JP2002173718A - Aluminum treatment method - Google Patents

Aluminum treatment method

Info

Publication number
JP2002173718A
JP2002173718A JP2000371361A JP2000371361A JP2002173718A JP 2002173718 A JP2002173718 A JP 2002173718A JP 2000371361 A JP2000371361 A JP 2000371361A JP 2000371361 A JP2000371361 A JP 2000371361A JP 2002173718 A JP2002173718 A JP 2002173718A
Authority
JP
Japan
Prior art keywords
aluminum
mass
mass ppm
ppm
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000371361A
Other languages
Japanese (ja)
Other versions
JP3458840B2 (en
Inventor
Shinichiro Uragami
晨一郎 浦上
Okanori Sato
丘憲 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2000371361A priority Critical patent/JP3458840B2/en
Publication of JP2002173718A publication Critical patent/JP2002173718A/en
Application granted granted Critical
Publication of JP3458840B2 publication Critical patent/JP3458840B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a high purity aluminum alloy in which Ti, V and Zr as impurities in the molten metal of aluminum are reduced as much as possible by effectively using their reaction with B prior to segregation refining, and which is usable for an electrolytic capacitor and a magnetic disk. SOLUTION: B in an amount higher by 100 to 200 mass ppm than the total chemical equivalent calculated as TiB2, VB2 and ZrB2 is added to the molten metal of aluminum or an aluminum alloy containing Ti, V and Zr as impurities to remove Ti, V and Zr as TiB2, VB2 and ZrB2. After that, Ti and/or V chemically equivalent to the amount of B removed by the reaction is added thereto, and unreacted B is removed as TiB2 and/or VB2 to reduce Ti, V and Zr. Thereafter, segregation refining is performed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電解コンデンサ用、磁
気ディスク用に代表されるTi、V、Zrの含有量を低
濃度に制御する必要のあるアルミニウムまたはアルミニ
ウム合金に好適で、Ti,Vの含有量を低減し、Zr含
有量を制御した地金が得られるアルミニウムまたはアル
ミニウム合金の処理方法に関する。
BACKGROUND OF THE INVENTION The present invention is suitable for aluminum or an aluminum alloy which needs to control the content of Ti, V and Zr at a low concentration, typically for electrolytic capacitors and magnetic disks. The present invention relates to a method for treating aluminum or an aluminum alloy, which can obtain a base metal having a reduced Zr content and a controlled Zr content.

【0002】[0002]

【従来の技術】電解コンデンサ用、磁気ディスク等に使
用されるアルミニウム材料には、コンデンサの性能を維
持するため99.9質量%以上の純度が要求され、T
i,V,Zr、B等の不純物はそれぞれ10ppm以下
に規制されている。このような用途に適した高純度のア
ルミニウム材料を得るためには、まず、純度が99.8
5重量%以上のアルミニウム地金又は電解精錬炉からの
溶湯を精製容器に移し、撹拌を伴った制御冷却条件下で
アルミニウム溶湯を冷却し、偏析凝固されたα−Al晶
を得ている。溶湯の冷却過程で、Si,Fe,Mn等、
共晶系の不純物をアルミニウム溶湯から偏析分離でき
る。しかしながら、包晶系の元素である不純物Ti,
V、Zrは製品側に濃縮されるので、これらの不純物を
偏析凝固法で除去するためには、偏析凝固法を実施する
前に予めTi、V,Zrを極力除去しておく必要があ
る。
2. Description of the Related Art Aluminum materials used for electrolytic capacitors and magnetic disks are required to have a purity of 99.9% by mass or more in order to maintain the performance of the capacitors.
Impurities such as i, V, Zr, and B are each regulated to 10 ppm or less. In order to obtain a high-purity aluminum material suitable for such applications, first, the purity is 99.8.
5% by weight or more of the aluminum ingot or the molten metal from the electrolytic refining furnace is transferred to a purification vessel, and the molten aluminum is cooled under controlled cooling conditions with stirring to obtain segregated and solidified α-Al crystals. In the process of cooling the molten metal, Si, Fe, Mn, etc.
Eutectic impurities can be segregated and separated from molten aluminum. However, the impurities Ti, which are peritectic elements,
Since V and Zr are concentrated on the product side, in order to remove these impurities by the segregation solidification method, it is necessary to remove Ti, V, and Zr as much as possible before performing the segregation solidification method.

