows. Drum can inner diameter (567 ± 3 mm), outer height (890 ± 5 mm), capacity (212L or more), plate thickness (1.6 mm).

1−3.検査装置
超音波探傷装置は、菱電湘南エレクトロニクス社(株)製低周波汎用超音波探査機UI−23LFを用い、SH波探触子の周波数は、0.5MHzとした。
1-3. Inspection device The ultrasonic flaw detector uses a low-frequency general-purpose ultrasonic probe UI-23LF manufactured by Ryoden Shonan Electronics Co., Ltd., and the frequency of the SH wave probe is 0.5 MHz.

1−4.実験手順
(1) ドラム缶側板に貫通孔及び非貫通の円錐状のキズを加工した。具体的には、図1に示したドラム缶の正面図で黒四角印の貫通孔S1〜S9である。尚、図示してはいないが図1の裏面側に溶接線Aから測線2を通過した約700mm離れた地点にドラム缶内側にS1〜S9と同様に非貫通孔R1〜R9が形成されている。
(2) ドラム缶底板に貫通孔及び非貫通の円錐状のキズを加工した。具体的には、図2に示したドラム缶の平面図で黒丸印の非貫通のキズA1〜A8と黒四角印の貫通孔B1〜B8である。
1-4. Experimental procedure
(1) A through hole and a non-penetrating conical flaw were processed on the drum can side plate. Specifically, it is the through holes S1 to S9 indicated by black squares in the front view of the drum shown in FIG. Although not shown, non-through holes R1 to R9 are formed on the inner side of the drum can at about 700 mm away from the welding line A through the measurement line 2 on the back side of FIG.
(2) A through hole and a non-through conical flaw were processed on the drum can bottom plate. Specifically, in the plan view of the drum shown in FIG. 2, there are non-through scratches A1 to A8 indicated by black circles and through holes B1 to B8 indicated by black squares.

1−5.側板の計測
ドラム缶側板の計測を行った。溶接部を介して超音波が伝搬するかを検証するため、溶接部Aを挟んで、測線1と測線2とのを2本を設定した。図1に示す通り、測線1はドラム缶側板の貫通孔S1が形成されており、表面の溶接線Aから約95mmの地点である。測線2は表面の溶接線Aに対して測線1の対向側に配され、溶接線Aに対してから約410mmの地点とした。また、S9から218mm離れた測線3を設定した。測線毎に、端部とリム間、或いは、リム間の計3箇所に側板超音波探傷手段としての超音波探触子11に横波専用の接触媒質を介して側板に固定し、SH波を照射した。
1-5. Measurement of side plate Drum can side plate was measured. In order to verify whether the ultrasonic wave propagates through the welded portion, two of the survey line 1 and the survey line 2 were set with the welded part A interposed therebetween. As shown in FIG. 1, the survey line 1 is formed with a through hole S1 of the drum can side plate, and is a point of about 95 mm from the weld line A on the surface. The measurement line 2 is arranged on the opposite side of the measurement line 1 with respect to the surface welding line A, and is about 410 mm from the welding line A. Moreover, the survey line 3 which was 218 mm away from S9 was set. For each survey line, the ultrasonic probe 11 as the side plate ultrasonic flaw detection means is fixed to the side plate through a contact medium exclusively for transverse waves and irradiated with SH waves at a total of three locations between the end and the rim or between the rims. did.

尚、側板における超音波探傷の条件は次の通りであった。
ゲイン : 40.0dB、 試験周波数 : 0.5MHz
測定範囲 : 1000mm 屈折角 : 90.0°
音速 : 3.22km/s
The conditions for ultrasonic flaw detection on the side plate were as follows.
Gain: 40.0 dB, Test frequency: 0.5 MHz
Measurement range: 1000 mm Refraction angle: 90.0 °
Speed of sound: 3.22 km / s

(5-1) 測線1での測定
図3は測線1から非貫通孔R1〜R9に向かってSH波を照射した結果の探傷波形を示す線図である。a図は測線1上の上端部と第1リム間に超音波探触子を設置した結果を示し、b図は測線1上の第1リムと第2リム間に超音波探触子を設置した結果を示し、c図は測線1上の第2リムと下端部間に超音波探触子を設置した結果を示す。
(5-1) Measurement at Survey Line 1 FIG. 3 is a diagram showing a flaw detection waveform as a result of irradiating SH waves from the survey line 1 toward the non-through holes R1 to R9. Fig. a shows the result of installing an ultrasonic probe between the upper end of the survey line 1 and the first rim, and Fig. b shows the result of installing the ultrasonic probe between the first rim and the second rim on the survey line 1. The figure c shows the result of installing an ultrasonic probe between the second rim on the survey line 1 and the lower end.

a図〜c図に示す通り、折れ線部が反射エコー、高さが反射エコー高さで0〜100%で表示される。下の数字が探触子からの距離である(mm)。各図に示される通り、溶接線Aを超えてSH波の超音波が伝達されて非貫通孔を検知することが示された。   As shown in FIGS. a to c, the broken line portion is displayed as a reflection echo, and the height is displayed as a reflection echo height of 0 to 100%. The number below is the distance from the probe (mm). As shown in each figure, it was shown that the ultrasonic wave of the SH wave is transmitted beyond the weld line A to detect the non-through hole.

