JP2019055886A - Method of manufacturing lithium nitride - Google Patents

Method of manufacturing lithium nitride Download PDF

Info

Publication number
JP2019055886A
JP2019055886A JP2017179864A JP2017179864A JP2019055886A JP 2019055886 A JP2019055886 A JP 2019055886A JP 2017179864 A JP2017179864 A JP 2017179864A JP 2017179864 A JP2017179864 A JP 2017179864A JP 2019055886 A JP2019055886 A JP 2019055886A
Authority
JP
Japan
Prior art keywords
lithium
sieve
metallic lithium
lithium nitride
nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017179864A
Other languages
Japanese (ja)
Inventor
将治 鈴木
Masaharu Suzuki
将治 鈴木
松井 克己
Katsumi Matsui
克己 松井
増田 賢太
Kenta Masuda
賢太 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2017179864A priority Critical patent/JP2019055886A/en
Publication of JP2019055886A publication Critical patent/JP2019055886A/en
Pending legal-status Critical Current

Links

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide a method of manufacturing by a simple means high purity lithium nitride without remaining metallic lithium of a raw material.SOLUTION: The method of manufacturing lithium nitride is characterized by the metallic lithium being placed in a nitrogen gas atmosphere, the lithium nitride formed on a surface of a reactant during nitridation reaction of the metallic lithium being separated from unreacted metallic lithium inside by applying physical impact onto the reactant, and separated lithium nitride being recovered.SELECTED DRAWING: None

Description

本発明は、窒化リチウムの製造方法に関する。   The present invention relates to a method for producing lithium nitride.

窒化リチウムは、固体電解質やリチウム電池の負極材の原料として有用である。
窒化リチウムは、金属リチウムを出発原料とし窒素雰囲気にて常温で製造することができ、特許文献1では金属リチウムの表面に研磨紙等で加工歪をつけることで窒素との反応性を向上させたり、特許文献2では、金属リチウムを窒素雰囲気下で切断することで加工歪を加えつつ粒状の窒化リチウムを製造する方法が提案されている。そのほか、特許文献3および特許文献4では、金属リチウムから窒化リチウムへの発熱反応を抑えるため、金属リチウムの融点以下に維持させながら窒化させる方法が提供されている。
Lithium nitride is useful as a raw material for the negative electrode material of a solid electrolyte or a lithium battery.
Lithium nitride can be produced at room temperature in a nitrogen atmosphere using metallic lithium as a starting material. In Patent Document 1, reactivity with nitrogen can be improved by applying processing strain to the surface of metallic lithium with abrasive paper or the like. Patent Document 2 proposes a method for producing granular lithium nitride while cutting metal lithium in a nitrogen atmosphere while applying processing strain. In addition, Patent Literature 3 and Patent Literature 4 provide a method of nitriding while maintaining the melting point of metallic lithium or lower in order to suppress the exothermic reaction from metallic lithium to lithium nitride.

特開昭55−47211号公報JP 55-47211 A 特開2001−328803号公報JP 2001-328803 A 特開2001−48504号公報JP 2001-48504 A 特開2002−3209号公報JP 2002-3209 A

しかし、これらいずれの製造方法においても、その窒化反応は金属リチウムの表面から進行し、金属リチウム内部(深部)まで窒化反応が進行したかを確認することが難しく、採取した窒化リチウム中に金属リチウムが残る問題があった。
従って、本発明の課題は、原料の金属リチウムが残存しない高純度窒化リチウムを簡便な手段で製造する方法を提供することにある。
However, in any of these manufacturing methods, the nitriding reaction proceeds from the surface of the metallic lithium, and it is difficult to confirm whether the nitriding reaction has proceeded to the inside (deep part) of the metallic lithium. There was a problem that remained.
Accordingly, an object of the present invention is to provide a method for producing high-purity lithium nitride in which raw material metallic lithium does not remain by simple means.

