JP2015101765A - Solar heat magnesium reduction furnace - Google Patents

Solar heat magnesium reduction furnace Download PDF

Info

Publication number
JP2015101765A
JP2015101765A JP2013243579A JP2013243579A JP2015101765A JP 2015101765 A JP2015101765 A JP 2015101765A JP 2013243579 A JP2013243579 A JP 2013243579A JP 2013243579 A JP2013243579 A JP 2013243579A JP 2015101765 A JP2015101765 A JP 2015101765A
Authority
JP
Japan
Prior art keywords
heating chamber
reduction furnace
heat exchange
exchange member
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013243579A
Other languages
Japanese (ja)
Inventor
中村 勝重
Katsushige Nakamura
勝重 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitaka Kohki Co Ltd
Original Assignee
Mitaka Kohki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitaka Kohki Co Ltd filed Critical Mitaka Kohki Co Ltd
Priority to JP2013243579A priority Critical patent/JP2015101765A/en
Publication of JP2015101765A publication Critical patent/JP2015101765A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/30Solar heat collectors for heating objects, e.g. solar cookers or solar furnaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)
  • Furnace Details (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solar heat magnesium reduction furnace capable of simultaneously heating many retorts.SOLUTION: High temperature heat is generated by irradiating a heat exchange member 7 with condensed sunlight L. Since expansion chambers 3 are formed in the periphery of a heating chamber 2, many retorts 10 are stored in the expansion chambers 3, and high temperature gas generated in the heating chamber 2 is circulated in the expansion chambers 3, the retorts 10 can be simultaneously heated. Therefore, magnesium can be efficiently reduced.

Description

本発明は太陽熱マグネシウム還元炉に関するものである。   The present invention relates to a solar magnesium reduction furnace.

環境に負荷を与えることのないクリーンエネルギーとしての太陽光を集光し、その集光した太陽光を熱エネルギーに変換することで非常に高い温度を作り出し、高温の反応環境が必要とされる化学反応を進行させる太陽熱反応炉が知られている(例えば、特許文献1参照)。   Chemistry that collects sunlight as clean energy that does not burden the environment, converts the collected sunlight into heat energy, creates a very high temperature, and requires a high-temperature reaction environment A solar thermal reactor that advances the reaction is known (see, for example, Patent Document 1).

一方でマグネシウム金属を利用したマグネシウム電池が知られている。マグネシウム電池は、マグネシウム金属を負極として電解液中に浸漬させることにより起電力を発生させる一次電池である。このマグネシウム電池では使用後に不溶酸化物(水酸化マグネシウム)が生じる。その不溶酸化物を太陽熱により還元して再度マグネシウム金属に復元することで電池として繰り返し利用することが期待されている。   On the other hand, a magnesium battery using magnesium metal is known. A magnesium battery is a primary battery that generates an electromotive force by immersing magnesium metal in an electrolyte as a negative electrode. In this magnesium battery, an insoluble oxide (magnesium hydroxide) is generated after use. It is expected that the insoluble oxide will be repeatedly used as a battery by reducing it by solar heat and restoring it again to magnesium metal.

酸化物の還元にはレトルトという筒型の鋼製容器が使用される。このレトルト内にマグネシウムの酸化物と還元剤とを入れて高温(約1200℃)に加熱することにより還元されて、マグネシウムだけが気化してレトルトの一端の冷却部で固化して回収される。   A cylindrical steel container called retort is used for the reduction of the oxide. Magnesium oxide and a reducing agent are put into the retort and reduced by heating to a high temperature (about 1200 ° C.), and only magnesium is vaporized and solidified and recovered in a cooling part at one end of the retort.

特開2010-144956号公報JP 2010-144958 A

しかしながら、このような従来の技術にあっては、集光した太陽光を当てて高温の加熱室を形成し、そこにレトルトを収納して加熱するようにしても、加熱室内に収納できるレトルトの数には限りがあり、一度に多くのレトルトを加熱することができない。   However, in such a conventional technique, even if a high-temperature heating chamber is formed by applying concentrated sunlight, and the retort is stored and heated there, the retort that can be stored in the heating chamber The number is limited and many retorts cannot be heated at one time.

本発明は、このような従来の技術に着目してなされたものであり、多くのレトルトを同時に加熱することができる太陽熱マグネシウム還元炉を提供することを目的としている。   The present invention has been made paying attention to such a conventional technique, and an object of the present invention is to provide a solar magnesium reduction furnace capable of simultaneously heating many retorts.