(5-2) 測線2での測定
図4は測線2からS1〜S9に向かってSH波を照射した結果の探傷波形を示す線図である。図は測線2上の上端部と第1リム間に超音波探触子を設置した結果を示す。図に示す通り、折れ線部が反射エコー、高さが反射エコー高さで0〜100%で表示される。下の数字が探触子からの距離である(mm)。溶接線Aを超えてSH波の超音波が伝達されて非貫通孔を検知することが示された。
(5-2) Measurement at Survey Line 2 FIG. 4 is a diagram showing a flaw detection waveform as a result of irradiating SH waves from the survey line 2 toward S1 to S9. The figure shows the result of installing an ultrasonic probe between the upper end on the survey line 2 and the first rim. As shown in the figure, the broken line portion is displayed as a reflection echo, and the height is displayed as a reflection echo height of 0 to 100%. The number below is the distance from the probe (mm). It was shown that SH wave ultrasonic waves are transmitted beyond the weld line A to detect non-through holes.

(5-3) 測線3での測定
図5は測線3からS1〜S9に向かってSH波を照射した結果の探傷波形を示す線図である。a図は測線1上の上端部と第1リム間に超音波探触子を設置した結果を示し、b図は測線1上の第1リムと第2リム間に超音波探触子を設置した結果を示し、c図は測線1上の第2リムと下端部間に超音波探触子を設置した結果を示す。
(5-3) Measurement at Survey Line 3 FIG. 5 is a diagram showing a flaw detection waveform as a result of irradiating SH waves from the survey line 3 toward S1 to S9. Fig. a shows the result of installing an ultrasonic probe between the upper end of the survey line 1 and the first rim, and Fig. b shows the result of installing the ultrasonic probe between the first rim and the second rim on the survey line 1. The figure c shows the result of installing an ultrasonic probe between the second rim on the survey line 1 and the lower end.

a図〜c図に示す通り、折れ線部が反射エコー、高さが反射エコー高さで0〜100%で表示される。下の数字が探触子からの距離である(mm)。各図に示す通り、溶接線Aを超えてSH波の超音波が伝達されて非貫通孔を検知することが示された。   As shown in FIGS. a to c, the broken line portion is displayed as a reflection echo, and the height is displayed as a reflection echo height of 0 to 100%. The number below is the distance from the probe (mm). As shown in each figure, it was shown that the ultrasonic wave of the SH wave is transmitted beyond the weld line A to detect the non-through hole.

(5-4) 新たな測線での測定
溶接線Aを跨いだ反射エコーを更に検証した。溶接線Aを中心として貫通孔S1から200mm離れた測線上に超音波探触子11に横波専用の接触媒質を介して側板に固定し、SH波を照射した。図6はその結果の探傷波形を示す線図である。図に示す通り、折れ線部が反射エコー、高さが反射エコー高さで0〜100%で表示される。下の数字が探触子からの距離である(mm)。
(5-4) Measurement on a new survey line The reflected echo that crossed the weld line A was further verified. The ultrasonic probe 11 was fixed to the side plate via a contact medium dedicated to transverse waves on a measurement line 200 mm away from the through hole S1 with the welding line A as the center, and SH waves were irradiated. FIG. 6 is a diagram showing a flaw detection waveform as a result. As shown in the figure, the broken line portion is displayed as a reflection echo, and the height is displayed as a reflection echo height of 0 to 100%. The number below is the distance from the probe (mm).

図6に示す通り、200、340、380、635mmの地点に明確なキズがあることが示されている。ここで200mmの反射エコーは溶接部からのものである。実際の測定では、2箇所からの測定で得られた反射エコーの数値を半径とした2つの円をドラム缶表面に描けば、その交点にキズがあることになる。   As shown in FIG. 6, it is shown that there are clear flaws at points of 200, 340, 380, and 635 mm. Here, the 200 mm reflection echo is from the weld. In actual measurement, if two circles with the radius of the value of the reflected echo obtained from the measurement from two places are drawn on the drum can surface, there will be a scratch at the intersection.

340mmはS2のキズであり、380mmはS3のキズであることが確認された。また、635mmについては、キズを示すエコーか、ノイズかが不明であったが、実際に確かめると635mmは名称未設定のキズであったことが確認された。以上のように、側板については水平方向の探査が十分可能であることが確認された。   It was confirmed that 340 mm was a S2 scratch and 380 mm was a S3 scratch. In addition, it was unknown whether 635 mm was an echo indicating scratch or noise, but it was confirmed that 635 mm was an unnamed scratch. As described above, it was confirmed that the horizontal exploration was sufficiently possible for the side plate.

