JP2021054697A - Manufacturing method of lithium nitride - Google Patents

Manufacturing method of lithium nitride Download PDF

Info

Publication number
JP2021054697A
JP2021054697A JP2019182304A JP2019182304A JP2021054697A JP 2021054697 A JP2021054697 A JP 2021054697A JP 2019182304 A JP2019182304 A JP 2019182304A JP 2019182304 A JP2019182304 A JP 2019182304A JP 2021054697 A JP2021054697 A JP 2021054697A
Authority
JP
Japan
Prior art keywords
lithium
lithium nitride
producing lithium
nitride
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019182304A
Other languages
Japanese (ja)
Other versions
JP7358173B2 (en
Inventor
哲也 松原
Tetsuya Matsubara
哲也 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Co Ltd
Original Assignee
Furukawa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Co Ltd filed Critical Furukawa Co Ltd
Priority to JP2019182304A priority Critical patent/JP7358173B2/en
Publication of JP2021054697A publication Critical patent/JP2021054697A/en
Application granted granted Critical
Publication of JP7358173B2 publication Critical patent/JP7358173B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide a manufacturing method of lithium nitride with fast proceeding of lithium nitride formation and capable of stable production of lithium nitride.SOLUTION: A manufacturing method of lithium nitride includes a step (A) of heating lithium member in a nitrogen atmosphere with a dew point of lower than -15°C for nitriding the lithium member.SELECTED DRAWING: None

Description

本発明は、窒化リチウムの製造方法に関する。 The present invention relates to a method for producing lithium nitride.

窒化リチウムは、リチウムイオン伝導度が室温で10−3Scm−1を示す高イオン伝導体として知られており、例えば、リチウムイオン電池用の固体電解質や電極材料としての応用が検討されている。 Lithium nitride is known as a high-ion conductor having a lithium ion conductivity of 10 -3 Scm -1 at room temperature, and its application as a solid electrolyte for a lithium ion battery or an electrode material is being studied, for example.

窒化リチウムは水分と接触すると容易に分解してしまうため、その合成方法は多くの制約を受けており、通常は金属リチウムと窒素ガスとの反応で窒化リチウムが製造されている。 Since lithium nitride is easily decomposed when it comes into contact with moisture, its synthesis method is restricted in many ways, and lithium nitride is usually produced by the reaction of metallic lithium and nitrogen gas.

特許文献1(特開2001−48504号公報)には、窒素ガス雰囲気下、冷却によりリチウム及び生成する窒化リチウムの温度をリチウムの溶融温度以下に維持しながら、金属リチウムと窒素とを反応させることを特徴とする窒化リチウムの製造方法が開示されている。
また、特許文献2(特開2002−3209号公報)には、窒素雰囲気下、0.4℃/min〜7.0℃/minの昇温速度で、50℃〜110℃まで金属リチウムを加熱する工程を有する窒化リチウムの製造方法が開示されている。
According to Patent Document 1 (Japanese Unexamined Patent Publication No. 2001-48504), metallic lithium and nitrogen are reacted while maintaining the temperature of lithium and lithium nitride produced by cooling below the melting temperature of lithium under a nitrogen gas atmosphere. A method for producing lithium nitride is disclosed.
Further, in Patent Document 2 (Japanese Unexamined Patent Publication No. 2002-3209), metallic lithium is heated from 50 ° C. to 110 ° C. at a heating rate of 0.4 ° C./min to 7.0 ° C./min under a nitrogen atmosphere. A method for producing lithium nitride having a step of performing the process is disclosed.

特開2001−48504号公報Japanese Unexamined Patent Publication No. 2001-48504 特開2002−3209号公報JP-A-2002-3209

しかし、本発明者らの検討によれば、上記特許文献1および2に開示されているような金属リチウムと窒素ガスとの反応で窒化リチウムを製造する方法では、金属リチウムと窒素ガスとの反応が再現性よく起こらず、窒化反応が進行しない場合があることが明らかになった。
本発明は上記事情に鑑みてなされたものであり、窒化リチウムの生成が速やかに進行し、窒化リチウムの安定生産が可能な窒化リチウムの製造方法を提供するものである。
However, according to the study by the present inventors, in the method for producing lithium nitride by the reaction between metallic lithium and nitrogen gas as disclosed in Patent Documents 1 and 2, the reaction between metallic lithium and nitrogen gas However, it was clarified that the nitriding reaction may not proceed due to poor reproducibility.
The present invention has been made in view of the above circumstances, and provides a method for producing lithium nitride, which enables rapid production of lithium nitride and stable production of lithium nitride.