【0003】従来、不純物としてTi、V等の包晶系元
素をアルミニウム又はアルミニウム合金から除去する方
法としては、例えば次のような方法が開示されている。
アルミニウム溶湯に不純物として含有されているアルカ
リ金属元素を、フッ化アルミニウム(AlF3)を添加
してフッ化物を形成させて除去する方法が、TAC法と
して知られており、また、特開平7−207368号公
報では、不純物としてTiを含有するアルミニウム又は
アルミニウム合金溶湯中に、Ca、Ba、Mg、Mn、
Pbの酸化物のいずれか一種以上の酸化物を添加し、不
純物Tiとこれらの酸化物との複合酸化物を形成させて
これを分離することにより、アルミニウム又はアルミニ
ウム合金中のTiを除去している。さらに、不純物とし
て含有されているTiの2〜4倍の化学当量に相当する
Bを添加し、Ti−B化合物を生成させて除去する方法
も提案されている。
Conventionally, the following method has been disclosed as a method for removing peritectic elements such as Ti and V from aluminum or aluminum alloys as impurities.
A method for removing an alkali metal element contained as an impurity in a molten aluminum by adding aluminum fluoride (AlF 3 ) to form a fluoride is known as a TAC method. No. 207368 discloses that Ca, Ba, Mg, Mn, and the like are contained in an aluminum or aluminum alloy melt containing Ti as an impurity.
By adding one or more oxides of Pb oxide, forming a compound oxide of impurity Ti and these oxides and separating the same, aluminum or aluminum alloy Ti is removed. I have. Furthermore, there has been proposed a method of adding B corresponding to 2 to 4 times the chemical equivalent of Ti contained as an impurity to generate and remove a Ti-B compound.

【0004】[0004]

【発明が解決しようとする課題】Bを添加してTi、
V、ZrをTiB2、VB2、ZrB2として除去する従
来の処理方法では、包晶系元素の合計化学当量に対しB
添加量を規定しているため、B添加量は原料中のTi、
V、Zrの初期濃度に依存する。包晶系元素の初期濃度
が低い場合、B添加量は少なくなる。一方、BとTi、
V、Zrとの反応性はTi、V、Zrに順に大きいた
め、Ti、V、Zrの合計化学当量の2〜4倍に相当す
る量のBを添加した際、Ti、VがBによって十分に除
去できてもZrとは不十分な反応に終わってしまい、溶
湯中に1.0〜数質量ppm残留する。しかもBが未反
応のまま数十ppm残留することとなる。
SUMMARY OF THE INVENTION B is added to Ti,
In the conventional treatment method for removing V and Zr as TiB 2 , VB 2 and ZrB 2 , B is determined based on the total chemical equivalent of the peritectic element.
Since the amount of addition is specified, the amount of B added is Ti
It depends on the initial concentrations of V and Zr. When the initial concentration of the peritectic element is low, the amount of B added is small. On the other hand, B and Ti,
Since the reactivity with V and Zr is larger in the order of Ti, V and Zr, when B is added in an amount corresponding to 2 to 4 times the total chemical equivalent of Ti, V and Zr, Ti and V are sufficiently converted by B. Even if it can be removed, the reaction with Zr ends up being insufficient, leaving 1.0 to several ppm by mass in the molten metal. In addition, several tens ppm of B remains unreacted.

【0005】電解コンデンサ、磁気ディスク等の品質特
性はアルミニウム中に含有される包晶系元素濃度に強く
影響される。最近、電解コンデンサに要求される品質特
性が強くなり、今までに開示されている処理方法では、
包晶系元素、特にZrの濃度を、要求される品質特性を
満たす濃度範囲にまで減少させることは困難になった。
The quality characteristics of electrolytic capacitors, magnetic disks, and the like are strongly affected by the concentration of peritectic elements contained in aluminum. Recently, the quality characteristics required for electrolytic capacitors have become stronger, and in the processing methods disclosed so far,
It has become difficult to reduce the concentration of peritectic elements, especially Zr, to a concentration range that satisfies the required quality characteristics.

【0006】[0006]

【課題を解決するための手段】本発明は、このような要
求に応えるべく案出されたものであり、偏析精製に先立
って、Ti、V、ZrとBの反応を有効に使用し、T
i、VのみならずZrをも低減させることのできるアル
ミニウム溶湯精製方法を提案するものである。
DISCLOSURE OF THE INVENTION The present invention has been devised in order to meet such a demand, and has been proposed to effectively utilize the reaction of Ti, V, Zr and B with B prior to segregation purification.
An object of the present invention is to propose a method for purifying molten aluminum capable of reducing not only i and V but also Zr.

【0007】本発明のアルミニウム精製方法は、その目
的を達成するため、不純物としてTi、V、Zrを含む
アルミニウム又はアルミニウム合金の溶湯へ、Ti
2、VB2、ZrB2として計算される合計化学当量よ
りも更に100〜200質量ppm多い量のBを添加
し、未反応で溶湯中に存在するBを100〜200質量
ppmに制御することによりZrを0.1〜1.0質量
ppmの濃度に制御するものである。次に、この工程が
終わったアルミニウムまたはアルミニウム合金溶湯へT
i及び/又はVを添加することによって、未反応で存在
する100〜200質量ppmのBと反応させてTiB
2及び/又はVB2を生成させ、Ti:1質量ppm以
下,V:1質量ppm以下,Zr:0.1〜1.0質量
ppm、B:設定残留目標B濃度に制御する。さらに、
このような方法で処理されたアルミニウムまたはアルミ
ニウム合金の溶湯を偏析用原料として偏析精製し、T
i:2質量ppm以下,V:1質量ppm以下,Zr:
0.1〜1.0質量ppm以下、B:2質量ppm以下
の高純度アルミニウムを得る。
[0007] In order to achieve the object, the aluminum refining method of the present invention converts Ti or V alloy containing Ti, V or Zr into molten aluminum or aluminum alloy.
B is added in an amount of 100 to 200 mass ppm larger than the total chemical equivalent calculated as B 2 , VB 2 , and ZrB 2 to control the amount of unreacted B present in the molten metal to 100 to 200 mass ppm. Controls Zr to a concentration of 0.1 to 1.0 ppm by mass. Next, T is added to the aluminum or aluminum alloy melt after this process.
By adding i and / or V, TiB is reacted with 100 to 200 ppm by mass of B present unreacted.
2 and / or VB 2 are generated, and Ti is controlled to 1 mass ppm or less, V: 1 mass ppm or less, Zr: 0.1 to 1.0 mass ppm, and B: the set residual target B concentration. further,
The molten aluminum or aluminum alloy treated by such a method is purified by segregation as a raw material for segregation.
i: 2 mass ppm or less, V: 1 mass ppm or less, Zr:
High-purity aluminum of 0.1 to 1.0 mass ppm or less and B: 2 mass ppm or less is obtained.