そこで本発明者は、金属リチウムの窒化反応の進行状況について検討してきたところ、金属リチウムの窒化反応は表面から進行し、窒化された窒化リチウムは延性がなくなり、金属リチウムの表面で体積収縮がおき、ひずみや引っ張りにより亀裂が発生することを見出した。そこで、本発明者は、この表面に窒化リチウムが生成した反応物に物理衝撃を与えれば、反応物表面から窒化リチウムが容易に剥離し、これを回収すれば、残存した内部の金属リチウムは更に窒化反応が進行するため、金属リチウムの窒化反応は最後まで進行することを見出し、本発明を完成した。   Therefore, the present inventor has examined the progress of the nitriding reaction of metallic lithium, and the nitriding reaction of metallic lithium proceeds from the surface, and the nitrided lithium nitride loses its ductility and the volume shrinkage occurs on the surface of the metallic lithium. It was found that cracks occur due to strain and tension. Therefore, if the present inventors give a physical impact to the reaction product in which lithium nitride is formed on this surface, the lithium nitride easily peels off from the reaction material surface, and if this is recovered, the remaining internal metal lithium further increases. Since the nitriding reaction proceeds, it was found that the nitriding reaction of metallic lithium proceeds to the end, and the present invention was completed.

すなわち、本発明は、次の〔1〕〜〔3〕を提供するものである。   That is, the present invention provides the following [1] to [3].

〔1〕金属リチウムを窒素ガス雰囲気中に置き、金属リチウムの窒化反応中に反応物に物理衝撃を付与して反応物表面に生成した窒化リチウムを内部の未反応の金属リチウムから剥離させ、剥離した窒化リチウムを回収することを特徴とする窒化リチウムの製造方法。
〔2〕金属リチウムと窒素ガスとの反応をふるい付き振とう機上又は網付き回転容器内で行い、ふるいの下部又は回転容器外で剥離した窒化リチウムを回収する〔1〕記載の製造方法。
〔3〕ふるい付き振とう機上又は網付き回転容器内に、衝撃付与媒体を置く〔2〕記載の製造方法。
[1] Placing metallic lithium in a nitrogen gas atmosphere, applying a physical impact to the reactant during the nitridation reaction of metallic lithium, peeling off the lithium nitride formed on the surface of the reactant from unreacted metallic lithium inside, and peeling A method for producing lithium nitride, comprising recovering lithium nitride that has been removed.
[2] The production method according to [1], wherein the reaction between metallic lithium and nitrogen gas is carried out on a shaker with a sieve or in a rotating container with a mesh, and lithium nitride peeled off the lower part of the sieve or outside the rotating container is recovered.
[3] The production method according to [2], wherein an impact applying medium is placed on a shaker with a sieve or in a rotating container with a net.

本発明方法によれば、金属リチウムの窒化反応の進行中に物理衝撃により反応物表面から剥離した窒化リチウムのみを回収できるので、残存した反応物(金属リチウム)は更に窒化反応が進行し、より短時間で全量窒化リチウムに変換することができる。   According to the method of the present invention, only the lithium nitride peeled off from the surface of the reaction product due to physical impact during the progress of the nitridation reaction of metallic lithium can be recovered, so that the remaining reactant (metallic lithium) further undergoes the nitriding reaction, and more The entire amount can be converted into lithium nitride in a short time.

ふるい付き振とう機を用いて反応を行う態様を示す図である。It is a figure which shows the aspect which reacts using a shaker with a sieve. 網付き回転容器を用いて反応を行う態様を示す図である。It is a figure which shows the aspect which reacts using a rotation container with a net | network.

本発明の窒化リチウムの製造方法は、金属リチウムを窒素ガス雰囲気中に置き、金属リチウムの窒化反応中に反応物に物理衝撃を付与して反応物表面に生成した窒化リチウムを内部の未反応の金属リチウムから剥離させ、剥離した窒化リチウムを回収することを特徴とする。   In the method for producing lithium nitride of the present invention, metallic lithium is placed in a nitrogen gas atmosphere, and physical impact is applied to the reactant during the nitridation reaction of metallic lithium. It is made to peel from metallic lithium and collect | recovers the peeled lithium nitride.

用いる原料の金属リチウムとしては、塊状、箔状、ロッド状等いずれの形態のものも用いることができる。   As the material lithium metal used, any form such as a lump shape, a foil shape, and a rod shape can be used.