本発明によれば、
露点が−15℃未満の窒素雰囲気下でリチウム部材を加熱することにより、前記リチウム部材を窒化させる工程(A)を含む窒化リチウムの製造方法が提供される。
According to the present invention
Provided is a method for producing lithium nitride, which comprises a step (A) of nitriding the lithium member by heating the lithium member in a nitrogen atmosphere having a dew point of less than −15 ° C.

本発明によれば、窒化リチウムの生成が速やかに進行し、窒化リチウムの安定生産が可能な窒化リチウムの製造方法を提供することができる。 According to the present invention, it is possible to provide a method for producing lithium nitride, in which the production of lithium nitride proceeds rapidly and stable production of lithium nitride is possible.

以下に、本発明の実施形態について説明する。数値範囲の「A〜B」は特に断りがなければ、A以上B以下を表す。 Hereinafter, embodiments of the present invention will be described. Unless otherwise specified, "A to B" in the numerical range represent A or more and B or less.

本実施形態に係る窒化リチウムの製造方法は、露点が−15℃未満の窒素雰囲気下でリチウム部材を加熱することにより、リチウム部材を窒化させる工程(A)を含む。
本実施形態に係る窒化リチウムの製造方法によれば、窒化リチウムの生成が速やかに進行し、窒化リチウムの安定生産が可能となる。
The method for producing lithium nitride according to the present embodiment includes a step (A) of nitriding a lithium member by heating the lithium member in a nitrogen atmosphere having a dew point of less than −15 ° C.
According to the method for producing lithium nitride according to the present embodiment, the production of lithium nitride proceeds rapidly, and stable production of lithium nitride becomes possible.

前述したように、本発明者らの検討によれば、上記特許文献1および2に開示されているような金属リチウムと窒素ガスとの反応で窒化リチウムを製造する方法では、金属リチウムと窒素ガスとの反応が再現性よく起こらず、窒化反応が進行しない場合があることが明らかになった。
そこで、本発明者らは鋭意検討した結果、露点が上記上限値未満の窒素雰囲気下でリチウム部材を加熱することにより、リチウム部材の窒化反応が速やかに進行することを見出した。
窒素雰囲気の露点を上記上限値未満に設定することにより、金属リチウム表面への酸化リチウムや水酸化リチウムを含む皮膜の生成を抑制することができると考えられる。そのため、金属リチウムと窒素との接触面積が増大し、リチウム部材の窒化反応が速やかに進行すると考えられる。
As described above, according to the studies by the present inventors, in the method for producing lithium nitride by the reaction between metallic lithium and nitrogen gas as disclosed in Patent Documents 1 and 2, the metallic lithium and nitrogen gas are used. It was clarified that the reaction with the above did not occur with good reproducibility and the nitriding reaction may not proceed.
Therefore, as a result of diligent studies, the present inventors have found that the nitriding reaction of the lithium member proceeds rapidly by heating the lithium member in a nitrogen atmosphere in which the dew point is less than the above upper limit value.
By setting the dew point of the nitrogen atmosphere to less than the above upper limit value, it is considered that the formation of a film containing lithium oxide or lithium hydroxide on the surface of metallic lithium can be suppressed. Therefore, it is considered that the contact area between metallic lithium and nitrogen increases, and the nitriding reaction of the lithium member proceeds rapidly.

(工程(A))
本実施形態に係る窒化リチウムの製造方法では、露点が−15℃未満の窒素雰囲気下でリチウム部材を加熱することにより、リチウム部材を窒化させる。露点は−15℃未満であるが、好ましくは−18℃以下、より好ましくは−20℃以下、さらに好ましくは−25℃以下、さらにより好ましくは−30℃以下、さらにより好ましくは−40℃以下、さらにより好ましくは−50℃以下である。露点の下限値は特に限定されないが、例えば−90℃以上である。
(Step (A))
In the method for producing lithium nitride according to the present embodiment, the lithium member is nitrided by heating the lithium member in a nitrogen atmosphere having a dew point of less than −15 ° C. The dew point is less than -15 ° C, but preferably -18 ° C or lower, more preferably -20 ° C or lower, even more preferably -25 ° C or lower, even more preferably -30 ° C or lower, even more preferably -40 ° C or lower. , Even more preferably −50 ° C. or lower. The lower limit of the dew point is not particularly limited, but is, for example, −90 ° C. or higher.