(5-5) 側板での伝播範囲の確認
測線2から非貫通孔R1を狙って探触子を置く。この場合、探触子11を上端に付けた位置では感度がないので、上端から52mm下げた測線地点で200mmの位置にR1を見つけていることから、側板に横方向で入力する場合のSH波伝播角度は約29度となることが確認された。
(5-5) Confirming the propagation range on the side plate Place the probe from the survey line 2 to the non-through hole R1. In this case, since there is no sensitivity at the position where the probe 11 is attached to the upper end, since R1 is found at a position of 200 mm at a survey point 52 mm lower than the upper end, the SH wave when inputting laterally to the side plate It was confirmed that the propagation angle was about 29 degrees.

実施例2(超音波探触子の回転によるドラム缶欠損部探査の検討)
2−1.検査法
断面欠損部をより正確に特定するために、超音波探触子を取付け位置で回転可能とするアクリル治具を使用し各エコー高さを測定した。図7は超音波探触子とこの超音波探触子をスムーズに回転可能に作成した回転補助アクリル治具との構成を示す説明図である。
Example 2 (Examination of exploration of missing drum can by rotation of ultrasonic probe)
2-1. Inspection method In order to more accurately identify the cross-sectional defect, each echo height was measured using an acrylic jig that allows the ultrasonic probe to rotate at the mounting position. FIG. 7 is an explanatory view showing a configuration of an ultrasonic probe and a rotation auxiliary acrylic jig that is prepared so that the ultrasonic probe can be smoothly rotated.

図7に示す通り、回転補助アクリル治具72は、ドラム缶の側壁の曲面に対応した曲面底面73を備え、表面側中央部には、SH波探触子71のフラットな底面に当接する円形の窪み74を備え、ドラム缶の側壁の所望の位置に固定するための3つの磁石75が計測範囲外の3箇所に配されている。尚、探触子71の回動の中心となる取付け位置の近傍に欠損部がある場合でも良好に検出可能となるため、また、離れた欠損部までの距離のズレが生じないために、SH波探触子71の入射点と、アクリル治具72の回動の中心とを一致させるように配置されている。   As shown in FIG. 7, the rotation auxiliary acrylic jig 72 includes a curved bottom surface 73 corresponding to the curved surface of the side wall of the drum can, and a circular portion that comes into contact with the flat bottom surface of the SH wave probe 71 at the center on the surface side. Three indentations 74 are provided, and three magnets 75 for fixing the drum can to a desired position on the side wall of the drum can are arranged at three locations outside the measurement range. It should be noted that even if there is a defective portion in the vicinity of the attachment position that becomes the center of rotation of the probe 71, it becomes possible to detect well, and since the deviation of the distance to the remote defective portion does not occur, SH It arrange | positions so that the incident point of the wave probe 71 and the center of rotation of the acrylic jig 72 may correspond.

尚、図7にはSH波探触子71を固定するための固定手段は開示していないが、超音波探傷装置の駆動時に探触子を動かさなければよいので、作業者の手作業によるアクリル治具への押圧でもかまわず、アクリル治具72と同様に磁石でドラム缶に固定するL字状又は門状の治具でSH波探触子を固定したり、アクリル治具自体にSH波探触子とこの探触子を回動させる駆動手段とを一体にして、超音波探傷装置に駆動手段の回転駆動を制御する制御手段を備えても良い。   Although no fixing means for fixing the SH wave probe 71 is disclosed in FIG. 7, it is not necessary to move the probe when the ultrasonic flaw detector is driven. As with the acrylic jig 72, the SH wave probe may be fixed with an L-shaped or gate-shaped jig that is fixed to the drum can with a magnet, or the SH wave probe may be fixed to the acrylic jig itself. A control unit for controlling the rotational drive of the drive unit may be provided in the ultrasonic flaw detector by integrating the probe and the drive unit for rotating the probe.

2−2.検査装置
超音波探傷装置は、Starmans社製ポータブルフェイズドアレイ超音波探傷器DIO−1000及びSH波探触子(0.5Z20×20HA90:ジャパンプローブ社製)を用いた。また、周波数等の検査条件は次の表1の通りである。
2-2. Inspection device As the ultrasonic flaw detector, a Starmans portable phased array ultrasonic flaw detector DIO-1000 and an SH wave probe (0.5Z20 × 20HA90: manufactured by Japan Probe Co., Ltd.) were used. The inspection conditions such as frequency are as shown in Table 1 below.

Figure 2014202511
Figure 2014202511

2−3.実験手順
図8は探傷試験に用いた側板モデルの展開図である。図8の側板モデル81は,縦890mm横900mmのドラム缶と同じ厚さの鋼板を用意し、位置Pに対して同心円状にキズa1,a2,a3〜f1,f2,f3を付けた。各々のキズはaの組は水平面から7.5度回転させた方向であり、bの組はaの組に対して、15度回転させた方向であり、以降のcの組、dの組、eの組、fの組も各々15度回転させた方向である。
2-3. Experimental Procedure FIG. 8 is a development view of the side plate model used in the flaw detection test. For the side plate model 81 of FIG. 8, a steel plate having the same thickness as a drum can of 890 mm in length and 900 mm in width is prepared, and scratches a 1, a 2, a 3 to f 1, f 2, f 3 are attached concentrically with respect to the position P. Each scratch is a direction in which the set of a is rotated 7.5 degrees from the horizontal plane, the set of b is a direction rotated by 15 degrees with respect to the set of a, and the subsequent set of c and set of d , E and f are also rotated by 15 degrees.