【0008】[0008]

【作用】本発明者等は、アルミニウム溶湯に含まれてい
るTi,V,ZrとB等の相互反応を詳細に調査・研究
した。その結果、以下のような作用があることを見出し
た。Ti,V,Zrを含むアルミニウム溶湯に、Al−
B母合金等としてBを添加するとTiB2、VB2、Zr
2の金属間化合物が生成し、溶湯中に懸濁または炉底
に沈殿する。この金属間化合物を工業的には、沈降分
離、浮上分離、フィルター分離等により、アルミニウム
溶湯中から分離する。しかし、TiB2、VB2、ZrB
2として計算される合計化学当量と同量のBを投入して
も、未反応のTi,V,ZrおよびBが残留し、一般的
に工業的に実施される介在物除去方法では除去すること
ができない。そのため、通常、TiB2、VB2、ZrB
2として計算される合計化学当量の数倍に相当するBを
過剰に投入していた。
The present inventors have investigated and studied in detail the interaction between Ti, V, Zr and B contained in the molten aluminum. As a result, they have found the following effects. Al-Al is added to molten aluminum containing Ti, V, and Zr.
When B is added as a B master alloy or the like, TiB 2 , VB 2 , Zr
Intermetallic compounds B 2 is produced, precipitates suspended or furnace bottom into the molten metal. This intermetallic compound is industrially separated from the molten aluminum by sedimentation separation, flotation separation, filter separation, or the like. However, TiB 2 , VB 2 , ZrB
Even if B is added in the same amount as the total chemical equivalent calculated as 2 , unreacted Ti, V, Zr and B remain, and should be removed by an industrially practiced inclusion removal method. Can not. Therefore, usually, TiB 2 , VB 2 , ZrB
B corresponding to several times the total chemical equivalent calculated as 2 was excessively charged.

【0009】一方、BとTi,V,Zrとの反応は、未
反応で存在するB濃度とTi、V、Zrとの平衡が成立
し、未反応のBが多いほど未反応のTi,V,Zrはそ
れぞれ少なくなる。また未反応のBが同一量の場合で
は、Ti,V,ZrはTi,V,Zrの順に低濃度で平
衡する。その結果、Ti,V,Zrを同時に含有するア
ルミニウム溶湯中にBを投入した場合、Zr,V,Ti
の順に未反応の元素が多く残留し、平衡する。
On the other hand, in the reaction of B with Ti, V, and Zr, the equilibrium between the unreacted B concentration and Ti, V, and Zr is established, and the more unreacted B, the more unreacted Ti, V , Zr decrease. When the amount of unreacted B is the same, Ti, V, and Zr equilibrate at lower concentrations in the order of Ti, V, and Zr. As a result, when B is introduced into an aluminum melt containing Ti, V, and Zr at the same time, Zr, V, Ti
In this order, many unreacted elements remain and equilibrate.

【0010】Ti,V,Zrの初期濃度が低い場合、従
来、投入するB量がそれに応じて少なくなるため、未反
応のB濃度が小さくなり、それと平衡する未反応のT
i,V,Zr濃度はそれに応じ大きくなる。更に、T
i,V,Zrの順に残留濃度が増加するため、Ti、V
が十分に除去できても、Zrはそれと平衡する未反応の
Bが少なくなり、その結果、Zrは溶湯中に1.0〜数
質量ppm程度残留する。
When the initial concentration of Ti, V, and Zr is low, the amount of B to be introduced is conventionally reduced accordingly, so that the concentration of unreacted B is reduced, and the unreacted T which is in equilibrium therewith.
The i, V, and Zr concentrations increase accordingly. Further, T
Since the residual concentration increases in the order of i, V, and Zr, Ti, V
Can be sufficiently removed, Zr has less unreacted B in equilibrium with it, and as a result, about 1.0 to several ppm by mass of Zr remains in the molten metal.