本実施形態に係るリチウム部材は、例えば、その表面に炭素と酸素を構成成分とする薄い皮膜が存在している金属リチウムであり、その形状は、インゴット、箔、ワイヤー、ロッドなどの一般的に提供されているものであればよく、特別な形状である必要はない。ただし、窒化反応を速やかに完了させるには表面積が大きな形状が良いため、リチウム部材の形状としては箔が好ましい。すなわち、本実施形態に係るリチウム部材は金属リチウム箔が好ましい。
金属リチウム箔の厚みは、3mm以下が好ましく、1mm以下がより好ましい。金属リチウム箔の厚みが上記上限値以下であると、反応熱が蓄積することによる爆発的な反応を抑制することができる。金属リチウム箔の厚みは特に限定されないが、例えば、0.05mm以上であってもよいし、0.1mm以上であってもよい。
The lithium member according to the present embodiment is, for example, metallic lithium in which a thin film containing carbon and oxygen as constituents is present on the surface thereof, and the shape thereof is generally such as an ingot, a foil, a wire, or a rod. It does not have to be a special shape as long as it is provided. However, in order to complete the nitriding reaction quickly, a shape having a large surface area is preferable, and therefore, a foil is preferable as the shape of the lithium member. That is, the lithium member according to this embodiment is preferably a metallic lithium foil.
The thickness of the metallic lithium foil is preferably 3 mm or less, more preferably 1 mm or less. When the thickness of the metallic lithium foil is not more than the above upper limit value, the explosive reaction due to the accumulation of heat of reaction can be suppressed. The thickness of the metallic lithium foil is not particularly limited, but may be, for example, 0.05 mm or more, or 0.1 mm or more.

本実施形態に係る窒化リチウムの製造方法では、露点が上記上限値未満の窒素雰囲気下でリチウム部材を加熱することにより、リチウム部材の窒化反応を進める。
リチウム部材の窒化反応には、窒素ガスを使用する。窒素ガスは、リチウムと反応し易く、安価でかつ毒性も無い。
使用する窒素ガス中の酸素濃度は低いほど好ましい。窒素ガス中の酸素濃度が高くなると金属リチウムは著しく酸化腐食し、窒化リチウムの形成を阻害するだけでなく、窒化リチウムに酸化リチウムや水酸化リチウムの混入を引き起こしてしまうからである。
具体的には、窒素ガス中の酸素濃度は100ppm以下が好ましく、60ppm以下がより好ましい。
また、窒素ガスの純度は、99.99%以上が好ましい。
In the method for producing lithium nitride according to the present embodiment, the nitriding reaction of the lithium member is promoted by heating the lithium member in a nitrogen atmosphere where the dew point is less than the above upper limit value.
Nitrogen gas is used for the nitriding reaction of the lithium member. Nitrogen gas easily reacts with lithium, is inexpensive, and is not toxic.
The lower the oxygen concentration in the nitrogen gas used, the more preferable. This is because when the oxygen concentration in the nitrogen gas becomes high, metallic lithium is remarkably oxidatively corroded, which not only inhibits the formation of lithium nitride but also causes lithium nitride and lithium hydroxide to be mixed.
Specifically, the oxygen concentration in the nitrogen gas is preferably 100 ppm or less, more preferably 60 ppm or less.
The purity of nitrogen gas is preferably 99.99% or more.