請求項1記載の発明は、下向きに集光した太陽光を受光する位置に加熱室を形成すると共に該加熱室に上下方向で通気可能な耐熱材料製の熱交換部材を設け、加熱室の熱交換部材より下方空間の周囲を遮蔽壁により区画し、加熱室の周囲に加熱室と上部空間同士が連通し且つ複数のレトルトが熱交換部材と同等又はそれよりも低い位置で水平に挿入される拡張室を形成し、加熱室の下部空間と拡張室のレトルトよりも下部空間との間に気体を循環させる送風通路を設けたことを特徴とする。   According to the first aspect of the present invention, a heating chamber is formed at a position for receiving sunlight condensed downward, and a heat exchanging member made of a heat-resistant material that can be ventilated in the vertical direction is provided in the heating chamber. The space below the exchange member is partitioned by a shielding wall, the heating chamber and the upper space communicate with each other around the heating chamber, and a plurality of retorts are inserted horizontally at a position equal to or lower than the heat exchange member. An expansion chamber is formed, and a ventilation passage for circulating gas is provided between the lower space of the heating chamber and the lower space of the retort of the expansion chamber.

請求項2記載の発明は、送風通路の途中にバックアップ用の加熱手段が設けられたことを特徴とする。   The invention according to claim 2 is characterized in that a backup heating means is provided in the middle of the air passage.

請求項3記載の発明は、循環される気体が不活性ガスであることを特徴とする。   The invention described in claim 3 is characterized in that the circulated gas is an inert gas.

請求項1記載の発明によれば、集光された太陽光が熱交換部材に当たることにより高温の熱が発生する。更に加熱室の周囲に拡張室を形成し、そこにレトルトを収納し、加熱室で生成された高温の気体を送風通路により拡張室側に循環するようにした。そのため高温の気体により多くのレトルトを同時に加熱することができ、マグネシウムの還元を効率的に行うことができる。   According to invention of Claim 1, high temperature heat | fever generate | occur | produces when the condensed sunlight hits a heat exchange member. Furthermore, an expansion chamber was formed around the heating chamber, the retort was accommodated therein, and the high-temperature gas generated in the heating chamber was circulated to the expansion chamber side through the air passage. Therefore, many retorts can be simultaneously heated with a high-temperature gas, and magnesium can be reduced efficiently.

請求項2記載の発明によれば、送風通路の途中にバックアップ用の加熱手段が設けられているため、夜間や雨天でもマグネシウムの還元作業を行うことができる。   According to invention of Claim 2, since the heating means for backup is provided in the middle of the ventilation path, the reduction | restoration work of magnesium can be performed also at night or rainy weather.

請求項3記載の発明によれば、加熱室に循環される気体が不活性ガスであるため、気体が接する設備の金属を酸化させない。   According to invention of Claim 3, since the gas circulated to a heating chamber is an inert gas, the metal of the installation which gas contacts is not oxidized.

本発明の一実施形態に係る太陽熱マグネシウム還元炉を示す縦断面図。BRIEF DESCRIPTION OF THE DRAWINGS The longitudinal cross-sectional view which shows the solar-heat magnesium reduction furnace which concerns on one Embodiment of this invention. 太陽熱マグネシウム還元炉を示す横断面図。The cross-sectional view which shows a solar-heat magnesium reduction furnace. 太陽熱マグネシウム還元炉の送風通路を示す横断面図。The cross-sectional view which shows the ventilation path of a solar-heat magnesium reduction furnace. 図2中矢示SA−SA線に沿う断面図。Sectional drawing which follows the SA-SA line shown by the arrow in FIG. 熱交換部材を示す斜視図。The perspective view which shows a heat exchange member.

図1〜図5は本発明の好適な実施形態を示す図である。   1 to 5 are views showing a preferred embodiment of the present invention.

本実施形態の太陽熱マグネシウム還元炉1は、例えば、ビームダウン式の太陽集光装置に設置される。この場合は上から下向きに太陽光が集光する。従って、その集光点付近に太陽熱マグネシウム還元炉1を設置する。太陽熱マグネシウム還元炉1は矩形の加熱室2の四方に更に矩形の拡張室3を形成した概略十字形状をしている。太陽熱マグネシウム還元炉1の外壁は耐熱レンガと断熱材料から形成されている。加熱室2及び拡張室3の内部には不活性ガスが充填されている。不活性ガスは、加熱室2や拡張室3の酸化に寄与しないガスであり、例えば窒素ガスや希ガスなどである。   The solar magnesium reduction furnace 1 of this embodiment is installed in, for example, a beam-down solar concentrator. In this case, sunlight is collected from the top downward. Therefore, the solar magnesium reduction furnace 1 is installed in the vicinity of the condensing point. The solar magnesium reduction furnace 1 has a substantially cross shape in which rectangular extension chambers 3 are further formed in four directions of a rectangular heating chamber 2. The outer wall of the solar magnesium reduction furnace 1 is formed of a heat-resistant brick and a heat insulating material. The inside of the heating chamber 2 and the expansion chamber 3 is filled with an inert gas. The inert gas is a gas that does not contribute to the oxidation of the heating chamber 2 or the expansion chamber 3, and is, for example, a nitrogen gas or a rare gas.