本発明の製造方法、すなわち窒化反応及び窒化リチウム回収工程のいずれも窒素ガス雰囲気中で行うのが好ましい。金属リチウムは窒素ガス雰囲気中で容易に窒化反応が起こり、また窒化リチウムを剥離して残存した未反応の金属リチウムは窒素ガスによりさらに表面から窒化反応が進行し、最後まで窒化リチウムになるからである。
ここで、窒素ガス雰囲気中とは、窒素ガス濃度が99%以上の雰囲気であればよく、通常反応容器内や反応容器を設置する装置内を窒素ガスで充満させればよい。なお、窒素ガス雰囲気中の酸素濃度や水分濃度は低い方が好ましく、例えば、酸素濃度および水分濃度ともに0.1%以下が好ましい。
Both the production method of the present invention, that is, the nitriding reaction and the lithium nitride recovery step are preferably performed in a nitrogen gas atmosphere. Metallic lithium easily undergoes a nitriding reaction in a nitrogen gas atmosphere, and the unreacted metallic lithium remaining after peeling off the lithium nitride proceeds further from the surface by the nitrogen gas and becomes lithium nitride until the end. is there.
Here, the nitrogen gas atmosphere may be an atmosphere having a nitrogen gas concentration of 99% or more, and the reaction vessel or the apparatus in which the reaction vessel is usually installed may be filled with nitrogen gas. The oxygen concentration and water concentration in the nitrogen gas atmosphere are preferably low. For example, both the oxygen concentration and the water concentration are preferably 0.1% or less.

本発明において、金属リチウムの窒化反応中に反応物に物理衝撃を付与して反応物表面に生成した窒化リチウムを内部の未反応の金属リチウムから剥離させ、剥離した窒化リチウムを回収する。
物理衝撃は、ボールなどの衝撃付与媒体を反応容器上に置いたり、金属リチウムを反応容器内に入れ、反応容器を振動や回転などにより動かして、金属リチウムに付与することができる。これにより、金属リチウムと窒素ガスとの反応により生成した窒化リチウムを金属リチウムから剥離(粉末化)することができる。
反応に使用する装置は、振動や回転を与えることができればよい。例えば、反応容器を振動する装置としては、ふるい付き振動装置(図1)、反応容器を回転させる装置としては、ボールミルなどのような筒状の粉砕容器の面(例えば容器の筒側面)の一部又は全部が網となっている網付き回転容器(図2)を用いることもできる。
剥離(粉末化)した窒化リチウムは、金属リチウム、ボールなどの衝撃付与媒体を分離することで回収できる。回収する手段としては、例えば、金属リチウムと窒素ガスとの反応をふるい付き振とう機上で行い、ふるいの下部に剥離した窒化リチウムを回収する手段が挙げられる(図1)。また、金属リチウムと窒素ガスの反応をボールを装填した網付き回転容器内で行い、網を通過して回転容器から出てきた窒化リチウムを回収する手段が挙げられる(図2)。
すなわち、金属リチウムと窒素ガスとの反応をふるい振とう機の上又は網付き回転装置内で行えば、ふるい機の振とう(振動による物理衝撃)や回転容器の回転(回転による物理衝撃)により生成した窒化リチウムが金属リチウムから剥離(粉末化)し、剥離した窒化リチウムだけがふるい下に落ちたり、回転容器の網を通過することにより、高純度窒化リチウムが回収できる。
In the present invention, a physical impact is applied to the reactant during the nitridation reaction of metallic lithium, and the lithium nitride generated on the surface of the reactant is separated from the unreacted metallic lithium inside, and the separated lithium nitride is recovered.
Physical impact can be imparted to metallic lithium by placing an impact imparting medium such as a ball on the reaction vessel or placing metallic lithium in the reaction vessel and moving the reaction vessel by vibration or rotation. Thereby, the lithium nitride produced | generated by reaction with metallic lithium and nitrogen gas can be peeled (pulverized) from metallic lithium.
The apparatus used for reaction should just be able to give vibration and rotation. For example, as a device for vibrating the reaction vessel, a vibrating device with a sieve (FIG. 1), and as a device for rotating the reaction vessel, a surface of a cylindrical crushing container such as a ball mill (for example, a cylinder side surface of the container) is used. It is also possible to use a rotating container with a net (FIG. 2) in which a part or the whole is a net.
The peeled (powdered) lithium nitride can be recovered by separating the impact imparting medium such as metallic lithium and balls. As a means for recovering, for example, a reaction between metallic lithium and nitrogen gas is performed on a shaker with a sieve, and the lithium nitride peeled off at the lower part of the sieve is recovered (FIG. 1). Further, there is a means for performing a reaction between metallic lithium and nitrogen gas in a mesh-equipped rotating container loaded with balls, and recovering lithium nitride that has passed through the net and exited from the rotating container (FIG. 2).
In other words, if the reaction between metallic lithium and nitrogen gas is carried out on a sieve shaker or in a rotating device with a mesh, the shaker shakes (physical impact due to vibration) or the rotation of the rotating container (physical impact due to rotation). The produced lithium nitride is peeled off (pulverized) from the metal lithium, and only the peeled lithium nitride falls under the sieve or passes through the mesh of the rotating container, whereby high purity lithium nitride can be recovered.

