JP2001048504A - Production of lithium nitride - Google Patents

Production of lithium nitride

Info

Publication number
JP2001048504A
JP2001048504A JP11215547A JP21554799A JP2001048504A JP 2001048504 A JP2001048504 A JP 2001048504A JP 11215547 A JP11215547 A JP 11215547A JP 21554799 A JP21554799 A JP 21554799A JP 2001048504 A JP2001048504 A JP 2001048504A
Authority
JP
Japan
Prior art keywords
lithium
reaction
temperature
nitrogen
nitrogen gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11215547A
Other languages
Japanese (ja)
Inventor
Kazunori Kamoi
和徳 鴨居
Toru Arakawa
徹 荒川
Toshiichi Hayatsu
敏一 早津
Takashi Hasuo
任志 蓮尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Original Assignee
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co Ltd filed Critical Nippon Soda Co Ltd
Priority to JP11215547A priority Critical patent/JP2001048504A/en
Publication of JP2001048504A publication Critical patent/JP2001048504A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Secondary Cells (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a local runaway reaction from occurring, a dense lithium nitride layer from forming on the surface and the reaction from becoming unprogressive by carrying out the reaction of metallic lithium with nitrogen in an atmosphere of nitrogen gas while keeping temperatures of the lithium and the generated lithium nitride at the melting temperature of the lithium or below by cooling. SOLUTION: Metallic lithium is charged into an atmosphere of nitrogen gas such as a glove box without containing water and oxygen and a reaction of the metallic lithium with the nitrogen is started while ventilating nitrogen gas. Nitriding reaction progresses on the surface of the metallic lithium contacting the nitrogen while generating heat of -47 kcal/mol. The reaction velocity increases according to a temperature rise of the lithium by heat of the reaction and a temperature thereof further increases. The reaction is continued under cooling so that the temperatures of the lithium and the generated lithium nitride are preferably 80-120 deg.C when the temperatures thereof reach a certain constant value. The reaction is finally completed when the temperatures thereof become normal temperature. Methods of circulating and cooling the nitrogen gas, using cooled nitrogen and the like are preferred for cooling.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はリチウム二次電池用の固
体電解質等として利用価値の高いリチウムイオン導電性
の高純度窒化リチウム(Li3N)の製造法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing lithium ion conductive high-purity lithium nitride (Li 3 N) having high utility as a solid electrolyte for a lithium secondary battery.

【0002】[0002]

【従来の技術】電池用の固体電解質等として利用される
リチウムイオン導電性の窒化リチウムの製造方法として
は、水分或いは酸素のようなリチウムと反応しやすい不
純物を含まない高純度の窒素ガス中、あるいはアルゴン
等のリチウムと反応しない不活性ガスを混合した高純度
窒素ガス中で、金属リチウムを加熱して窒素と反応させ
る方法が一般的である。これを、その反応温度で分ける
と、リチウムの融点以上窒化リチウムの融点以下(18
0〜845℃)で反応させる方法と、リチウムの融点未
満から常温までの温度(<180℃)で反応させる方法
の二つに大別される。
2. Description of the Related Art As a method for producing lithium ion conductive lithium nitride used as a solid electrolyte for a battery, there is known a method of producing a high purity nitrogen gas which does not contain impurities which easily react with lithium such as moisture or oxygen. Alternatively, a method is generally employed in which metallic lithium is heated and reacted with nitrogen in a high-purity nitrogen gas mixed with an inert gas that does not react with lithium such as argon. When this is divided by the reaction temperature, it is higher than the melting point of lithium and lower than the melting point of lithium nitride (18
(0-845 ° C.) and a method of reacting at a temperature (<180 ° C.) from below the melting point of lithium to room temperature (<180 ° C.).