工程(A)では、リチウム部材を局所的に加熱することが可能な局所加熱手段を用いてリチウム部材を加熱することが好ましい。すなわち、窒素雰囲気内全体を加熱するのではなく、窒素雰囲気内に配置されたリチウム部材またはリチウム部材とその周辺を局所的に加熱することが好ましい。こうすることで、窒素雰囲気内の温度が上がり難くなるため、窒素雰囲気内にあるモレキュラーシーブ等の水分吸着剤や装置、器具等に付着された水分が蒸発し、窒素雰囲気内の露点が上昇してしまうのを抑制することができる。すなわち、リチウム部材を局所的に加熱することが可能な局所加熱手段を用いることによって、窒素雰囲気下の露点を上記上限値未満に維持しながら、リチウム部材を加熱することが可能となる。 In the step (A), it is preferable to heat the lithium member by using a local heating means capable of locally heating the lithium member. That is, it is preferable to locally heat the lithium member or the lithium member arranged in the nitrogen atmosphere and its surroundings, instead of heating the entire nitrogen atmosphere. By doing so, it becomes difficult for the temperature in the nitrogen atmosphere to rise, so that the moisture adsorbents such as molecular sieves in the nitrogen atmosphere and the water adhering to the devices, appliances, etc. evaporate, and the dew point in the nitrogen atmosphere rises. It can be suppressed. That is, by using a local heating means capable of locally heating the lithium member, it is possible to heat the lithium member while maintaining the dew point under the nitrogen atmosphere below the above upper limit value.

上記局所加熱手段としては、例えば、伝導伝熱加熱、放射伝熱加熱等が挙げられる。これらの加熱手段は一種を単独で使用してもよいし、二種以上を組み合わせて使用してもよい。
伝導伝熱加熱とは、リチウム部材を高温物体に接触させて熱伝導によって加熱する方法であり、伝導伝熱加熱をおこなう装置としては、例えば、ホットプレート式ヒーター、加熱ロール等が挙げられる。
放射伝熱加熱とは、高温物体が電磁波として放出するエネルギーをリチウム部材に吸収させて加熱する方法であり、放射伝熱加熱をおこなう装置としては、例えば、赤外線ヒーターや赤外線ランプ等が挙げられる。
Examples of the local heating means include conduction heat transfer heating and radiant heat transfer heating. These heating means may be used alone or in combination of two or more.
Conductive heat transfer heating is a method of bringing a lithium member into contact with a high-temperature object and heating it by heat conduction. Examples of the device for conducting conductive heat transfer heating include a hot plate type heater and a heating roll.
Radiant heat transfer heating is a method in which a lithium member absorbs energy emitted as electromagnetic waves by a high-temperature object to heat it, and examples of the device for performing radiant heat transfer heating include an infrared heater and an infrared lamp.

本実施形態に係る窒化リチウムの製造方法において、工程(A)における加熱手段の加熱温度は、窒化リチウムの生成をより一層速やかに進行させる観点から、30℃以上が好ましく、40℃以上がより好ましく、45℃以上がさらに好ましい。加熱手段の加熱温度の上限は特に限定されないが、反応熱が蓄積することによる爆発的な反応を抑制する観点から、120℃以下が好ましく、100℃以下がより好ましく、80℃以下がさらに好ましく、60℃以下がさらにより好ましい。 In the method for producing lithium nitride according to the present embodiment, the heating temperature of the heating means in the step (A) is preferably 30 ° C. or higher, more preferably 40 ° C. or higher, from the viewpoint of further rapidly producing lithium nitride. , 45 ° C. or higher is more preferable. The upper limit of the heating temperature of the heating means is not particularly limited, but from the viewpoint of suppressing an explosive reaction due to the accumulation of heat of reaction, 120 ° C. or lower is preferable, 100 ° C. or lower is more preferable, and 80 ° C. or lower is further preferable. 60 ° C. or lower is even more preferable.

本実施形態に係る窒化リチウムの製造方法において、工程(A)におけるリチウム部材の実体温度は、窒化リチウムの生成をより一層速やかに進行させる観点から、30℃以上が好ましく、40℃以上がより好ましく、50℃以上がさらに好ましい。工程(A)におけるリチウム部材の実体温度の上限は特に限定されないが、反応熱が蓄積することによる爆発的な反応を抑制する観点から、120℃以下が好ましく、100℃以下がより好ましく、80℃以下がさらに好ましい。 In the method for producing lithium nitride according to the present embodiment, the actual temperature of the lithium member in the step (A) is preferably 30 ° C. or higher, more preferably 40 ° C. or higher, from the viewpoint of further rapidly producing lithium nitride. , 50 ° C. or higher is more preferable. The upper limit of the actual temperature of the lithium member in the step (A) is not particularly limited, but from the viewpoint of suppressing an explosive reaction due to the accumulation of heat of reaction, 120 ° C. or lower is preferable, 100 ° C. or lower is more preferable, and 80 ° C. The following is more preferable.