【0011】これに対し,TiB2、VB2、ZrB2
して計算される合計化学当量に当たるB量に更に100
〜200質量ppmの範囲でBを多く添加した場合、未
反応の形で残存するTi,V、ZrとBとが平衡し、未
反応で存在するBはTi,V,Zrの初期濃度に関わら
ず、常に100〜200質量ppmの濃度で残存され
る。本発明では、100〜200質量ppmの未反応B
量と平衡する未反応のTi、V、Zr濃度が未反応B濃
度に応じて一定になることを見出し、未反応のB濃度の
制御により、Ti,V,Zrの中で最も多く残留して平
衡するZrにおいても、0.1〜1.0質量ppmの範
囲内に留まるようにすることができたものである。
On the other hand, the B amount corresponding to the total chemical equivalent calculated as TiB 2 , VB 2 and ZrB 2 is further increased by 100.
When a large amount of B is added in the range of 200 ppm by mass, Ti, V, and Zr remaining in an unreacted form are equilibrated with B, and B present in the unreacted state depends on the initial concentration of Ti, V, and Zr. And always remain at a concentration of 100 to 200 ppm by mass. In the present invention, 100 to 200 ppm by mass of unreacted B
It has been found that the unreacted Ti, V, and Zr concentrations equilibrating with the amount become constant in accordance with the unreacted B concentration, and by controlling the unreacted B concentration, the most unreacted Ti, V, Zr remains. Even in the equilibrium Zr, it could be kept within the range of 0.1 to 1.0 ppm by mass.

【0012】しかし、このままでは過剰の未反応Bを含
有することとなって、後工程の偏析精製処理を行っても
Bを十分に除去することはできない。そこで、未反応の
Bと化学当量のTi及び/又はVを添加して未反応のB
と反応させ、TiB2及び/又はVB2を生成させて除去
する。過剰のBが含有されているアルミニウム溶湯にA
l−Ti母合金等のTi成分を添加すると、Al−Ti
母合金が溶解している周辺にTiリッチの溶湯部分で溶
湯中のBと反応してTiB2を生成する。また、溶湯全
体にTiが拡散した状態でも、同様にTiB2が生成す
る。生成したTiB2は、溶湯中に懸濁し、または炉低
に沈降する。すなわち、Bを除去するTi処理ではTi
2の化学当量で反応が進行することから、目標残留B
量を除く、除去反応B量に対する化学当量分のTiを添
加すればよい。
However, as it is, the unreacted B is contained as it is, so that B cannot be sufficiently removed even if a segregation purification treatment in a subsequent step is performed. Therefore, unreacted B and unreacted B are added by adding a chemical equivalent of Ti and / or V.
To form and remove TiB 2 and / or VB 2 . A in aluminum melt containing excess B
When a Ti component such as an l-Ti master alloy is added, Al-Ti
The Ti-rich molten metal reacts with B in the molten metal in the vicinity where the mother alloy is melted to generate TiB 2 . Further, even when Ti is diffused throughout the molten metal, TiB 2 is similarly generated. The produced TiB 2 is suspended in the molten metal or settles in the furnace. That is, in the Ti treatment for removing B, Ti
Since the reaction proceeds at the chemical equivalent of B 2 , the target residual B
It suffices to add a chemical equivalent of Ti to the removal reaction B amount, excluding the amount.

【0013】Vを利用する際も、同様に除去反応B量に
対する化学当量分のVを添加すれば十分である。また、
実際の操業では、Ti或いはVは残留させたくないの
で、残留B量の目標値として10〜30質量ppmを設
定し、残りの除去B量に対応するTi又はVを添加す
る。さらに、脱BにTi,Vを利用する際、反応時間の
点で、Vを利用するよりもTiを利用する方が工業的に
は有利である。その結果、使用するアルミニウム又はア
ルミニウム合金に不純物として含まれる包晶系元素の初
期濃度に関わらずTi、Vを1質量ppm以下に低減
し、Zrを0.1〜1.0質量ppmに制御する処理が
可能となる。
When V is used, it is sufficient to add a chemical equivalent of V to the amount of the removal reaction B in the same manner. Also,
In actual operation, Ti or V is not desired to remain, so 10 to 30 ppm by mass is set as the target value of the residual B amount, and Ti or V corresponding to the remaining removed B amount is added. Furthermore, when using Ti and V for de-B, it is industrially more advantageous to use Ti than to use V in terms of reaction time. As a result, Ti and V are reduced to 1 mass ppm or less and Zr is controlled to 0.1 to 1.0 mass ppm irrespective of the initial concentration of the peritectic element contained as an impurity in the aluminum or aluminum alloy used. Processing becomes possible.

【0014】なお、Bを添加しての脱Ti,V,Zr処
理及び脱B処理されるアルミニウム溶湯は、700〜9
00℃の温度域に維持されることが好ましい。このとき
の溶湯温度が700℃に達しないと、TiB2 ,VB
2 の生成反応が遅くなり、生産性が低下する。TiB
2 ,VB2 の生成反応は900℃を超える溶湯温度で
も進行するが、過度に高い温度はエネルギ消費量が多く
なるばかりでなく、炉壁耐火物の溶損を促進させる。
The aluminum melt to be subjected to Ti, V, Zr treatment and B treatment by adding B is 700 to 9%.
It is preferable to maintain the temperature range of 00 ° C. If the melt temperature at this time does not reach 700 ° C., TiB 2, VB
2 slows down the production reaction and lowers productivity. TiB
2, The formation reaction of VB2 proceeds even at a molten metal temperature exceeding 900 ° C., but an excessively high temperature not only increases the energy consumption but also promotes the erosion of the furnace wall refractory.