図8に示す通り、位置Pに図7の回転補助アクリル治具72を介して超音波探触子71を取り付け、取付け位置Pに対して同心円状に配したキズa1,a2,a3〜f1,f2,f3の反射エコーを検出した。その際、超音波探傷子71の角度を各a組〜f組に正対するように合計6回行った。結果を次の表2と図9に示す。   As shown in FIG. 8, the ultrasonic probe 71 is attached to the position P via the rotation auxiliary acrylic jig 72 of FIG. 7, and scratches a1, a2, a3 to f1, arranged concentrically with respect to the attachment position P Reflected echoes at f2 and f3 were detected. At that time, a total of 6 times was performed so that the angle of the ultrasonic flaw detector 71 was directly opposed to each of the groups a to f. The results are shown in the following Table 2 and FIG.

Figure 2014202511
Figure 2014202511

図9は表2の一部の結果の探傷波形を示す線図であり、a図は水平から22.5度の結果を示し、b図は水平から52.5度の結果を示す。a図及びb図に示す通り、各々でキズエコーが確認された。a図、b図以外にも15度毎回転させた場合でも同様であった。   9 is a diagram showing a flaw detection waveform as a result of a part of Table 2. FIG. 9A shows the result of 22.5 degrees from the horizontal, and FIG. 9B shows the result of 52.5 degrees from the horizontal. As shown in FIGS. a and b, scratch echoes were respectively confirmed. The same applies to the case of rotating every 15 degrees other than the diagrams a and b.

図9及び表2に示す通り、キズエコーの高さ、ばらつきは、距離に比例して小さくなることも確認できた。ゲインが95dBでもキズまでの距離が遠い場合にはエコー高さが10%以下になることもあるため、キズの判断を注意深く行う必要がある。また、角度が52.5度以上になった場合、底辺(底面)からのエコーのような波形が現れるため、キズと誤認しないよう注意する必要がある。   As shown in FIG. 9 and Table 2, it was also confirmed that the height and variation of the scratch echo became smaller in proportion to the distance. Even if the gain is 95 dB, if the distance to the scratch is long, the echo height may be 10% or less, so it is necessary to carefully judge the scratch. When the angle is 52.5 degrees or more, a waveform like an echo from the bottom (bottom surface) appears, so care must be taken not to misidentify it as a scratch.

2−4.4点式回動探傷検査装置
以上のように、SH波は指向性があり、その伝播角度は約29度であることが判った。また、探触子からの距離は短いほどエコー高さが高く、良好にキズ等の欠損部を検出することができる。そのため、実質的に側面の1/3程度が表に出ている状態であるドラム缶の側板の欠損部を検出するため、4つの探触子を用いるドラム缶検査方法及びその装置を検討した。
2-4.4 Point Rotating Flaw Inspection Apparatus As described above, it was found that the SH wave has directivity and the propagation angle is about 29 degrees. In addition, the shorter the distance from the probe, the higher the echo height, and it is possible to detect a defect such as a scratch. Therefore, a drum can inspection method using four probes and an apparatus thereof were studied in order to detect a missing portion of the side plate of the drum can in which about 1/3 of the side surface is exposed.

図10は4つの探触子を用いる探傷試験の取付け位置を示す正面図及び側板展開図である。図10に示す通り、ドラム缶の側面の上辺部とこの上辺部に対向する下辺部とに同じ側方方向にSH波を入射させる2つの探触子71a、71bと、これら2つの探触子71a、71bに対して逆方向のSH波を入射させる上下2つの探触子71c、71dを背中合わせに配した4つの探触子を固定し、各々の探触子71a〜71dで水平方向から90度方向に探触子を回動させた際の反射エコーを検出する。   FIG. 10 is a front view and a side plate development view showing attachment positions of a flaw detection test using four probes. As shown in FIG. 10, two probes 71a and 71b for allowing SH waves to be incident in the same lateral direction on the upper side of the side surface of the drum can and the lower side opposite to the upper side, and these two probes 71a , 71b, and four probes 71c and 71d that make the SH waves in opposite directions incident on each other are fixed back to back, and each probe 71a to 71d is 90 degrees from the horizontal direction. A reflected echo is detected when the probe is rotated in the direction.

各探触子においては、反射エコーを検出する時間から探触子からの距離が判る。上辺部と下辺部とのデータによって、各探触子からの距離より、側板のキズが判る。加えて、キズと対向する回動位置のエコー高さが高いため、探触子からのキズの方向が判る。これにより、正確なキズの位置が把握可能となる。また、逆方向のSH波を入射させる上下2つの探触子によって、最も遠いドラム缶の反対側側面についても、キズを把握するためのデータが活用されるため、正確なキズの位置が把握可能となる。   In each probe, the distance from the probe is known from the time for detecting the reflected echo. The scratches on the side plate can be determined from the distance from each probe based on the data of the upper side and the lower side. In addition, since the echo height at the rotational position facing the scratch is high, the direction of the scratch from the probe can be determined. This makes it possible to grasp the exact position of the scratch. In addition, because the data for grasping the flaw is used on the opposite side surface of the farthest drum can by the two upper and lower probes that make the SH wave in the opposite direction incident, it is possible to grasp the exact flaw position. Become.