本実施形態に係る窒化リチウムの製造方法において、工程(A)における窒素雰囲気の雰囲気温度は、窒化リチウムの生成をより一層速やかに進行させる観点から、20℃以上が好ましく、23℃以上がより好ましく、25℃以上がさらに好ましく、28℃以上がさらにより好ましい。工程(A)における窒素雰囲気の雰囲気温度の上限は特に限定されないが、工程(A)における窒素雰囲気下の露点を上記上限値未満に維持する観点から、40℃以下が好ましく、35℃以下がより好ましく、30℃以下がさらに好ましい。 In the method for producing lithium nitride according to the present embodiment, the atmospheric temperature of the nitrogen atmosphere in the step (A) is preferably 20 ° C. or higher, more preferably 23 ° C. or higher, from the viewpoint of further rapidly producing lithium nitride. , 25 ° C. or higher is even more preferable, and 28 ° C. or higher is even more preferable. The upper limit of the atmospheric temperature of the nitrogen atmosphere in the step (A) is not particularly limited, but 40 ° C. or lower is preferable, and 35 ° C. or lower is more preferable from the viewpoint of maintaining the dew point under the nitrogen atmosphere in the step (A) below the above upper limit value. It is preferable, and more preferably 30 ° C. or lower.

本実施形態に係る窒化リチウムの製造方法において、工程(A)における窒素雰囲気下の露点を上記上限値未満に維持する観点から、熱交換器を用いて窒素雰囲気の雰囲気温度を制御してもよい。こうすることで、窒素雰囲気内に配置されたリチウム部材を加熱する温度を上げても、工程(A)における窒素雰囲気の雰囲気温度の上昇を抑制することができ、その結果、工程(A)における窒素雰囲気下の露点を上記上限値未満に効果的に維持することができる。 In the method for producing lithium nitride according to the present embodiment, the atmospheric temperature of the nitrogen atmosphere may be controlled by using a heat exchanger from the viewpoint of maintaining the dew point under the nitrogen atmosphere in the step (A) below the above upper limit value. .. By doing so, even if the temperature for heating the lithium member arranged in the nitrogen atmosphere is raised, the rise in the atmospheric temperature of the nitrogen atmosphere in the step (A) can be suppressed, and as a result, in the step (A). The dew point under a nitrogen atmosphere can be effectively maintained below the above upper limit.

リチウム部材の窒化反応をおこなう時間は、例えば、0.5時間以上24時間以下であり、好ましくは0.5時間以上8時間以下であり、さらに好ましくは1時間以上5時間以下である。 The time for nitriding the lithium member is, for example, 0.5 hours or more and 24 hours or less, preferably 0.5 hours or more and 8 hours or less, and more preferably 1 hour or more and 5 hours or less.

(工程(B))
必要に応じて、工程(A)の後に、窒化されたリチウム部材を粉砕して粉状にする。これにより、粉状の窒化リチウムを得ることができる。粉状にする方法は特に限定されず、一般的に公知の粉砕手段によりおこなうことができる。
(Step (B))
If necessary, after the step (A), the nitrided lithium member is pulverized into a powder. As a result, powdered lithium nitride can be obtained. The method of making it into a powder is not particularly limited, and it can be carried out by a generally known pulverizing means.

本実施形態に係る製造方法により得られた窒化リチウムは、例えば、リチウムイオン電池用の固体電解質、リチウムイオン電池用電極材料、化学薬品用の中間原料として好適に用いることができる。本実施形態に係る製造方法により得られた窒化リチウムは、高純度であるため、特に高純度が求められるリチウムイオン電池用の固体電解質およびリチウムイオン電池用電極材料用の原料として好適に用いることができる。 The lithium nitride obtained by the production method according to the present embodiment can be suitably used as, for example, a solid electrolyte for a lithium ion battery, an electrode material for a lithium ion battery, and an intermediate raw material for chemicals. Since the lithium nitride obtained by the production method according to the present embodiment has high purity, it can be suitably used as a solid electrolyte for lithium ion batteries and a raw material for electrode materials for lithium ion batteries, which are particularly required to have high purity. it can.