金属リチウムが、塊状やロッド状などのようにふるい上で互いの衝突による衝撃が得られる場合は、振動だけでもよい。窒化反応が進み、小さくなると、衝撃が小さくなり、窒化リチウムの剥離が少なくなるため、ボールなどの衝撃付与媒体を加えることが好ましい。
金属リチウムが、箔状やフィルム状の場合は、ふるい上で互いの衝突による衝撃が少ないので、ボールなどの衝撃付与媒体を加えることが必要である。
ボールなどの衝撃付与媒体は、振動により動くものであって、窒化リチウムに不純物として混入しないように衝撃により削れたりしないSUS製やアルミナなどのセラミック製のものが好ましい。
ふるいや回転容器の網の目開きの大きさは、ふるい上又は回転容器内に金属リチウムとボールなどの衝撃付与媒体、ふるい下又は回転容器外に窒化リチウムを分離できれば、特に限定はしない。
When metallic lithium is shocked by collision with each other on a sieve such as a lump or rod, vibration alone may be used. As the nitriding reaction proceeds and becomes smaller, the impact becomes smaller and the lithium nitride is less peeled. Therefore, it is preferable to add an impact applying medium such as a ball.
When the metallic lithium is in the form of a foil or film, it is necessary to add an impact-imparting medium such as a ball because there is little impact from mutual collision on the sieve.
The impact imparting medium such as a ball is one that moves by vibration and is preferably made of a ceramic such as SUS or alumina that is not scraped by impact so as not to be mixed as an impurity in lithium nitride.
The size of the sieve or the mesh of the rotating container is not particularly limited as long as the metal nitride and the impact imparting medium such as a ball can be separated on the sieve or in the rotating container, and lithium nitride can be separated under the sieve or outside the rotating container.

なお、ふるいの下もしくは網付き回転容器の下には受け皿を設置しておくのが好ましい。ふるい付き振とう機の上又は網付き回転容器内に原料がなくなった時点で反応を終了すればよい。   In addition, it is preferable to install a saucer under the sieve or the rotating container with a net. What is necessary is just to complete | finish reaction, when a raw material runs out on a shaker with a sieve or in a rotation container with a net | network.

次に実施例を挙げて本発明を更に詳細に説明する。   EXAMPLES Next, an Example is given and this invention is demonstrated still in detail.

実施例1
窒素雰囲気のグローブボックス内の自動ふるい振とう器に目開きの大きさが150μmふるいと受け皿をセットする。150μmふるい上にSUS製ボールおよび箔状金属リチウム(2g)を置き、12時間振とうさせた。振とう後、ふるい下より1.2gの生成物を回収した。生成物をXRDを用いて鉱物相を同定したところ、Li3N単相品であった。また、LECO社製酸素窒素分析装置を用いて窒素濃度を測定したところ、40.5%であった。
Example 1
Place a tray with a sieve opening of 150 μm on an automatic sieve shaker in a nitrogen atmosphere glove box. A SUS ball and foil-like metal lithium (2 g) were placed on a 150 μm sieve and shaken for 12 hours. After shaking, 1.2 g of product was recovered from below the sieve. When the mineral phase was identified using XRD for the product, it was a Li 3 N single-phase product. Further, the nitrogen concentration was measured by using an oxygen / nitrogen analyzer manufactured by LECO, and it was 40.5%.