加熱室2の上部に円形の開口4が形成されている。この開口4の上部には筒型集光鏡5が設置されている。筒型集光鏡5は上部開口よりも下部開口の方が小さく且つ内面が鏡面とされた構造をしている。この筒型集光鏡5内に太陽光Lが取り入れられる。   A circular opening 4 is formed in the upper part of the heating chamber 2. A cylindrical condenser mirror 5 is installed above the opening 4. The cylindrical condenser mirror 5 has a structure in which the lower opening is smaller than the upper opening and the inner surface is a mirror surface. Sunlight L is introduced into the cylindrical condenser mirror 5.

開口4には同じく円形の透明窓6が設けられている。この透明窓6は耐熱性を有する石英硝子製で二重に形成されており、その間の空間に冷却空気が循環するようになっている。   A circular transparent window 6 is also provided in the opening 4. The transparent window 6 is made of quartz glass having heat resistance and is formed in double, and cooling air circulates in a space between them.

加熱室2の内部には熱交換部材7が設けられている。熱交換部材7は複数個から構成され、黒色で炭化珪素膜(SiC)製の多貫通孔構造をしている(図5参照)。熱交換部材7は、優れた耐熱性を有していると共に多貫通孔構造のため上下方向での通気性を有している。従って上部空間2Aと下部空間2Bとは熱交換部材7を介して連通している。また熱交換部材7の集合体の周囲には同様に炭化珪素膜(SiC)製の遮蔽壁8が熱交換部材7を取り囲むように設けられている。遮蔽壁8は加熱室2の底面まで延びており、熱交換部材7の下部空間2Bを区画している。   A heat exchange member 7 is provided inside the heating chamber 2. The heat exchange member 7 is composed of a plurality of black and has a multi-through hole structure made of a silicon carbide film (SiC) (see FIG. 5). The heat exchange member 7 has excellent heat resistance and air permeability in the vertical direction due to the multiple through-hole structure. Accordingly, the upper space 2 </ b> A and the lower space 2 </ b> B communicate with each other via the heat exchange member 7. Similarly, a shielding wall 8 made of a silicon carbide film (SiC) is provided around the aggregate of the heat exchange members 7 so as to surround the heat exchange member 7. The shielding wall 8 extends to the bottom surface of the heating chamber 2 and defines a lower space 2B of the heat exchange member 7.

加熱室2の四方に形成されている拡張室3にはぞれぞれ4本のレトルト10が水平に挿入できるようになっている。レトルト10は拡張室3内に設けられた図示せぬ台座の上で、ちょうど熱交換部材7の上部に対応する位置に水平に載置されている。レトルト10同士の間及びレトルト10と拡張室3の内壁との間には隙間が形成されている(図4参照)。従って、拡張室3のレトルト10で区切られた下部空間3Bと上部空間3Aとは上述の隙間を介して気体が通過できるようになっている。   Four retorts 10 can be horizontally inserted into the expansion chambers 3 formed on the four sides of the heating chamber 2. The retort 10 is placed horizontally on a pedestal (not shown) provided in the expansion chamber 3 at a position corresponding to the upper part of the heat exchange member 7. Gaps are formed between the retorts 10 and between the retorts 10 and the inner wall of the expansion chamber 3 (see FIG. 4). Accordingly, gas can pass through the lower space 3B and the upper space 3A separated by the retort 10 of the expansion chamber 3 through the gap.

レトルト10の内部には酸化マグネシウムと還元剤が収納され且つ内部が減圧されている。レトルト10の拡張室3から外部に突出した基端部は水冷により冷却されている。   The retort 10 contains magnesium oxide and a reducing agent, and the inside is decompressed. The base end portion of the retort 10 protruding from the expansion chamber 3 to the outside is cooled by water cooling.

拡張室3の上部には図1に示す金属パイプ11が蛇行状態で配置されており、そこに水を通すことで付加的に水蒸気も得られる構造になっている。   A metal pipe 11 shown in FIG. 1 is arranged in a meandering state at the upper part of the expansion chamber 3, and water vapor is additionally obtained by passing water therethrough.