実施例3.底板の計測(SH波の底板の嵌合部入力によるドラム缶欠損部探査の検討)
3−1.底板での測定
図2に示す平面図において、6時に該当する位置に底板超音波探傷手段としての超音波探触子21に横波専用の接触媒質を介して側板に固定し、SH波を照射した。尚、超音波探触子21は底板側面の曲率に合わせたアクリル製の治具22を装着して底板の嵌合部に当接させて照射させた。
Example 3 Measurement of bottom plate (examination of exploration of missing drum can by fitting SH plate bottom plate)
3-1. Measurement on the bottom plate In the plan view shown in FIG. 2, the ultrasonic probe 21 as the bottom plate ultrasonic flaw detection means is fixed to the side plate via a contact medium dedicated to the transverse wave at the position corresponding to 6 o'clock and irradiated with SH waves. . The ultrasonic probe 21 was irradiated with an acrylic jig 22 fitted to the curvature of the side surface of the bottom plate and brought into contact with the fitting portion of the bottom plate.

尚、底板における超音波探傷の条件は次の通りであった。
ゲイン : 40.0dB、 試験周波数 : 0.5MHz
測定範囲 : 2730mm 屈折角 : 90.0°
音速 : 3.22km/s
The conditions for ultrasonic flaw detection on the bottom plate were as follows.
Gain: 40.0 dB, Test frequency: 0.5 MHz
Measurement range: 2730 mm Refraction angle: 90.0 °
Speed of sound: 3.22 km / s

図11は側板探査時と同じ感度(40dB)での底板の嵌合部からR1〜R9に向かってSH波を照射した結果の探傷波形を示す線図である。図に示す通り、複数の反射エコーと対面端部からの反射エコーが確認された。SH波は角度をもって入射するため、アクリル治具22により適切に嵌合部に接触させることができ、探触子単体で使用するよりも感度はよくなった。   FIG. 11 is a diagram showing a flaw detection waveform as a result of irradiating SH waves from the fitting portion of the bottom plate toward R1 to R9 with the same sensitivity (40 dB) as in the side plate search. As shown in the figure, a plurality of reflected echoes and reflected echoes from the facing end were confirmed. Since the SH wave is incident at an angle, it can be appropriately brought into contact with the fitting portion by the acrylic jig 22, and the sensitivity is improved as compared with the case where the probe is used alone.

次に、嵌合部の巻き込み部と端部までの長さを測定した。巻き込み部は40mmであり、対面の端部までは620mmであった。図11の測定画面では615mmでエコーがあるが、巻き尺測定での緩みの誤差と思われた。そこで、感度を上げて、エコー位置を確認した(+10dB)。図12は感度を上げた場合での底板の嵌合部からR1〜R9に向かってSH波を照射した結果の探傷波形を示す線図である。   Next, the length to the entrainment part and edge part of a fitting part was measured. The entrainment part was 40 mm, and it was 620 mm up to the end of the facing surface. In the measurement screen of FIG. 11, there was an echo at 615 mm, but it seemed to be a looseness error in the tape measure measurement. Therefore, the sensitivity was increased and the echo position was confirmed (+10 dB). FIG. 12 is a diagram showing a flaw detection waveform as a result of irradiating SH waves from the fitting portion of the bottom plate toward R1 to R9 when sensitivity is increased.

図に示す通り、145、180、200、220、240、265、300mmに複数の反射エコーが確認された。実際のものと比較すると、145mmはB6(誤差5mm)であり、180mmはB5、200mmはB4、220はB3、240はB2、265はB1であることが確認された。尚、300は直接確認ができないが、A1と思われた。以上の通り、超音波探触子21を底面の嵌合部に沿って約1/3周移動させることにより、底面のほぼ全面を探傷することが可能となることが確認された。   As shown in the figure, a plurality of reflected echoes were confirmed at 145, 180, 200, 220, 240, 265, and 300 mm. Compared with the actual one, it was confirmed that 145 mm was B6 (error 5 mm), 180 mm was B5, 200 mm was B4, 220 was B3, 240 was B2, and 265 was B1. Although 300 could not be confirmed directly, it was thought to be A1. As described above, it has been confirmed that the entire surface of the bottom surface can be detected by moving the ultrasonic probe 21 about one third of the time along the fitting portion on the bottom surface.