【0015】[0015]

【実施の態様】本発明の実施の態様を添付の図面及び具
体的な例を参照しながら、説明する。図1は、本発明に
係るアルミニウム又はアルミニウム合金の処理装置の一
実施の態様の概略構成を示す模式的縦断面である。処理
装置は、図1に示すように、黒鉛、不定形耐火物又は耐
火レンガを内張りし、原料溶湯MMを保持する保持容器
1と、この保持容器1中の原料溶湯MMにBを添加する
B添加装置2とTi及び/又はVを添加する添加装置3
と、生成するTiB2、VB2、ZrB2の金属間化合物
を浮上分離するための攪拌装置4とを備えている。ここ
で、BとはAl−B合金、NaBF4フラックス、KB
4フラックス等のB含有物質のことを言い、Ti及び
/又はVとはAl−Ti母合金、Al−V母合金、K2
TiF6フラックス等のTi及び/又はV含有物質のこ
とを言い、特に添加物質種を限定するものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described with reference to the accompanying drawings and specific examples. FIG. 1 is a schematic longitudinal section showing a schematic configuration of an embodiment of an aluminum or aluminum alloy processing apparatus according to the present invention. As shown in FIG. 1, the processing apparatus includes a holding container 1 for holding raw material MM, which is lined with graphite, an amorphous refractory or a refractory brick, and adding B to the raw material MM in the holding container 1. Addition device 2 and addition device 3 for adding Ti and / or V
And a stirrer 4 for flotation-separating the generated intermetallic compounds of TiB 2 , VB 2 , and ZrB 2 . Here, B is Al-B alloy, NaBF 4 flux, KB
A B-containing substance such as F 4 flux, and Ti and / or V are Al-Ti master alloy, Al-V master alloy, K 2
Refers to a Ti and / or V-containing substance such as a TiF 6 flux, and does not particularly limit the type of added substance.

【0016】次に、図1に示す処理装置を用いての処理
方法手順について、説明する。 アルミニウム又はアルミニウム合金の所定量の原料
溶湯MMを保持容器1にいれる。 原料溶湯に含有されているTi量、V量及びZr量
を分析する。 Ti,V,Zrを除去し未反応のBを制御するた
め、分析結果に基づいて、TiB2、VB2、ZrB2
して計算される合計化学当量に更に100〜200pp
mのBを追加し、B添加装置2によって添加する。 攪拌装置4によって、原料溶湯MMを攪拌して反応
を促進し、生成した金属間化合物を滓とともに浮上分離
する。 原料溶湯MM中にTi及び/又はVを、Ti及び/
又はV添加装置3によって添加する。この時、原料溶湯
MMに未反応で残留するBが制御されているため、特に
分析の必要はない。 攪拌装置4によって原料溶湯MMを攪拌して反応を
促進し、生成した金属間化合物を浮上分離する。 以
上の手順により、Ti,V,Zrを低減したアルミニウ
ム溶湯を偏析精製し、高純度のアルミニウムを得る。
Next, a procedure of a processing method using the processing apparatus shown in FIG. 1 will be described. A predetermined amount of raw material molten metal MM of aluminum or aluminum alloy is put in holding container 1. The amounts of Ti, V and Zr contained in the raw material melt are analyzed. In order to remove Ti, V, and Zr and control unreacted B, the total chemical equivalent calculated as TiB 2 , VB 2 , and ZrB 2 is further 100 to 200 pp based on the analysis result.
m of B is added and added by the B adding device 2. The raw material melt MM is stirred by the stirrer 4 to promote the reaction, and the generated intermetallic compound is floated and separated together with the slag. Ti and / or V in the raw molten metal MM, Ti and / or
Alternatively, it is added by the V addition device 3. At this time, since B remaining unreacted in the raw material melt MM is controlled, there is no particular need for analysis. The raw material melt MM is stirred by the stirrer 4 to promote the reaction, and the generated intermetallic compound is floated and separated. By the above procedure, the aluminum melt in which Ti, V, and Zr are reduced is purified by segregation to obtain high-purity aluminum.