加熱室2内における熱交換部材7の下部空間2Bの底面と、拡張室3内におけるレトルト10の下部空間3Bの側面との間には、送風通路12が形成されている。送風通路12の途中には耐熱ファン装置13が設けられ、加熱室2の下部空間2Bの底面に形成された吸引孔15から空気を吸引して、拡張室3の下部空間3Bの側面に形成された排出孔14から気体を排出できるようになっている。送風通路12の下部にはガスバーナー(加熱手段)16設けられている。   A ventilation passage 12 is formed between the bottom surface of the lower space 2B of the heat exchange member 7 in the heating chamber 2 and the side surface of the lower space 3B of the retort 10 in the expansion chamber 3. A heat-resistant fan device 13 is provided in the middle of the air passage 12, and is formed on the side surface of the lower space 3B of the expansion chamber 3 by sucking air from the suction holes 15 formed in the bottom surface of the lower space 2B of the heating chamber 2. The gas can be discharged from the discharge hole 14. A gas burner (heating means) 16 is provided at the lower part of the air passage 12.

以上のような構造のため、上部から導入された太陽光Lが熱交換部材7に当たると、そこで光エネルギーが熱エネルギーに変換され、熱交換部材7自体が加熱されて高温になる。送風通路12により内部の気体が加熱室2の下部空間2Bの底面から吸引され、それが拡張室3の下部空間3Bの側面に排出されるため、熱交換部材7を通過した高温気体Hは拡張室3の下部空間3Bに排出された後、レトルト10部分を通過して上部空間3Aに至り、そこから加熱室2の上部空間2Aに移動して、再度熱交換部材7に導入される。すなわち高温気体Hが加熱室2と拡張室3の間を循環しながらレトルト10部分を通過しながら全てのレトルト10を均一に加熱することができる。従ってレトルト10内で酸化マグネシウムは還元されて金属マグネシウムとして気化し、拡張室3から突出した温度の低い基端部で固化して金属マグネシウムに戻る。   Due to the structure as described above, when the sunlight L introduced from above hits the heat exchange member 7, the light energy is converted into heat energy, and the heat exchange member 7 itself is heated to a high temperature. Since the internal gas is sucked from the bottom surface of the lower space 2B of the heating chamber 2 by the blow passage 12, and is discharged to the side surface of the lower space 3B of the expansion chamber 3, the high-temperature gas H that has passed through the heat exchange member 7 is expanded. After being discharged into the lower space 3B of the chamber 3, it passes through the retort 10 portion to reach the upper space 3A, moves from there to the upper space 2A of the heating chamber 2, and is again introduced into the heat exchange member 7. That is, all the retorts 10 can be uniformly heated while passing through the retort 10 portion while the high temperature gas H circulates between the heating chamber 2 and the expansion chamber 3. Accordingly, the magnesium oxide is reduced and vaporized as metallic magnesium in the retort 10, solidified at the base end portion having a low temperature protruding from the expansion chamber 3, and returned to the metallic magnesium.

雨天など太陽光Lがない場合は、バックアップ用のガスバーナー16で気体を加熱する。加熱室2及び拡張室3に循環される気体が窒素ガスなどの不活性ガスであるため、この気体が接する設備の金属を酸化させない。   When there is no sunlight L such as rainy weather, the gas is heated by the backup gas burner 16. Since the gas circulated through the heating chamber 2 and the expansion chamber 3 is an inert gas such as nitrogen gas, the metal of the equipment in contact with the gas is not oxidized.

尚、以上の説明では、内部の気体を加熱室2の下部空間2Bから拡張室3の下部空間3Bへ循環する例を示したが逆でも良い。   In the above description, the example in which the internal gas is circulated from the lower space 2B of the heating chamber 2 to the lower space 3B of the expansion chamber 3 may be reversed.

1 太陽熱マグネシウム還元炉
2 加熱室
2A 上部空間
2B 下部空間
3 拡張室
3A 上部空間
3B 下部空間
7 熱交換部材
8 遮蔽壁
10 レトルト
12 送風通路
16 ガスバーナー(加熱手段)
L 太陽光
H 高温空気
DESCRIPTION OF SYMBOLS 1 Solar magnesium reduction furnace 2 Heating chamber 2A Upper space 2B Lower space 3 Expansion chamber 3A Upper space 3B Lower space 7 Heat exchange member 8 Shielding wall 10 Retort 12 Air passage 16 Gas burner (heating means)
L Sunlight H Hot air

Claims (3)

下向きに集光した太陽光を受光する位置に加熱室を形成すると共に該加熱室に上下方向で通気可能な耐熱材料製の熱交換部材を設け、
加熱室の熱交換部材より下方空間の周囲を遮蔽壁により区画し、
加熱室の周囲に加熱室と上部空間同士が連通し且つ複数のレトルトが熱交換部材と同等又はそれよりも低い位置で水平に挿入される拡張室を形成し、
加熱室の下部空間と拡張室のレトルトよりも下部空間との間に気体を循環させる送風通路を設けたことを特徴とする太陽熱マグネシウム還元炉。
A heating chamber is formed at a position for receiving sunlight condensed downward, and a heat exchange member made of a heat-resistant material that can be ventilated in the vertical direction is provided in the heating chamber,
The space below the heat exchange member of the heating chamber is partitioned by a shielding wall,
Forming an expansion chamber in which the heating chamber and the upper space communicate with each other around the heating chamber and a plurality of retorts are inserted horizontally at a position equivalent to or lower than the heat exchange member,
The solar magnesium reduction furnace characterized by providing the ventilation path which circulates gas between the lower space of a heating chamber, and the lower space rather than the retort of an expansion chamber.
送風通路の途中にバックアップ用の加熱手段が設けられたことを特徴とする請求項1記載の太陽熱マグネシウム還元炉。    The solar heat magnesium reduction furnace according to claim 1, wherein a backup heating means is provided in the middle of the air passage. 循環される気体が不活性ガスであることを特徴とする請求項1又は請求項2記載の太陽熱マグネシウム還元炉。 The solar magnesium reduction furnace according to claim 1 or 2, wherein the circulated gas is an inert gas.
JP2013243579A 2013-11-26 2013-11-26 Solar heat magnesium reduction furnace Pending JP2015101765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013243579A JP2015101765A (en) 2013-11-26 2013-11-26 Solar heat magnesium reduction furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013243579A JP2015101765A (en) 2013-11-26 2013-11-26 Solar heat magnesium reduction furnace

Publications (1)

Publication Number Publication Date
JP2015101765A true JP2015101765A (en) 2015-06-04

Family

ID=53377734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013243579A Pending JP2015101765A (en) 2013-11-26 2013-11-26 Solar heat magnesium reduction furnace

Country Status (1)

Country Link
JP (1) JP2015101765A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017071837A (en) * 2015-10-08 2017-04-13 株式会社ニコン Reduction device, metal compound reduction method, and magnesium metal producing method
DE102021128851A1 (en) 2021-11-05 2023-05-11 Sms Group Gmbh Process and processing system for heating and further processing metal-containing products using solar thermal energy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017071837A (en) * 2015-10-08 2017-04-13 株式会社ニコン Reduction device, metal compound reduction method, and magnesium metal producing method
DE102021128851A1 (en) 2021-11-05 2023-05-11 Sms Group Gmbh Process and processing system for heating and further processing metal-containing products using solar thermal energy

Similar Documents

Publication Publication Date Title
US3543841A (en) Heat exchanger for high voltage electronic devices
CN214666101U (en) Lithium battery material sintering roller kiln with waste heat recovery function
KR102263866B1 (en) Thermoelectric generator using waste heat
JP2015101765A (en) Solar heat magnesium reduction furnace
KR101694979B1 (en) Thermoelectric generation apparatus with multi stage for waste heat
JP2014231917A (en) Solar heat magnesium reduction furnace
JP2015071162A (en) Method for disassembling photovoltaic module
CN104259153A (en) Furnace tube cleaning process
CN210831634U (en) Water-cooling explosion-proof lamp
CN107681925A (en) A kind of residual heat using device of two-stage thermo-electric generation
JP2017003154A (en) Solar heat magnesium reduction furnace
JP2013211471A (en) Thermoelectric power generating device
JP5417090B2 (en) Solar heat converter
JP6002623B2 (en) Thermoelectric conversion module
JP2021054697A (en) Manufacturing method of lithium nitride
KR102263860B1 (en) Thermoelectric generator using waste heat
KR20170099281A (en) Thermoelectric generation apparatus for camping
JP2011214784A (en) Thermoelectric generation unit using iron mill waste heat and thermoelectric generation method using the same
JP2010236747A (en) Method for recovery and utilization of cement kiln radiation heat
JP2016061485A (en) Powder heating type solar heat reduction furnace
RU2505890C2 (en) Method of using heat energy from surface of pyrometallurgical processing plant and thermoelectric device used therein
JP2016014511A (en) Transparent window for sunlight introduction
JP2008034700A (en) Heat treatment device
JP2016020761A (en) Solar heat magnesium reduction furnace
JP2016041836A (en) Solar heat magnesium reduction furnace