以上の通り、側板検査により、側板面に取付けた超音波探傷手段よりSH波を側板の円周方向に入射して断面欠損部の検出を行うことにより、ドラム缶側板の溶接部を超えて超音波が伝達されて欠損部を検知することができ、これにより山積みの状態となり、実質的に側面の1/3程度が表に出ている状態であっても、ドラム缶の断面欠損部を外面側から検出することができることが確認できた。尚、この側板検査を精密な検査の予備検査として用いることにより、検査時間の短縮と検査費用の低減が達成される。従来の精密な垂直探傷法では1回の検査領域は10×10mm程度で広い面を対象とする検査は不可能であった。そのため、本検査法で問題のある箇所を含む領域を大幅に狭めることにより、垂直探傷法でより正確に検査すれば、検査時間の短縮と検査費用の低減が達成される。   As described above, by inspection of the side plate, ultrasonic waves beyond the welded portion of the drum can side plate are detected by detecting the cross-sectional defect by injecting SH waves into the circumferential direction of the side plate from the ultrasonic flaw detector attached to the side plate surface. Can be detected and the chipped portion can be detected, so that the cross-sectional chipped portion of the drum can can be seen from the outer surface side even when about 1/3 of the side surface is on the surface. It was confirmed that it could be detected. By using this side plate inspection as a preliminary inspection for precise inspection, it is possible to shorten the inspection time and the inspection cost. In the conventional precise vertical flaw detection method, one inspection area is about 10 × 10 mm, and it is impossible to inspect a wide surface. Therefore, if the inspection is performed more accurately by the vertical flaw detection method by greatly narrowing the region including the problematic part in the present inspection method, the inspection time can be shortened and the inspection cost can be reduced.

底板検査により、底板周縁の嵌合縁部に取付けた超音波探傷手段よりSH波を底板平面に対する垂直方向に入射して断面欠損部の検出を行うことにより、ドラム缶の嵌合縁部からでもドラム缶底板に超音波が伝達されて欠損部を検知することができ、これにより、山積みの状態となり、実質的に側面の1/3程度が表に出ている状態であっても、ドラム缶底板の断面欠損部を外面側から検出することができることが確認できた。この底板検査を精密な検査の予備検査として用いることにより、検査時間の短縮と検査費用の低減が達成されることは前述の側板検査と同様である。   Drum cans can be detected even from the mating edge of the drum can by detecting the cross-sectional defect by injecting SH waves in the direction perpendicular to the plane of the bottom plate from ultrasonic flaw detection means attached to the mating edge on the periphery of the bottom plate. The ultrasonic wave is transmitted to the bottom plate, and the defect portion can be detected. As a result, the cross section of the drum can bottom plate is obtained even in a state where a pile is formed and substantially 1/3 of the side surface is exposed. It was confirmed that the defect portion could be detected from the outer surface side. Similar to the above-described side plate inspection, the bottom plate inspection is used as a preliminary inspection for precise inspection, thereby reducing the inspection time and the inspection cost.

Claims (6)