【0003】加熱して金属リチウムを溶融した後に窒素
ガスと反応させる方法では、反応速度が速くなり反応時
間は短縮される利点はあるものの、溶融リチウム中の窒
化リチウムは腐食性がとくに大きいため、反応容器には
タングステン、ニオブ、ルテニウム或いはタンタル等の
高価な金属を用いる必要があり、またスラリーからの窒
化リチウム分離法、発生する窒化リチウムミストのシー
ル方法等、構造的、操業的に複雑となり、工業的規模で
窒化リチウムを製造することは難しい。
[0003] The method of reacting with nitrogen gas after melting the metallic lithium by heating has the advantage of increasing the reaction rate and shortening the reaction time, but the lithium nitride in the molten lithium is particularly corrosive. It is necessary to use expensive metals such as tungsten, niobium, ruthenium or tantalum for the reaction vessel, and it is structurally and operationally complicated, such as a method for separating lithium nitride from slurry and a method for sealing lithium nitride mist generated. It is difficult to produce lithium nitride on an industrial scale.

【0004】これに対し、リチウムを融点以下の温度で
窒素ガスと反応させる場合には、リチウムを溶融した場
合と比べて反応速度は遅くなるが、金属リチウムをステ
ンレス等の通常の材質を用いた反応容器に入れて窒素と
反応させるだけですみ、反応後の窒化リチウムの取出し
も容易である等、構造的、操業的に非常に容易であり、
工業的規模で窒化リチウムを製造するのに適した方法と
考えられる。
On the other hand, when lithium is reacted with nitrogen gas at a temperature equal to or lower than the melting point, the reaction speed is slower than when lithium is melted. It is very easy in terms of structure and operation, such as simply putting it in a reaction vessel and reacting with nitrogen, and easy removal of lithium nitride after the reaction.
It is considered a suitable method for producing lithium nitride on an industrial scale.

【0005】例えば特開昭55−47211号に40m
m×14mm×12mmの金属リチウム塊の表面を研磨
紙で軽く磨いて加工歪みを与え、高純度窒素雰囲気下に
放置すれば、6時間で反応が完了し、発熱による容器の
破損はなく、加熱源や温度制御系は不要である旨記載さ
れている。
For example, Japanese Patent Application Laid-Open No. 55-47211 discloses a 40 m
The surface of a metal lithium lump of mx 14 mm x 12 mm is gently polished with abrasive paper to give processing strain, and if left in a high-purity nitrogen atmosphere, the reaction is completed in 6 hours, and there is no damage to the container due to heat generation, and heating is performed. No source or temperature control system is required.

【0006】しかし、窒化リチウムを数kg/B以上の
工業的規模で製造する場合、窒化リチウムの生成熱は−
47kcal/モルの発熱反応であるため、反応の進行
に伴って反応面の温度が上昇し、局部的に反応が急激に
進み暴走反応を起こしたり、或いは表面に緻密な窒化リ
チウム層が生成して逆に反応が進まなくなる等の現象を
起こし、定常的に安定した反応を進めることができなく
なる場合がある等の問題があった。
However, when producing lithium nitride on an industrial scale of several kg / B or more, the heat of formation of lithium nitride is-
Since the reaction is an exothermic reaction of 47 kcal / mol, the temperature of the reaction surface rises with the progress of the reaction, and the reaction rapidly proceeds locally to cause a runaway reaction, or a dense lithium nitride layer is formed on the surface. On the other hand, a phenomenon such that the reaction does not proceed occurs, and there is a problem that a stable reaction cannot be constantly performed.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、上記
のような従来技術の問題を解決し、固体電解質として利
用価値の高いリチウムイオン導電性窒化リチウムの工業
的製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art and to provide an industrial production method of lithium ion conductive lithium nitride which is highly useful as a solid electrolyte. is there.

【0008】[0008]

【課題を解決するための手段】本発明は、金属リチウム
と窒素とを窒素ガス雰囲気下、冷却によりリチウム及び
生成する窒化リチウムの温度をリチウムの溶融温度以下
に維持しながら反応させることを特徴とする窒化リチウ
ムの製造方法である。
The present invention is characterized in that metallic lithium and nitrogen are reacted in a nitrogen gas atmosphere while maintaining the temperature of lithium and lithium nitride produced by cooling below the melting temperature of lithium. Is a method for producing lithium nitride.