【0017】次に、この手順に沿って、アルミニウム溶
湯を処理した実例を紹介する。内径が800mm、内部
高さが1000mmの処理装置の保持容器1中へ、溶湯
深さ800mmとなるように800℃で溶解したアルミ
ニウム溶湯を入れた。アルミニウム溶湯をサンプリング
し、分析したところ、Ti:30質量ppm、V:50
質量ppm、Zr:6質量ppmであった。続いて、T
iB2、VB2、ZrB2として計算される合計化学当量
に更にBを120質量ppm追加されるように、Al−
B母合金を3.0kg添加した後、攪拌装置4による攪
拌羽根を400rpmで回転させ10分間攪拌した。生
成した金属間化合物を浮上分離した後の溶湯を分析した
ところ、Ti:0.4質量ppm、V:0.6質量pp
m、Zr:0.8質量ppm、B:118質量ppmを
含むアルミニウム溶湯であった。
Next, an example in which the molten aluminum is treated according to this procedure will be introduced. A molten aluminum melted at 800 ° C. was placed in a holding vessel 1 of a processing apparatus having an inner diameter of 800 mm and an inner height of 1000 mm so as to have a molten metal depth of 800 mm. When the aluminum melt was sampled and analyzed, Ti: 30 mass ppm, V: 50
Ppm by mass, Zr: 6 ppm by mass. Then, T
Al- is added so that 120 mass ppm of B is added to the total chemical equivalent calculated as iB 2 , VB 2 , and ZrB 2 .
After adding 3.0 kg of the B master alloy, the stirring blade of the stirring device 4 was rotated at 400 rpm and stirred for 10 minutes. Analysis of the molten metal after flotation separation of the generated intermetallic compound revealed that Ti: 0.4 mass ppm and V: 0.6 mass pp.
The molten aluminum contained m, Zr: 0.8 mass ppm, and B: 118 mass ppm.

【0018】比較のために前記と同条件で、TiB2
VB2、ZrB2として計算される合計化学当量の2倍に
当たるBに相当するよう、Al―B合金を1.3kg添
加した。その結果、アルミニウム溶湯は、Ti:0.8
質量ppm、V:1.0質量ppm、Zr:2.1質量
ppm、B:35質量ppmを含有するものになってい
た。
For comparison, TiB 2 ,
1.3 kg of an Al-B alloy was added so as to correspond to B corresponding to twice the total chemical equivalent calculated as VB 2 and ZrB 2 . As a result, the molten aluminum becomes Ti: 0.8
It contained ppm by mass, V: 1.0 ppm by mass, Zr: 2.1 ppm by mass, and B: 35 ppm by mass.

【0019】次に、未反応のBを過剰に残留させている
アルミニウム溶湯の脱B処理の状況を説明する。前記方
法で得られたTi:0.4質量ppm、V:0.6質量
ppm、Zr:0.8質量ppm、B:118質量pp
mを含むアルミニウム溶湯中へ、残留目標B量を12p
pmとして、反応対象B量に対してTiB2として計算
される化学当量のTiとしてAl−Ti母合金を2.2
kg添加した。攪拌装置4による攪拌羽根を400rp
mで回転させ10分間攪拌した。その結果、Ti:0.
8質量ppm、V:0.6質量ppm、Zr:0.8質
量ppm、B:12質量ppmを含むアルミニウム溶湯
が得られた。
Next, the situation of the de-B treatment of the molten aluminum in which unreacted B is excessively remaining will be described. Ti obtained by the above method: 0.4 mass ppm, V: 0.6 mass ppm, Zr: 0.8 mass ppm, B: 118 mass pp
12p into the molten aluminum containing m
As an equivalent Ti calculated as TiB 2 with respect to the amount of B to be reacted as pm, an Al-Ti master alloy is 2.2.
kg was added. 400 rpm of the stirring blade by the stirring device 4
and stirred for 10 minutes. As a result, Ti: 0.
An aluminum melt containing 8 mass ppm, V: 0.6 mass ppm, Zr: 0.8 mass ppm, and B: 12 mass ppm was obtained.

【0020】この溶湯を、特公昭61−36568号公
報に記載の方法にしたがって偏析精製した。得られた精
製地金は、Ti:0.9質量ppm、V:1.0質量p
pm、Zr:0.9質量ppm、B:1質量ppmでア
ルミニウム純度が99.9質量%以上となっており、電
解コンデンサ用材料、磁気ディスク用材料として十分に
使用可能な地金であった。精製地金を取り出した残りの
溶湯地金は、Ti、V、Zr、Bとも従来の品質特性要
求でB処理していた場合と変わらない濃度なので、用途
の制約を受けることはない。
This molten metal was purified by segregation according to the method described in JP-B-61-36568. The obtained refined metal was Ti: 0.9 mass ppm, V: 1.0 mass p
The aluminum purity was 99.9% by mass or more at pm, Zr: 0.9% by mass, and B: 1% by mass, and the metal was sufficiently usable as a material for electrolytic capacitors and a material for magnetic disks. . The remaining molten metal from which the refined metal has been taken out has the same concentration as that of the case where B processing has been performed in accordance with the conventional quality characteristic requirements for Ti, V, Zr, and B, and thus there is no restriction on applications.