以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 Although the embodiments of the present invention have been described above, these are examples of the present invention, and various configurations other than the above can be adopted.

以下、本発明を実施例および比較例により説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

(実施例1)
窒素雰囲気(露点:−30℃、温度:25℃)のステンレス製真空置換型グローボックス内に、50℃に加温したホットプレートを設置し、さらに加温したホットプレート上に、純度99.7%の金属リチウム箔(本城金属社製、60mm×250mm×1mm)を配置し、金属リチウム箔の窒化反応を開始した。ここで、グローボックス内は、空冷式溶媒循環装置に接続した熱交換器を用いて、外気温(25℃)に制御した。また、グローボックス内の窒素ガスを水分吸着剤(和光純薬社製、モレキュラーシーブス3A)のカラムに通して循環させることによって、窒素ガス中の水分を除去し、グローボックス内の露点を−30℃に維持した。また、グローボックス内の窒素ガスは圧力スイッチで自動制御され、窒素ガスが金属リチウム箔との窒化反応に消費されて内圧が低下すると、消費量相当の窒素ガスがグローボックス内に導入されるように設定した。
次いで、金属リチウム箔の重量変化から窒化率を算出した。その結果、金属リチウム箔をホットプレート上に配置してから2時間後の窒化率は83%であった。
ここで、窒化率100%は金属リチウム箔(Li)がすべて窒化リチウム(LiN)になったことを意味する。
(Example 1)
A hot plate heated to 50 ° C is installed in a stainless steel vacuum-replacement glove box with a nitrogen atmosphere (dew point: -30 ° C, temperature: 25 ° C), and the purity is 99.7 on the further heated hot plate. % Metallic lithium foil (manufactured by Honjo Metal Co., Ltd., 60 mm × 250 mm × 1 mm) was arranged, and the nitriding reaction of the metallic lithium foil was started. Here, the inside of the glove box was controlled to the outside air temperature (25 ° C.) by using a heat exchanger connected to an air-cooled solvent circulation device. Further, by circulating the nitrogen gas in the glove box through a column of a water adsorbent (Molecular Sieves 3A manufactured by Wako Pure Chemical Industries, Ltd.), the water in the nitrogen gas is removed and the dew point in the glove box is -30. Maintained at ° C. In addition, the nitrogen gas in the glove box is automatically controlled by a pressure switch, and when the nitrogen gas is consumed in the nitriding reaction with the metallic lithium foil and the internal pressure drops, the nitrogen gas equivalent to the consumption amount is introduced into the glove box. Set to.
Next, the nitriding ratio was calculated from the weight change of the metallic lithium foil. As a result, the nitriding rate 2 hours after the metallic lithium foil was placed on the hot plate was 83%.
Here, rate of nitride 100% means that metal lithium foil (Li) becomes all lithium nitride (Li 3 N).

(実施例2)
窒素雰囲気の露点を−20℃に変更した以外は実施例1と同様に金属リチウム箔の窒化反応をおこなった。金属リチウム箔をホットプレート上に配置してから5時間後の窒化率は80%であった。
(Example 2)
The nitriding reaction of the metallic lithium foil was carried out in the same manner as in Example 1 except that the dew point of the nitrogen atmosphere was changed to −20 ° C. The nitriding rate was 80% 5 hours after the metallic lithium foil was placed on the hot plate.

(実施例3)
窒素雰囲気の露点を−50℃に変更した以外は実施例1と同様に金属リチウム箔の窒化反応をおこなった。金属リチウム箔をホットプレート上に配置してから2時間後の窒化率は90%であった。
(Example 3)
The nitriding reaction of the metallic lithium foil was carried out in the same manner as in Example 1 except that the dew point of the nitrogen atmosphere was changed to −50 ° C. The nitriding rate was 90% 2 hours after the metallic lithium foil was placed on the hot plate.

(比較例1)
金属リチウム箔の加熱をおこなわない以外(すなわちホットプレートを使用しない)は実施例1と同様に金属リチウム箔の窒化反応をおこなった。金属リチウム箔をグローボックス内に配置してから96時間後の窒化率は0%であった。
(Comparative Example 1)
The nitriding reaction of the metallic lithium foil was carried out in the same manner as in Example 1 except that the metallic lithium foil was not heated (that is, the hot plate was not used). The nitriding ratio was 0% 96 hours after the metallic lithium foil was placed in the glove box.