【0009】[0009]

【発明の実施の形態】窒化リチウムの製造に用いる金属
リチウムの形態はインゴット、テープ、リボン、ビー
ズ、その他市販されているいずれの形態でもよい。その
グレードも工業用、触媒用、電池用等のいずれのグレー
ドでもよい。またこれらの金属リチウムを窒素ガス雰囲
気中で窒素ガスと反応させるに当たり、反応開始方法は
リチウムの表面をヤスリ等で傷つける、リチウムに圧力
を加えて歪みを与える、或いはリチウム表面を局部的に
加熱する等、リチウムを溶融させずに通常行われる反応
開始方法のいずれを用いてもよい。
BEST MODE FOR CARRYING OUT THE INVENTION The form of metallic lithium used for producing lithium nitride may be an ingot, tape, ribbon, bead, or any other commercially available form. The grade may be any grade such as industrial grade, catalyst grade and battery grade. When reacting these metallic lithium with nitrogen gas in a nitrogen gas atmosphere, the reaction initiation method is to damage the surface of the lithium with a file or the like, to apply a pressure to the lithium to give a strain, or to locally heat the lithium surface. Any of the reaction initiation methods usually performed without melting lithium may be used.

【0010】金属リチウムをグローブボックス等の水分
や酸素を含まない窒素ガスの雰囲気中に入れ、窒素ガス
を通気しながら前記の方法で窒素との反応を開始させる
と、窒素と接する金属リチウム表面が−47kcal/
モルで発熱しながら窒化反応が進行する。反応で発生し
た熱は、一部は外部に放熱されるが、かなりの部分は金
属リチウムに伝わって、リチウム自身の温度を上昇させ
る。反応が進むにつれて反応部の温度が上昇し、温度上
昇とともに反応速度も増加するので、更に温度が上昇す
る。ある一定温度になったらリチウム及び生成する窒化
リチウムの温度が80〜120℃となるよう冷却しなが
ら反応を継続させる。反応が進行すると徐々に窒化リチ
ウムの温度が低下し、最終的に常温となって反応は終了
する。冷却方法は特に限定されないが、水分等を嫌う反
応であるので、窒素ガスを循環冷却しながら反応させ
る、冷却窒素を用いて反応させる、反応させるグローブ
ボックスの原料を乗せる棚段をボックス構造にし、その
中に冷却油を通して冷却する等の方法で冷却するのが好
ましい。
When metal lithium is placed in a nitrogen gas atmosphere containing no moisture or oxygen, such as a glove box, and the reaction with nitrogen is started by the above-described method while passing the nitrogen gas, the surface of the metal lithium in contact with nitrogen is reduced. -47 kcal /
The nitriding reaction proceeds while generating heat in moles. Part of the heat generated by the reaction is radiated to the outside, but a significant part is transmitted to the metallic lithium, raising the temperature of the lithium itself. As the reaction proceeds, the temperature of the reaction section rises, and the reaction rate also increases with the temperature rise, so that the temperature further rises. When the temperature reaches a certain temperature, the reaction is continued while cooling so that the temperature of lithium and the generated lithium nitride is 80 to 120 ° C. As the reaction proceeds, the temperature of the lithium nitride gradually decreases, and finally reaches room temperature, and the reaction ends. The cooling method is not particularly limited.Since the reaction is a reaction that dislikes moisture and the like, the reaction is performed while circulating and cooling the nitrogen gas, the reaction is performed using cooling nitrogen, and the shelf for loading the raw material of the glove box to be reacted is formed in a box structure. It is preferable to cool by a method such as cooling through cooling oil.