ドラム缶に発生した断面欠損部を外面側から検出する検査方法であって、前記ドラム缶の側板について、超音波探傷手段より側板面にSH波を入射して前記欠損部の検出を行うドラム缶検査方法において、
超音波探傷手段としての側板超音波探触子を側板面の上辺部及び/又は下辺部に取付ける取付け工程と、
この取付け位置で側板面にSH波を入射させて断面欠損部をエコー高さとして検出する第1検出工程と、
この取付け位置を中心に側板超音波探触子を回転させて入射方向の角度を相違させたSH波を入射させて断面欠損部をエコー高さとして検出する第2検出工程と、
第1検出工程と第2検出工程との同一地点での断面欠損部のエコーまでの距離時間の差異によって推察された当該断面欠損部の方向と、当該欠損部までの距離とから断面欠損部の位置を検出する第1位置検出工程とを備えたことを特徴とするドラム缶検査方法。
In the inspection method for detecting a cross-sectional defect portion generated in a drum can from the outer surface side, the drum can inspection method for detecting the defect portion by injecting an SH wave into the side plate surface from an ultrasonic flaw detector on the side plate of the drum can. ,
An attaching step of attaching the side plate ultrasonic probe as an ultrasonic flaw detector to the upper side and / or the lower side of the side plate surface;
A first detection step in which an SH wave is incident on the side plate surface at this mounting position to detect a cross-sectional defect as an echo height;
A second detection step of detecting a cross-sectional defect as an echo height by rotating a side-plate ultrasonic probe around the mounting position and causing an SH wave having a different angle in the incident direction to be incident;
From the direction of the cross-sectional defect portion estimated by the difference in distance to the echo of the cross-sectional defect portion at the same point in the first detection step and the second detection step, and the distance to the defect portion, A drum can inspection method comprising: a first position detection step of detecting a position.
前記取付け工程における取付け位置に対向する辺部に側板超音波探触子を取付ける第2取付け工程と、
この第2取付け位置で側板面に前記第1検出工程と反対方向にSH波を入射させて断面欠損部をエコー高さとして検出する反第1検出工程と、
この第2取付け位置を中心に側板超音波探触子を回転させて入射方向の角度を相違させたSH波を入射させて断面欠損部をエコー高さとして検出する反第2検出工程と、
反第1検出工程と反第2検出工程との同一地点での断面欠損部のエコーまでの距離時間の差異によって推察された当該断面欠損部の方向と、当該欠損部までの距離とから断面欠損部の位置を検出する第2位置検出工程と、
前記第1位置検出工程と第2位置検出工程とから断面欠損部の位置を検出する統合位置検出工程とを更に備えたことを特徴とする請求項1に記載のドラム缶検査方法。
A second attachment step of attaching a side plate ultrasonic probe to a side portion facing the attachment position in the attachment step;
An anti-first detection step in which an SH wave is incident on the side plate surface in the opposite direction to the first detection step at this second mounting position to detect a cross-sectional defect as an echo height;
An anti-second detection step of detecting the cross-sectional defect portion as the echo height by rotating the side plate ultrasonic probe around the second attachment position and causing the SH wave having a different angle in the incident direction to be incident;
The cross-sectional defect from the direction of the cross-sectional defect portion inferred from the difference in distance time to the echo of the cross-sectional defect portion at the same point in the anti-first detection step and the anti-second detection step, and the distance to the defect portion A second position detecting step for detecting the position of the part;
The drum can inspection method according to claim 1, further comprising an integrated position detection step of detecting a position of a cross-sectional defect portion from the first position detection step and the second position detection step.
前記ドラム缶の底板について、底板周縁の側板との嵌合縁部に取付けた底板超音波探触子よりSH波を底板平面に対する垂直方向に入射して断面欠損部の検出を行う底板検査を更に行うことを特徴とする請求項1又は2に記載のドラム缶検査方法。   The bottom plate of the drum can is further subjected to a bottom plate inspection in which a SH wave is incident in a direction perpendicular to the bottom plate plane from a bottom plate ultrasonic probe attached to a fitting edge with a side plate on the periphery of the bottom plate to detect a cross-sectional defect portion. The drum inspection method according to claim 1 or 2, wherein ドラム缶に発生した断面欠損部を外面側から検出する超音波探傷手段を備えたドラム缶検査装置であって、
超音波探傷手段として、
SH波を側板の円周方向に入射させて断面欠損部の検出を行う側板超音波探触子と、
前記側板超音波探触子を前記ドラム缶の側板面の上辺部及び/又は下辺部に取付け、この取付け位置で側板超音波探触子を少なくとも1/4回転可能な探触子取付け治具とを備えたことを特徴とするドラム缶検査装置。
A drum can inspection apparatus provided with ultrasonic flaw detection means for detecting a cross-sectional defect portion generated in a drum can from the outer surface side,
As an ultrasonic flaw detector,
A side plate ultrasonic probe for detecting a cross-sectional defect by making SH waves incident in the circumferential direction of the side plate;
The side plate ultrasonic probe is attached to the upper side and / or the lower side of the side plate surface of the drum, and a probe mounting jig capable of rotating the side plate ultrasonic probe at least 1/4 at the mounting position. A drum inspection apparatus comprising the drum can inspection apparatus.
前記超音波探傷手段として、
側板面の予め定められた一周上の上辺部と下辺部と各々に2つずつ離反方向にSH波を側板の円周方向に入射させて断面欠損部の検出を行う4つの側板超音波探触子と、
前記側板超音波探触子の各々の取付け位置で1/4回転可能な4つの探触子取付け治具とを備えたことを特徴とする請求項4に記載のドラム缶検査装置。
As the ultrasonic flaw detection means,
Four side plate ultrasonic probes for detecting a cross-sectional defect portion by causing SH waves to enter the circumferential direction of the side plate in two directions away from each other on the upper side and the lower side on a predetermined circumference of the side plate surface. With the child,
5. The drum can inspection apparatus according to claim 4, further comprising four probe mounting jigs that can rotate by a quarter at each mounting position of the side plate ultrasonic probe.
前記ドラム缶の底板周縁の嵌合縁部に間隔を開けて取付けて、SH波を底板平面に対する垂直方向に入射させて断面欠損部の検出を行う一組の底板超音波探触子を更に備えることを特徴とする請求項4又は5に記載のドラム缶検査装置。   And a set of bottom plate ultrasonic probes for detecting a cross-sectional defect portion by attaching SH waves to the fitting edge portion of the peripheral edge of the bottom plate of the drum can at an interval and allowing SH waves to be incident in a direction perpendicular to the bottom plate plane. The drum inspection apparatus according to claim 4 or 5, characterized by the above-mentioned.
JP2013076603A 2013-04-02 2013-04-02 Drum can inspection method and apparatus Active JP6173745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013076603A JP6173745B2 (en) 2013-04-02 2013-04-02 Drum can inspection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013076603A JP6173745B2 (en) 2013-04-02 2013-04-02 Drum can inspection method and apparatus

Publications (2)

Publication Number Publication Date
JP2014202511A true JP2014202511A (en) 2014-10-27
JP6173745B2 JP6173745B2 (en) 2017-08-02

Family

ID=52353087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013076603A Active JP6173745B2 (en) 2013-04-02 2013-04-02 Drum can inspection method and apparatus

Country Status (1)

Country Link
JP (1) JP6173745B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021054697A (en) * 2019-10-02 2021-04-08 古河機械金属株式会社 Manufacturing method of lithium nitride

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7390433B1 (en) 2022-06-10 2023-12-01 本田技研工業株式会社 Internal combustion engine control device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5310483A (en) * 1976-07-16 1978-01-30 Nippon Steel Corp Surface wave flaw detection
JPS59120862A (en) * 1982-12-27 1984-07-12 Toshiba Corp Ultrasonic flaw detection
JPH11183445A (en) * 1997-12-19 1999-07-09 Mitsubishi Heavy Ind Ltd Flaw detector
JP2005156333A (en) * 2003-11-25 2005-06-16 Nisshin Kogyo Kk Defect detection method of cylindrical structure
JP2007132770A (en) * 2005-11-10 2007-05-31 Idemitsu Eng Co Ltd Plate member inspection method and device
JP2008175796A (en) * 2006-12-18 2008-07-31 Chiyoda Technol Corp Drum inspection method, and device therefor
JP2009025109A (en) * 2007-07-19 2009-02-05 Toru Hara Equipment for inspecting drum
JP2009092471A (en) * 2007-10-05 2009-04-30 Ihi Corp Flaw detection method and apparatus
JP2013079843A (en) * 2011-10-03 2013-05-02 Kanagawa Noriyo Method for inspecting metal drum and apparatus therefor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5310483A (en) * 1976-07-16 1978-01-30 Nippon Steel Corp Surface wave flaw detection
JPS59120862A (en) * 1982-12-27 1984-07-12 Toshiba Corp Ultrasonic flaw detection
JPH11183445A (en) * 1997-12-19 1999-07-09 Mitsubishi Heavy Ind Ltd Flaw detector
JP2005156333A (en) * 2003-11-25 2005-06-16 Nisshin Kogyo Kk Defect detection method of cylindrical structure
JP2007132770A (en) * 2005-11-10 2007-05-31 Idemitsu Eng Co Ltd Plate member inspection method and device
JP2008175796A (en) * 2006-12-18 2008-07-31 Chiyoda Technol Corp Drum inspection method, and device therefor
JP2009025109A (en) * 2007-07-19 2009-02-05 Toru Hara Equipment for inspecting drum
US20090260442A1 (en) * 2007-07-19 2009-10-22 Toru Hara Drum Inspecting Apparatus
JP2009092471A (en) * 2007-10-05 2009-04-30 Ihi Corp Flaw detection method and apparatus
JP2013079843A (en) * 2011-10-03 2013-05-02 Kanagawa Noriyo Method for inspecting metal drum and apparatus therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021054697A (en) * 2019-10-02 2021-04-08 古河機械金属株式会社 Manufacturing method of lithium nitride
JP7358173B2 (en) 2019-10-02 2023-10-10 古河機械金属株式会社 Manufacturing method of lithium nitride

Also Published As

Publication number Publication date
JP6173745B2 (en) 2017-08-02

Similar Documents

Publication Publication Date Title
CA2593894C (en) A method for configuring an array of transducers in an ultrasonic test apparatus
US8215174B2 (en) Inspection apparatus for tubular members
CN102435675B (en) Ultrasonic TOFD technology detection method for butt seam of different thickness plates
CN106198740A (en) A kind of weld joint automatized phased array ultrasonic detecting method of Nuclear power plant main pipeline
CN102841142A (en) Weld joint detecting method based on ultrasonic detection device
JP6173745B2 (en) Drum can inspection method and apparatus
WO2020250378A1 (en) Ultrasound flaw detection method, ultrasound flaw detection device, manufacturing equipment line for steel material, manufacturing method for steel material, and quality assurance method for steel material
JP2013156166A (en) Ultrasonic flaw detection method
JP5883605B2 (en) Drum can inspection method and apparatus
Cawley Guided waves in long range nondestructive testing and structural health monitoring: Principles, history of applications and prospects
CN105004790A (en) Compressor impeller defect phased array ultrasonic detection method
KR20100124238A (en) Calibration block (reference block) and calibration procedure for phased-array ultrasonic inspection
JP2015219020A (en) Steel pole diagnostic device and steel pole diagnostic method
JP6733650B2 (en) Ultrasonic flaw detection method, ultrasonic flaw detection equipment, steel production equipment row, and steel production method
CN110646513B (en) Structural body bottom plate health state detection method based on guided wave combined excitation
JP6489798B2 (en) Defect evaluation method and defect evaluation apparatus
US11692930B2 (en) Standoff inspection using geometry-informed full-wavefield response measurements
Garcia et al. Corrosion detection under pipe supports using EMAT medium range guided waves
JP2016090245A (en) Ultrasonic flaw detection device
Puchot et al. Inspection technique for above ground storage tank floors using MsS technology
US20230288375A1 (en) Coating inspection using steady-state excitation
US20220146460A1 (en) Guided wave testing of welds in pipelines and plate structures
US20210302392A1 (en) Methods and devices for ultrasonic non-destructive testing devices
Volker et al. Annular plate inspection using guided wave tomography
JP6953953B2 (en) A method for evaluating the soundness of oblique ultrasonic flaw detection, and a method for oblique ultrasonic flaw detection using this method.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170705

R150 Certificate of patent or registration of utility model

Ref document number: 6173745

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250