【0021】[0021]

【発明の効果】以上に説明したように、本発明のアルミ
ニウム処理方法では、使用するアルミニウム又はアルミ
ニウム合金のTi、V,Zr初期濃度に関わらず、溶湯
中のTi、V,Zrに対して合計化学当量よりも適宜過
剰のBを添加して、TiB2、VB2、ZrB2を生成さ
せて除去し、溶湯中に未反応のBを残留させてZrをも
1.0質量ppm以下に低減し、その後未反応のBをT
i及び/又はVの添加でTiB2、VB2の形にして除去
できるので、その後の偏析精製法と相俟って、高純度の
アルミニウム又はアルミニウム合金を得ることができ、
電解コンデンサ用、磁気ディスク用に適した素材を提供
することができる。
As described above, in the aluminum treatment method of the present invention, the total amount of Ti, V, and Zr in the molten metal is independent of the initial concentration of Ti, V, and Zr of the aluminum or aluminum alloy used. An appropriate excess of B than the chemical equivalent is added to generate and remove TiB 2 , VB 2 , and ZrB 2, and unreacted B remains in the molten metal to reduce Zr to 1.0 mass ppm or less. Then, unreacted B is replaced with T
Since it can be removed in the form of TiB 2 or VB 2 by adding i and / or V, high purity aluminum or aluminum alloy can be obtained in combination with the subsequent segregation purification method,
A material suitable for an electrolytic capacitor and a magnetic disk can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明において使用するアルミニウム処理装
置のの概要を示す概念図である。
FIG. 1 is a conceptual diagram showing an outline of an aluminum processing apparatus used in the present invention.

【符号の説明】[Explanation of symbols]

1; 保持容器 2; B添加装置 3; Ti及び/又はV添加装置 4; 攪拌装置 MM; 原料溶湯 DESCRIPTION OF SYMBOLS 1; Holding container 2; B addition device 3; Ti and / or V addition device 4; Stirring device MM;

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 21/00 C22C 21/00 N ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22C 21/00 C22C 21/00 N

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 不純物としてTi、V、Zrを含むアル
ミニウム又はアルミニウム合金の溶湯へ、TiB2、V
2、ZrB2として計算される合計化学当量よりも更に
100〜200質量ppm多い量のBを添加し、未反応
で溶湯中に存在するBを100〜200質量ppmに制
御することによりZrを0.1〜1.0質量ppmの濃
度に制御することを特徴とするアルミニウムまたはアル
ミニウム合金の処理方法。
1. TiB 2 and V are added to a molten aluminum or aluminum alloy containing Ti, V and Zr as impurities.
B 2 , Zr is added by adding an amount of B that is 100 to 200 mass ppm larger than the total chemical equivalent calculated as ZrB 2 and controlling unreacted B present in the molten metal to 100 to 200 mass ppm. A method for treating aluminum or an aluminum alloy, wherein the concentration is controlled to 0.1 to 1.0 ppm by mass.
【請求項2】 請求項1に記載の工程が終わったアルミ
ニウムまたはアルミニウム合金溶湯へ、設定残留目標を
除く、未反応B量に対応するTi及び/又はVの化学当
量を添加することによって、未反応で存在する100〜
200質量ppmのBと反応させて、TiB2及び/又
はVB2を生成させ、Ti:1質量ppm以下,V:1
質量ppm以下,Zr:0.1〜1.0質量ppm、
B:設定残留目標B濃度に制御することを特徴とするア
ルミニウムまたはアルミニウム合金の処理方法。
2. The method according to claim 1, wherein a chemical equivalent of Ti and / or V corresponding to the unreacted B amount is added to the molten aluminum or aluminum alloy, excluding the set residual target. 100 to 100 present in the reaction
By reacting with 200 mass ppm of B to form TiB 2 and / or VB 2 , Ti: 1 mass ppm or less, V: 1
Mass ppm or less, Zr: 0.1 to 1.0 mass ppm,
B: A method for treating aluminum or an aluminum alloy, which is controlled to a set residual target B concentration.
【請求項3】 請求項1又は2記載のいずれかにより処
理されたアルミニウムまたはアルミニウム合金の溶湯を
原料として偏析精製するアルミニウムまたはアルミニウ
ム合金の処理方法。
3. A method for treating aluminum or an aluminum alloy, wherein the molten aluminum or aluminum alloy treated according to claim 1 or 2 is used as a raw material for segregation purification.
【請求項4】 偏析精製された地金が、Ti:2質量p
pm以下,V:1質量ppm以下,Zr:0.1〜1.
0質量ppm以下、B:2質量ppm以下である請求項
3に記載のアルミニウムまたはアルミニウム合金の処理
方法。
4. The segregated and refined metal is Ti: 2 mass p
pm or less, V: 1 mass ppm or less, Zr: 0.1-1.
The method for treating aluminum or an aluminum alloy according to claim 3, wherein the content is 0 mass ppm or less and B: 2 mass ppm or less.
JP2000371361A 2000-12-06 2000-12-06 Aluminum processing method Expired - Fee Related JP3458840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000371361A JP3458840B2 (en) 2000-12-06 2000-12-06 Aluminum processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000371361A JP3458840B2 (en) 2000-12-06 2000-12-06 Aluminum processing method

Publications (2)

Publication Number Publication Date
JP2002173718A true JP2002173718A (en) 2002-06-21
JP3458840B2 JP3458840B2 (en) 2003-10-20