【0011】リチウムが窒化リチウムに変化すると約3
0%体積が収縮するが、適切な冷却を行うと窒化リチウ
ム内部に微少な亀裂が無数に発生し、この間を窒素ガス
が通って供給されるため反応が進行するが、冷却しない
場合は表面の窒化リチウムの微少な亀裂の間に溶融Li
が進出して窒化され、薄い緻密な窒化リチウム層が形成
され、窒素の拡散が抑制されるために反応速度が遅くな
るものと考えられる。このように、適切な冷却を行うこ
とにより、反応速度を調節するために不活性ガスを添加
する必要もなく、高純度窒素ガスを通気するだけで、反
応を制御しながら工業的に窒化リチウムを製造すること
が可能となる。
When lithium changes to lithium nitride, about 3
Although the volume shrinks by 0%, if the cooling is performed properly, countless minute cracks are generated inside the lithium nitride, and the reaction proceeds because nitrogen gas is supplied through this space. Molten Li during small cracks in lithium nitride
It is considered that nitrogen enters and is nitrided, a thin dense lithium nitride layer is formed, and diffusion of nitrogen is suppressed, so that the reaction rate is reduced. In this way, by performing appropriate cooling, there is no need to add an inert gas to adjust the reaction rate, and only by passing high-purity nitrogen gas, the lithium nitride can be industrially produced while controlling the reaction. It can be manufactured.

【0012】[0012]

【実施例】以下、具体的な実施例により説明する。The present invention will be described below with reference to specific examples.

【0013】実施例1 直径約100mmで厚さ約40mmの円柱形リチウムイ
ンゴット(約97g)にSUS保護管付きの熱電対先端
を差込み、高純度窒素ガス雰囲気にしたグローブボック
ス内に設置した。その後、リチウムインゴット表面を鋼
製のヤスリで傷つけた直後、保温した約4Lの円筒形S
US容器に素早く入れた。容器には常温の高純度窒素ガ
スを30L/minで流し、窒化による反応熱を除去で
きるようにした。反応によりインゴット温度が上昇し、
約1時間後には約110℃まで上昇し、約9時間後まで
90〜110℃間を上下したが、その後温度は徐々に低
下していき、約15時間後に常温に戻り反応は完結し
た。重量は約162gとなり、リチウムは全量窒化リチ
ウムに変化していた。
Example 1 A thermocouple tip with a SUS protective tube was inserted into a cylindrical lithium ingot (about 97 g) having a diameter of about 100 mm and a thickness of about 40 mm, and placed in a glove box in a high-purity nitrogen gas atmosphere. Immediately after the surface of the lithium ingot was scratched with a steel file, about 4 L of cylindrical S kept warm.
Quickly placed in US container. A normal-temperature high-purity nitrogen gas was flowed at 30 L / min into the vessel so that the heat of reaction due to nitriding could be removed. The reaction raises the ingot temperature,
After about 1 hour, the temperature rose to about 110 ° C., and fluctuated between 90 ° C. and 110 ° C. after about 9 hours. Thereafter, the temperature gradually decreased, and returned to room temperature after about 15 hours to complete the reaction. The weight was about 162 g, and all the lithium was changed to lithium nitride.

【0014】実施例2 実施例1と全く同様であるが、冷却用の高純度窒素ガス
を15L/minで流し、窒化による反応熱を除去でき
るようにした。反応によりインゴット温度が上昇し、約
30分後には約110℃まで上昇し、約9時間後まで9
0〜110℃間を上下したが、その後温度は徐々に低下
していき、約19時間後に常温に戻り反応は完結した。
重量は約162gとなり、リチウムは全量窒化リチウム
に変化していた。
Example 2 The procedure was the same as in Example 1, except that a high-purity nitrogen gas for cooling was supplied at a flow rate of 15 L / min to remove the heat of reaction caused by nitriding. The temperature of the ingot rises due to the reaction, rises to about 110 ° C. after about 30 minutes, and increases to about 9 hours.
Although the temperature fluctuated between 0 and 110 ° C., the temperature gradually decreased thereafter, and returned to room temperature after about 19 hours to complete the reaction.
The weight was about 162 g, and all the lithium was changed to lithium nitride.

【0015】比較例1 実施例1と同様のリチウムインゴットを、実施例1と同
様の条件で窒化反応を開始させた。約1時間後には反応
による発熱と表面からの放熱がバランスし100℃に落
ち着いたが、2時間後にブラスターで温度が160℃に
上昇するまでインゴット表面を一時的に加熱したとこ
ろ、その後温度は75〜80℃に低下して推移した。更
に5.5時間後に再度ブラスターで温度が140℃にな
るまで一時的にインゴット表面を加熱したところ、その
後温度は55〜60℃に低下して推移し、反応開始後元
の温度に戻るのに約23時間かかった。重量は約83g
となり、リチウムは全量窒化リチウムに変化していた。
Comparative Example 1 A nitriding reaction of the same lithium ingot as in Example 1 was started under the same conditions as in Example 1. After about 1 hour, the heat generated by the reaction and the heat radiation from the surface were balanced and settled at 100 ° C. After 2 hours, the ingot surface was temporarily heated with a blaster until the temperature rose to 160 ° C. The temperature decreased to 8080 ° C. After 5.5 hours, the surface of the ingot was temporarily heated again with a blaster until the temperature reached 140 ° C. After that, the temperature decreased to 55 to 60 ° C, and returned to the original temperature after the start of the reaction. It took about 23 hours. Weight is about 83g
And all of the lithium had changed to lithium nitride.

【0016】比較例2 実施例1と全く同様であるが、冷却用の高純度窒素ガス
を通さず、ただ反応用の窒素が自由に出入りできるよう
にしておいた。反応によりインゴット温度が上昇し、約
30分後には約110℃まで上昇し、約15時間後まで
90〜110℃間を上下したが、その後温度は徐々に低
下していき、約26時間後にやっと常温に戻り反応は完
結した。重量は約162gとなり、リチウムは全量窒化
リチウムに変化していた。
Comparative Example 2 The procedure was the same as in Example 1, except that high-purity nitrogen gas for cooling was not passed, and nitrogen for reaction was allowed to freely enter and exit. The temperature of the ingot increased due to the reaction, increased to about 110 ° C. after about 30 minutes, and fluctuated between 90 and 110 ° C. until about 15 hours, but then gradually decreased, and finally after about 26 hours. The temperature returned to room temperature and the reaction was completed. The weight was about 162 g, and all the lithium was changed to lithium nitride.

【0017】比較例3 幅17mmで厚さ0.57mmのテープ状金属リチウム
を乾燥空気中で切断して約30g切取り、SUS容器に
入れて、高純度窒素ガス雰囲気にしたグローブボックス
内に設置した。その後、リチウムテープ表面を鋼製のヤ
スリで傷つけて窒化反応を開始させ、テープを6重に巻
いてそのまま放置し、表面温度計でリチウム表面の温度
経過を測定した。反応により温度が上昇し始め、約15
分後には反応による発熱で400℃以上の温度に上昇し
て赤熱反応を生じ、反応は速やかに終了した。温度低下
後に重量を測定したところ約50gで、リチウムは全量
窒化リチウムに変化していた。なお、SUS容器は少し
腐食していた。
COMPARATIVE EXAMPLE 3 About 17 g of tape-shaped metallic lithium having a width of 17 mm and a thickness of 0.57 mm was cut in dry air, cut out in a SUS container, and placed in a glove box in a high-purity nitrogen gas atmosphere. . Thereafter, the surface of the lithium tape was scratched with a steel file to start a nitriding reaction. The tape was wound up six times and left as it was, and the temperature progress of the lithium surface was measured with a surface thermometer. The temperature started to rise due to the reaction,
After one minute, the temperature rose to 400 ° C. or higher due to the heat generated by the reaction, and a red-hot reaction occurred, and the reaction was terminated immediately. When the weight was measured after the temperature was lowered, the weight was about 50 g, and all the lithium was changed to lithium nitride. The SUS container was slightly corroded.

【0018】[0018]

【発明の効果】本発明の製造方法によると、反応速度を
調節するために不活性ガスを添加する必要もなく、ま
た、SUS等の通常の材質の反応容器で反応させること
ができるため、本発明は工業的に優れた製造方法であ
る。
According to the production method of the present invention, there is no need to add an inert gas to adjust the reaction rate, and the reaction can be carried out in a reaction vessel of a usual material such as SUS. The invention is an industrially superior production method.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 早津 敏一 新潟県中頸城郡中郷村大字藤沢950 日本 曹達株式会社二本木工場内 (72)発明者 蓮尾 任志 富山県高岡市向野300 日本曹達株式会社 高岡工場内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toshiichi Hayatsu 950, Fujisawa, Nakago-mura, Nakakubijo-gun, Niigata Japan Inside Nihongi Plant of Soda Co., Ltd. Inside the Takaoka factory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 金属リチウムと窒素とを窒素ガス雰囲気
下、冷却によりリチウム及び生成する窒化リチウムの温
度をリチウムの溶融温度以下に維持しながら反応させる
ことを特徴とする窒化リチウムの製造方法。
1. A method for producing lithium nitride, comprising reacting metallic lithium and nitrogen in a nitrogen gas atmosphere while maintaining the temperature of lithium and lithium nitride produced by cooling at or below the melting temperature of lithium.
【請求項2】 温度を80〜120℃に維持しながら反
応させることを特徴とする請求項1記載の製造方法。
2. The method according to claim 1, wherein the reaction is carried out while maintaining the temperature at 80 to 120 ° C.
JP11215547A 1999-07-29 1999-07-29 Production of lithium nitride Withdrawn JP2001048504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11215547A JP2001048504A (en) 1999-07-29 1999-07-29 Production of lithium nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11215547A JP2001048504A (en) 1999-07-29 1999-07-29 Production of lithium nitride

Publications (1)

Publication Number Publication Date
JP2001048504A true JP2001048504A (en) 2001-02-20

Family

ID=16674248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11215547A Withdrawn JP2001048504A (en) 1999-07-29 1999-07-29 Production of lithium nitride

Country Status (1)

Country Link
JP (1) JP2001048504A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009096707A (en) * 2007-09-28 2009-05-07 Toyota Motor Corp Method for generating hydrogen, method for producing hydrogen-generating material, hydrogen production apparatus, and fuel cell system
JP2012087404A (en) * 2010-09-23 2012-05-10 Semiconductor Energy Lab Co Ltd Method for recovering metallic lithium
JP2014201511A (en) * 2013-04-09 2014-10-27 古河機械金属株式会社 Method of producing lithium nitride
JP2019055886A (en) * 2017-09-20 2019-04-11 太平洋セメント株式会社 Method of manufacturing lithium nitride
CN111519075A (en) * 2020-03-30 2020-08-11 维达力实业(深圳)有限公司 Lithium composite material, lithium composite target material, and preparation method and application thereof
KR20200118689A (en) * 2019-04-08 2020-10-16 주식회사 엘지화학 Boron-Substituted Aluminum Nitride Powder and Method of Preparing the Same
CN112054181A (en) * 2020-09-28 2020-12-08 珠海冠宇电池股份有限公司 Lithium supplement agent and application thereof
JP2021054697A (en) * 2019-10-02 2021-04-08 古河機械金属株式会社 Manufacturing method of lithium nitride
WO2021065309A1 (en) 2019-10-02 2021-04-08 古河機械金属株式会社 Method for producing lithium nitride
WO2021210314A1 (en) 2020-04-16 2021-10-21 古河機械金属株式会社 Lithium nitride manufacturing device and lithium nitride manufacturing method
CN113526474A (en) * 2020-12-31 2021-10-22 深圳市研一新材料有限责任公司 Lithium nitride particles, and method and apparatus for producing same

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009096707A (en) * 2007-09-28 2009-05-07 Toyota Motor Corp Method for generating hydrogen, method for producing hydrogen-generating material, hydrogen production apparatus, and fuel cell system
JP4512151B2 (en) * 2007-09-28 2010-07-28 トヨタ自動車株式会社 Hydrogen generating method, method for producing hydrogen generating material, hydrogen producing apparatus, and fuel cell system
JP2012087404A (en) * 2010-09-23 2012-05-10 Semiconductor Energy Lab Co Ltd Method for recovering metallic lithium
US9085813B2 (en) 2010-09-23 2015-07-21 Semiconductor Energy Laboratory Co., Ltd. Method for recovering metallic lithium
JP2014201511A (en) * 2013-04-09 2014-10-27 古河機械金属株式会社 Method of producing lithium nitride
JP2019055886A (en) * 2017-09-20 2019-04-11 太平洋セメント株式会社 Method of manufacturing lithium nitride
KR102500847B1 (en) 2019-04-08 2023-02-15 주식회사 엘지화학 Boron-Substituted Aluminum Nitride Powder and Method of Preparing the Same
KR20200118689A (en) * 2019-04-08 2020-10-16 주식회사 엘지화학 Boron-Substituted Aluminum Nitride Powder and Method of Preparing the Same
WO2021065309A1 (en) 2019-10-02 2021-04-08 古河機械金属株式会社 Method for producing lithium nitride
KR20220062048A (en) 2019-10-02 2022-05-13 후루카와 기카이 긴조쿠 가부시키가이샤 Manufacturing method of lithium nitride
JP7358173B2 (en) 2019-10-02 2023-10-10 古河機械金属株式会社 Manufacturing method of lithium nitride
JPWO2021065309A1 (en) * 2019-10-02 2021-04-08
JP2021054697A (en) * 2019-10-02 2021-04-08 古河機械金属株式会社 Manufacturing method of lithium nitride
JP7293378B2 (en) 2019-10-02 2023-06-19 古河機械金属株式会社 Method for producing lithium nitride
EP4039641A4 (en) * 2019-10-02 2022-12-07 Furukawa Co., Ltd. Method for producing lithium nitride
CN111519075B (en) * 2020-03-30 2021-09-14 维达力实业(深圳)有限公司 Lithium composite material, lithium composite target material, and preparation method and application thereof
CN111519075A (en) * 2020-03-30 2020-08-11 维达力实业(深圳)有限公司 Lithium composite material, lithium composite target material, and preparation method and application thereof
KR20220154170A (en) 2020-04-16 2022-11-21 후루카와 기카이 긴조쿠 가부시키가이샤 Lithium nitride manufacturing device and lithium nitride manufacturing method
WO2021210314A1 (en) 2020-04-16 2021-10-21 古河機械金属株式会社 Lithium nitride manufacturing device and lithium nitride manufacturing method
JP7467606B2 (en) 2020-04-16 2024-04-15 古河機械金属株式会社 Lithium nitride manufacturing apparatus and method for manufacturing lithium nitride
CN112054181A (en) * 2020-09-28 2020-12-08 珠海冠宇电池股份有限公司 Lithium supplement agent and application thereof
CN113526474A (en) * 2020-12-31 2021-10-22 深圳市研一新材料有限责任公司 Lithium nitride particles, and method and apparatus for producing same

Similar Documents

Publication Publication Date Title
JP2001048504A (en) Production of lithium nitride
US4676968A (en) Melt consolidation of silicon powder
WO1998016466A1 (en) Process and apparatus for preparing polycrystalline silicon and process for preparing silicon substrate for solar cell
US4752463A (en) Method of producing hydrogen and material used therefor
JP4788925B2 (en) Method for purifying metallic silicon
US3715205A (en) Method for reducing chlorides and a device therefor
JP7273323B2 (en) Manufacturing method of tungsten hexafluoride
JPH05262512A (en) Purification of silicon
US1940619A (en) Processing magnesium
JP2002003209A (en) Method for producing lithium nitride
CN110273075A (en) The method for preparing high-silicon aluminium-silicon alloy using metal alum recovery crystalline silicon cutting waste material
JP4378820B2 (en) Aluminum purification method and its use
JP2538044B2 (en) Metal silicon decarburizing lance and decarburizing method
JP5084144B2 (en) Manufacturing method of high purity silicon
US5651952A (en) Process for the production of litharge (PbO)
US2450266A (en) Method of producing lithium hydride and hydrides of other alkali metals
JP2008007395A (en) Process for production of polycrystalline silicon
JP2001038196A (en) Exchanging method of catalyst
JPS61232295A (en) Production of silicon crystal semiconductor
JPS57188632A (en) Manufacture of metal ti
WO1995010482A9 (en) PROCESS AND APPARATUS FOR THE PRODUCTION OF LITHARGE (PbO)
JPS6256310A (en) Production of aluminum nitride
JP6028702B2 (en) Method for producing silicon oxide
US2865738A (en) Process of preparation of titanium
JPH059498B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060628

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070522