実施例2
窒素雰囲気グローブボックス内の超音波式自動ふるい分け器に目開きの大きさが150μmふるいと受け皿をセットする。150μmふるい上にSUS製ボールおよび箔状の金属リチウム(2g)を置き、12時間振とうさせた。振とう後、ふるい下より1.0gの生成物を回収した。生成物をXRDを用いて鉱物相を同定したところ、Li3N単相品であった。また、LECO社製酸素窒素分析装置を用いて窒素濃度を測定したところ、40.4%であった。
Example 2
Place a tray with a sieve opening of 150 μm in an ultrasonic automatic sieve in a nitrogen atmosphere glove box. A SUS ball and foil-like metallic lithium (2 g) were placed on a 150 μm sieve and shaken for 12 hours. After shaking, 1.0 g of product was recovered from below the sieve. When the mineral phase was identified using XRD for the product, it was a Li 3 N single-phase product. Further, the nitrogen concentration was measured by using an oxygen / nitrogen analyzer manufactured by LECO, and it was 40.4%.

実施例3
窒素雰囲気のグローブボックス内の自動ふるい振とう器に目開きの大きさが150μmふるいと受け皿をセットする。150μmふるい上にSUS製ボールおよび箔状の金属リチウム(2g)を置き、24時間振とうさせた。振とう後、ふるい下より3.1gの生成物を回収した。生成物をXRDを用いて鉱物相を同定したところ、Li3N単相品であった。また、LECO社製酸素窒素分析装置を用いて窒素濃度を測定したところ、40.5%であった。
Example 3
Place a tray with a sieve opening of 150 μm on an automatic sieve shaker in a nitrogen atmosphere glove box. A SUS ball and foil-like metallic lithium (2 g) were placed on a 150 μm sieve and shaken for 24 hours. After shaking, 3.1 g of product was recovered from below the sieve. When the mineral phase was identified using XRD for the product, it was a Li 3 N single-phase product. Further, the nitrogen concentration was measured by using an oxygen / nitrogen analyzer manufactured by LECO, and it was 40.5%.

比較例1
窒素雰囲気グローブボックス内のバットに箔状の金属リチウム(2g)を入れ、12時間窒化した。窒化後、生成物の形状は元の金属リチウムの形状を保持していた。生成物を回収し確認したところ、深部に金属リチウムが残っていて、LiN単相品を得ることはできなかったため、生成物の窒素濃度の測定は行わなかった。
Comparative Example 1
Foil-like lithium metal (2 g) was placed in a vat in a nitrogen atmosphere glove box and nitrided for 12 hours. After nitriding, the product shape retained the original metallic lithium shape. When the product was collected and confirmed, metallic lithium remained in the deep part and a Li 3 N single-phase product could not be obtained, so the nitrogen concentration of the product was not measured.

比較例2
窒素雰囲気グローブボックス内に目開きの大きさが150μmふるいと受け皿を入れ、150μmふるい上に箔状の金属リチウム(2g)を置き、12時間窒化させた。窒化後、ふるい下より0.05gの生成物を回収した。生成物をXRDを用いて鉱物相を同定したところ、Li3N単相品であった、また、LECO社製酸素窒素分析装置を用いて酸素濃度および窒素濃度を測定したところ、40.6%であった。
Comparative Example 2
In a nitrogen atmosphere glove box, a sieve having a sieve opening size of 150 μm was placed, and a metal foil (2 g) in the form of foil was placed on the 150 μm sieve and nitrided for 12 hours. After nitriding, 0.05 g of product was recovered from under the sieve. The product was identified as a mineral phase using XRD, and was a Li 3 N single-phase product. When oxygen concentration and nitrogen concentration were measured using an oxygen-nitrogen analyzer manufactured by LECO, 40.6% Met.

実施例1〜3および比較例1、2の結果を表1に示す。   The results of Examples 1 to 3 and Comparative Examples 1 and 2 are shown in Table 1.

Claims (3)

金属リチウムを窒素ガス雰囲気中に置き、金属リチウムの窒化反応中に反応物に物理衝撃を付与して反応物表面に生成した窒化リチウムを内部の未反応の金属リチウムから剥離させ、剥離した窒化リチウムを回収することを特徴とする窒化リチウムの製造方法。   Lithium nitride was peeled off by placing the metallic lithium in a nitrogen gas atmosphere and applying a physical impact to the reactant during the nitriding reaction of metallic lithium to peel off the lithium nitride formed on the surface of the reactant from unreacted metallic lithium inside. A method for producing lithium nitride, comprising collecting 金属リチウムと窒素ガスとの反応をふるい付き振とう機上又は網付き回転容器内で行い、ふるいの下部又は回転容器外で剥離した窒化リチウムを回収する請求項1記載の製造方法。   The production method according to claim 1, wherein the reaction between metallic lithium and nitrogen gas is carried out on a shaker with a sieve or in a rotary container with a mesh, and lithium nitride peeled off at the lower part of the sieve or outside the rotary container is recovered. ふるい付き振とう機上又は網付き回転容器内に、衝撃付与媒体を置く請求項2記載の製造方法。   The production method according to claim 2, wherein the impact imparting medium is placed on a shaker with a sieve or in a rotating container with a net.
JP2017179864A 2017-09-20 2017-09-20 Method of manufacturing lithium nitride Pending JP2019055886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017179864A JP2019055886A (en) 2017-09-20 2017-09-20 Method of manufacturing lithium nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017179864A JP2019055886A (en) 2017-09-20 2017-09-20 Method of manufacturing lithium nitride

Publications (1)

Publication Number Publication Date
JP2019055886A true JP2019055886A (en) 2019-04-11

Family

ID=66107013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017179864A Pending JP2019055886A (en) 2017-09-20 2017-09-20 Method of manufacturing lithium nitride

Country Status (1)

Country Link
JP (1) JP2019055886A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001048504A (en) * 1999-07-29 2001-02-20 Nippon Soda Co Ltd Production of lithium nitride
JP2013121887A (en) * 2011-12-09 2013-06-20 Mitsubishi Chemicals Corp Method of producing metal nitride, and method of producing nitride phosphor using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001048504A (en) * 1999-07-29 2001-02-20 Nippon Soda Co Ltd Production of lithium nitride
JP2013121887A (en) * 2011-12-09 2013-06-20 Mitsubishi Chemicals Corp Method of producing metal nitride, and method of producing nitride phosphor using the same

Similar Documents

Publication Publication Date Title
WO2015190004A1 (en) Method for producing sodium borohydride
JP2013108165A (en) Method for manufacturing titanium powder with low oxygen concentration
JP2015140480A (en) Method for manufacturing nickel powder
JP2019026916A (en) Method for recovering lithium from lithium ion secondary battery scrap
JP6644314B2 (en) Lithium extraction method
EP3845492A1 (en) Method for producing lithium carbonate
JP2015074567A (en) Method for producing lithium sulfide
US20230014886A1 (en) Hexagonal boron nitride powder and method for producing the same
JP2019055886A (en) Method of manufacturing lithium nitride
CN102329970B (en) Method for producing ferrotungsten with tungsten carbide obtained by tungsten-containing waste processing as raw material
JP2014199776A (en) Method for separating and collecting current collector and positive electrode active material from positive electrode material for lithium ion batteries
EP0161975B1 (en) Process for producing porous products of boron or boron compounds
US20220281742A1 (en) Sodium borohydride production method
RU2010154306A (en) METHOD OF CONTROL PROCESS OF TRANSFORMATION
JPH09165212A (en) Production of silicone raw material powder for solar cell and silicone ingot for solar cell
CN104925847B (en) A kind of crystallization preparation method of high-purity copper chloride dihydrate
CN210965245U (en) Tungsten ore crushing and screening device
JP2015040163A (en) Method of producing lithium hexafluorophosphate
JP2011144072A (en) Method for producing refined silicon
Zoz et al. Mechanical alloying of Ti-24Al-11Nb (at%) using the Simoloyer
WO2005098062A1 (en) Waste-free hydrometallurgical extraction of magnesium and other metals from rock formations of varying olivine content
JP2002173718A (en) Aluminum treatment method
JP2019052350A (en) Metal titanium manufacturing device and method
JPH0533070A (en) Method for removing impurity in metal silicon powder
JP7318539B2 (en) Method for producing nickel chloride solution and method for producing nickel sulfide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210615