(比較例2)
窒素雰囲気の露点を−15℃に変更した以外は実施例1と同様に金属リチウム箔の窒化反応をおこなった。金属リチウム箔をホットプレート上に配置してから96時間後の窒化率は0%であった。
(Comparative Example 2)
The nitriding reaction of the metallic lithium foil was carried out in the same manner as in Example 1 except that the dew point of the nitrogen atmosphere was changed to −15 ° C. The nitriding ratio was 0% 96 hours after the metallic lithium foil was placed on the hot plate.

Claims (10)

露点が−15℃未満の窒素雰囲気下でリチウム部材を加熱することにより、前記リチウム部材を窒化させる工程(A)を含む窒化リチウムの製造方法。 A method for producing lithium nitride, which comprises a step (A) of nitriding the lithium member by heating the lithium member in a nitrogen atmosphere having a dew point of less than −15 ° C. 請求項1に記載の窒化リチウムの製造方法において、
前記工程(A)では、前記リチウム部材を局所的に加熱することが可能な局所加熱手段を用いて前記リチウム部材を加熱する窒化リチウムの製造方法。
In the method for producing lithium nitride according to claim 1,
In the step (A), a method for producing lithium nitride, which heats the lithium member by using a local heating means capable of locally heating the lithium member.
請求項2に記載の窒化リチウムの製造方法において、
前記局所加熱手段が伝導伝熱加熱および放射伝熱加熱から選択される少なくとも一種の加熱手段を含む窒化リチウムの製造方法。
In the method for producing lithium nitride according to claim 2.
A method for producing lithium nitride, which comprises at least one heating means in which the local heating means is selected from conduction heat transfer heating and radiant heat transfer heating.
請求項2または3に記載の窒化リチウムの製造方法において、
前記工程(A)における前記加熱手段の加熱温度が30℃以上である窒化リチウムの製造方法。
In the method for producing lithium nitride according to claim 2 or 3.
A method for producing lithium nitride in which the heating temperature of the heating means in the step (A) is 30 ° C. or higher.
請求項1乃至3のいずれか一項に記載の窒化リチウムの製造方法において、
前記工程(A)における前記窒素雰囲気の雰囲気温度が20℃以上40℃以下である窒化リチウムの製造方法。
In the method for producing lithium nitride according to any one of claims 1 to 3.
A method for producing lithium nitride in which the atmospheric temperature of the nitrogen atmosphere in the step (A) is 20 ° C. or higher and 40 ° C. or lower.
請求項1乃至5のいずれか一項に記載の窒化リチウムの製造方法において、
熱交換器を用いて前記窒素雰囲気の雰囲気温度を制御する窒化リチウムの製造方法。
In the method for producing lithium nitride according to any one of claims 1 to 5,
A method for producing lithium nitride, which controls the ambient temperature of the nitrogen atmosphere using a heat exchanger.
請求項1乃至6のいずれか一項に記載の窒化リチウムの製造方法において、
前記工程(A)における前記リチウム部材の実体温度が30℃以上である窒化リチウムの製造方法。
In the method for producing lithium nitride according to any one of claims 1 to 6.
A method for producing lithium nitride in which the actual temperature of the lithium member in the step (A) is 30 ° C. or higher.
請求項1乃至7のいずれか一項に記載の窒化リチウムの製造方法において、
前記リチウム部材が金属リチウム箔である窒化リチウムの製造方法。
In the method for producing lithium nitride according to any one of claims 1 to 7.
A method for producing lithium nitride, wherein the lithium member is a metallic lithium foil.
請求項8に記載の窒化リチウムの製造方法において、
前記金属リチウム箔の厚みが3mm以下である窒化リチウムの製造方法。
In the method for producing lithium nitride according to claim 8,
A method for producing lithium nitride, wherein the thickness of the metallic lithium foil is 3 mm or less.
請求項1乃至9のいずれか一項に記載の窒化リチウムの製造方法において、
前記工程(A)の後に、窒化された前記リチウム部材を粉砕して粉状にする工程(B)をさらに含む窒化リチウムの製造方法。
In the method for producing lithium nitride according to any one of claims 1 to 9.
A method for producing lithium nitride, further comprising a step (B) of pulverizing the nitrided lithium member into a powder after the step (A).
JP2019182304A 2019-10-02 2019-10-02 Manufacturing method of lithium nitride Active JP7358173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019182304A JP7358173B2 (en) 2019-10-02 2019-10-02 Manufacturing method of lithium nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019182304A JP7358173B2 (en) 2019-10-02 2019-10-02 Manufacturing method of lithium nitride

Publications (2)

Publication Number Publication Date
JP2021054697A true JP2021054697A (en) 2021-04-08
JP7358173B2 JP7358173B2 (en) 2023-10-10

Family

ID=75273030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019182304A Active JP7358173B2 (en) 2019-10-02 2019-10-02 Manufacturing method of lithium nitride

Country Status (1)

Country Link
JP (1) JP7358173B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021210314A1 (en) * 2020-04-16 2021-10-21 古河機械金属株式会社 Lithium nitride manufacturing device and lithium nitride manufacturing method
CN116216652A (en) * 2023-01-17 2023-06-06 北京恩力动力技术有限公司 Preparation method of lithium sulfide

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001048504A (en) * 1999-07-29 2001-02-20 Nippon Soda Co Ltd Production of lithium nitride
JP2002003209A (en) * 2000-06-13 2002-01-09 Nippon Soda Co Ltd Method for producing lithium nitride
JP2014202511A (en) * 2013-04-02 2014-10-27 金川 典代 Method and device for inspecting drum
JP2018066427A (en) * 2016-10-19 2018-04-26 株式会社日立産機システム Machinery and slide material used in the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001048504A (en) * 1999-07-29 2001-02-20 Nippon Soda Co Ltd Production of lithium nitride
JP2002003209A (en) * 2000-06-13 2002-01-09 Nippon Soda Co Ltd Method for producing lithium nitride
JP2014202511A (en) * 2013-04-02 2014-10-27 金川 典代 Method and device for inspecting drum
JP2018066427A (en) * 2016-10-19 2018-04-26 株式会社日立産機システム Machinery and slide material used in the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021210314A1 (en) * 2020-04-16 2021-10-21 古河機械金属株式会社 Lithium nitride manufacturing device and lithium nitride manufacturing method
CN116216652A (en) * 2023-01-17 2023-06-06 北京恩力动力技术有限公司 Preparation method of lithium sulfide

Also Published As

Publication number Publication date
JP7358173B2 (en) 2023-10-10

Similar Documents

Publication Publication Date Title
JP2021054697A (en) Manufacturing method of lithium nitride
JP6878059B2 (en) Sulfide solid electrolyte and its manufacturing method
GB2039864A (en) Solid ion conductor material
WO2016064713A3 (en) Methods and apparatuses for production of carbon, carbide electrodes, and carbon compositions
JP2014530167A (en) Production method of alkaline activated carbon
JPH0812308A (en) Graphite laminar body
Yoon et al. Reactive flash sintering of ceramics: a review
JP2023105149A (en) Lithium nitride manufacturing method
CN104956533A (en) Material for fuel cell separators and method for producing same
JP2012094503A (en) Positive electrode active material for lithium primary battery
US3424622A (en) Fused-salt battery with self-regulating insulating system
KR20140104783A (en) Method for purifying graphite
US3864170A (en) Low conductivity thermal insulator for thermal batteries
JP6718774B2 (en) Lithium sulfide manufacturing method and manufacturing apparatus
US20210403327A1 (en) Heating furnace and production method for graphite
US3138488A (en) Fuel cell
WO2021210314A1 (en) Lithium nitride manufacturing device and lithium nitride manufacturing method
JP7047485B2 (en) Sulfide solid electrolyte
JP2011195385A (en) Lithium silicon nitride and method for producing the same
JP2024083438A (en) Lithium nitride manufacturing apparatus and method for manufacturing lithium nitride
JP2015101765A (en) Solar heat magnesium reduction furnace
KR20190082424A (en) Thermoelectric materials and method for manufacturing the same
TWI429134B (en) Fuel cell start method
NO145322B (en) ELECTROCHEMICAL GENERATOR.
JP2007053258A (en) Carbon doped rare earth multi-boride based thermoelectric conversion material and its production process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230927

R150 Certificate of patent or registration of utility model

Ref document number: 7358173

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150