Family

ID=18841098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000371361A Expired - Fee Related JP3458840B2 (en) 2000-12-06 2000-12-06 Aluminum processing method

Country Status (1)

Country Link
JP (1) JP3458840B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009280918A (en) * 2003-03-18 2009-12-03 Showa Denko Kk Method for refining aluminum, high purity aluminum material, method for producing aluminum material for electrode of electrolytic capacitor and aluminum material for electrode of electrolytic capacitor
KR20150027242A (en) * 2012-06-25 2015-03-11 실리코르 머티리얼즈 인코포레이티드 Method to purify aluminum and use of purified aluminum to purify silicon
CN105745344A (en) * 2014-09-27 2016-07-06 株式会社Uacj Aluminum alloy plate for magnetic disc substrate, method for manufacturing same, and method for manufacturing magnetic disc
KR101733325B1 (en) 2012-06-25 2017-05-08 실리코르 머티리얼즈 인코포레이티드 Method for purifying silicon
CN110129641A (en) * 2019-05-13 2019-08-16 贵州航天风华精密设备有限公司 A kind of high-performance original position TiB2Particle enhanced aluminum-based composite material and preparation method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009280918A (en) * 2003-03-18 2009-12-03 Showa Denko Kk Method for refining aluminum, high purity aluminum material, method for producing aluminum material for electrode of electrolytic capacitor and aluminum material for electrode of electrolytic capacitor
KR20150027242A (en) * 2012-06-25 2015-03-11 실리코르 머티리얼즈 인코포레이티드 Method to purify aluminum and use of purified aluminum to purify silicon
CN104641009A (en) * 2012-06-25 2015-05-20 希利柯尔材料股份有限公司 Method to purify aluminum and use of purified aluminum to purify silicon
JP2015529741A (en) * 2012-06-25 2015-10-08 シリコー マテリアルズ インコーポレイテッド Method for purifying aluminum and the use of purified aluminum to purify silicon
KR101663435B1 (en) * 2012-06-25 2016-10-14 실리코르 머티리얼즈 인코포레이티드 Method to purify aluminum and use of purified aluminum to purify silicon
KR101733325B1 (en) 2012-06-25 2017-05-08 실리코르 머티리얼즈 인코포레이티드 Method for purifying silicon
US9676632B2 (en) 2012-06-25 2017-06-13 Silicor Materials Inc. Method for purifying silicon
US10773963B2 (en) 2012-06-25 2020-09-15 Silicor Materials Inc. Method of purifying aluminum and use of purified aluminum to purify silicon
CN105745344A (en) * 2014-09-27 2016-07-06 株式会社Uacj Aluminum alloy plate for magnetic disc substrate, method for manufacturing same, and method for manufacturing magnetic disc
US9613648B2 (en) 2014-09-27 2017-04-04 Uacj Corporation Aluminum alloy plate for magnetic disc substrate, method for manufacturing same, and method for manufacturing magnetic disc
CN110129641A (en) * 2019-05-13 2019-08-16 贵州航天风华精密设备有限公司 A kind of high-performance original position TiB2Particle enhanced aluminum-based composite material and preparation method thereof

Also Published As

Publication number Publication date
JP3458840B2 (en) 2003-10-20

Similar Documents

Publication Publication Date Title
US9567227B2 (en) Process for producing silicon, silicon, and panel for solar cells
US10988830B2 (en) Scandium master alloy production
JPS58156520A (en) High purity silicon semi-continuous manufacture
JPS63153230A (en) Production of pure alloy based on rare earth metal and transition metal by heat-reduction of metal
JP2002173718A (en) Aluminum treatment method
EA011056B1 (en) Method of high-melting-point metal separation and recovery
US2267298A (en) Method of producing highly pure manganese titanium alloys
JP4904067B2 (en) Method for purifying metal magnesium and method for producing metal tantalum using the same
EP0606977B1 (en) Analytical method for nonmetallic contaminants in silicon
JPH0754070A (en) Refining method for aluminum scrap
JPH07507602A (en) Electro-refined aluminum with low uranium, thorium and rare earth content
WO2004094312A1 (en) Method of purifying metal salt, method of deacidifying titanium material and method of producing the same
US2283884A (en) Purification of metal halide fluxes
JP2002097528A (en) Purification method of aluminum
JP2002194453A (en) METHOD FOR TREATING MOLTEN ALUMINUM FOR DECREASING Ti, V AND B
RU2157422C1 (en) Method of production of high-purity magnesium alloy
JPH0617159A (en) Production of low oxygen high purity ti material
JP3463343B2 (en) Manufacturing method of aluminum
JP3784331B2 (en) Method for purifying gold-containing gallium and method for collecting gold from gallium containing gold
JP2007270308A (en) Antimony and method for refining the same
JP2000104128A (en) Method for refining aluminum and use of obtained aluminum
US3460917A (en) Recovery of americium from plutonium metal using molten salts
JPH0364423A (en) Method for melting intermetallic compound ti-al-base alloy
JP2004244715A (en) Method of producing metallic titanium
JP3721804B2 (en) Aluminum purification method and use thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100808

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees