JP2000104128A - Method for refining aluminum and use of obtained aluminum - Google Patents

Method for refining aluminum and use of obtained aluminum

Info

Publication number
JP2000104128A
JP2000104128A JP11200186A JP20018699A JP2000104128A JP 2000104128 A JP2000104128 A JP 2000104128A JP 11200186 A JP11200186 A JP 11200186A JP 20018699 A JP20018699 A JP 20018699A JP 2000104128 A JP2000104128 A JP 2000104128A
Authority
JP
Japan
Prior art keywords
element group
aluminum
boride
group
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11200186A
Other languages
Japanese (ja)
Other versions
JP4253936B2 (en
JP2000104128A5 (en
Inventor
Akiyoshi Nemoto
明欣 根本
Hitoshi Yasuda
均 安田
Akihiko Takahashi
明彦 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP20018699A priority Critical patent/JP4253936B2/en
Publication of JP2000104128A publication Critical patent/JP2000104128A/en
Publication of JP2000104128A5 publication Critical patent/JP2000104128A5/ja
Application granted granted Critical
Publication of JP4253936B2 publication Critical patent/JP4253936B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for refining Al capable of efficiently reducing peritectic impurities such as Ti, V, Zr in Al and to provide Al foil for an electrolytic capacitor used with the obtd. Al as the raw material. SOLUTION: The method for refining Al is the one in which, where an elemental group M is composed of elements forming boride stabler than Al boride, an elemental group α is composed of the elements selected from Ti and Hf in the elemental group M, and an elemental group β is composed of the elements other than the elemental group α in the elemental group M, the molten metal of aluminum contg. one or more kinds of elements selected from the elemental group β and or moreover one or more kinds of elements selected from the elemental group α is mixed with the elemental group α in such a manner that X/Y (X denotes the total concn. of the atoms of the elemental group α to be added, and Y denotes the total concn. of the atoms of the elemental group β in the molten metal) is controlled to 0.2 to 100 and with B in such a manner that the quantity of the elemental group M in the molten metal is controlled to the one needed for forming hard-to-dissolve boride (MB2), and the formed hard-to- dissolved boride is separated away, and the quantity of the elemental group M is reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アルミニウムの精
製方法および得られたアルミニウムの用途に関する。さ
らに詳しくは、アルミニウム中の不純物として、硼化ア
ルミニウムより安定な硼化物を形成する元素(元素群
M)、例えば、Ti、V、Zr、Hfを効率良く低減さ
せることができるアルミニウムの精製方法および得られ
たアルミニウムを原料として用いる電解コンデンサー用
アルミニウム箔に関する。
[0001] The present invention relates to a method for purifying aluminum and uses of the obtained aluminum. More specifically, a method for purifying aluminum capable of efficiently reducing elements (element group M) that form borides more stable than aluminum boride as impurities in aluminum, for example, Ti, V, Zr, and Hf. The present invention relates to an aluminum foil for an electrolytic capacitor using the obtained aluminum as a raw material.

【0002】[0002]

【従来の技術】前記元素群Mの中で、例えばTi、Vを
低減させる方法として、硼素(B)を添加して難溶性の
硼化物を形成させて、これを分離除去する所謂ボロン処
理がある。例えば、「アルミニウム材料の基礎と工業技
術」(社団法人 軽金属協会1991年)第343頁に
は、「Ti、Vはアルミニウム溶湯中に硼弗化カリやA
l−Bの形でBを投入しボライドを形成させ、沈降、除
去することが多い(ボロン処理)」と記載されている。
2. Description of the Related Art Among the group of elements M, as a method for reducing, for example, Ti and V, a so-called boron treatment for forming a hardly soluble boride by adding boron (B) and separating and removing the same is known. is there. For example, "Basic and Industrial Technology of Aluminum Materials" (Light Metal Association of Japan, 1991), page 343 states that "Ti, V is potassium borofluoride or A in molten aluminum.
In many cases, B is charged in the form of 1-B to form boride, and sedimentation and removal are often performed (boron treatment). "

【0003】ところが、元素群Mの中でもボロン処理に
より安定な硼化物を形成しにくい等にて低減効率が悪い
元素がある。例えば、特開昭59−104440号公報
では、(Ti,V)B2錯体に対して融剤作用をなす物
質の存在下に、溶存状態のTiおよびV不純物の少なく
とも主要部分を不溶性(Ti,V)B2錯体粒子に変え
るのに十分な量の硼素含有物質と接触させ、溶融アルミ
ニウムを攪拌して、溶融アルミニウムから溶存Tiおよ
びV不純物を除去する方法が示されているが、実施例の
欄に記載のようにボロン処理後にVが10重量ppmも
残留する場合があり、用途によってはさらに低量までV
を低減させる必要がある。
However, among the group of elements M, there is an element having a low reduction efficiency because it is difficult to form a stable boride by boron treatment. For example, JP-A-59-104440 discloses that at least a main part of dissolved Ti and V impurities is insoluble (Ti, V) in the presence of a substance that acts as a flux for the (Ti, V) B 2 complex. into contact with a sufficient amount of boron-containing materials to alter the V) B 2 complex particles and stirring the molten aluminum, a method of removing dissolved Ti and V impurities from molten aluminum is shown, for example As described in the column, as much as 10 ppm by weight of V may remain after the boron treatment.
Needs to be reduced.

【0004】アルミニウム中のVなどの元素群Mの濃度
の例として、例えば特開昭54−79462号公報に
は、電解コンデンサー陽極用アルミニウム合金箔用のア
ルミニウム中の不純物として、TiおよびVの少なくと
もいずれか一方の元素を0.00001〜0.001%
(即ち、0.1〜10ppm)含むことと記載されてい
る。また、特開平6−220561号公報には、エッチ
ング後の折り曲げ強度が高い電解コンデンサ用アルミニ
ウム合金箔用のアルミニウム中の不純物として、Vを
0.5〜5ppm含むことと記載されている。さらに、
特開平7−169657号公報には、電解コンデンサ陽
極用アルミニウム合金箔に用いられるアルミニウム中の
不純物として、Ti:0.1〜1ppm、V:0.1〜
1ppmおよびZr:0.1〜1ppmのうちの1種ま
たは2種以上を含有することと記載されている。即ち、
用途によっては、上記上限濃度以下までアルミニウム中
の元素群Mを低減させる必要がある。
As an example of the concentration of an element group M such as V in aluminum, Japanese Patent Application Laid-Open No. 54-79462 discloses, for example, at least Ti and V as impurities in aluminum for an aluminum alloy foil for an anode of an electrolytic capacitor. 0.00001-0.001% of either element
(I.e., 0.1 to 10 ppm). JP-A-6-220561 describes that V is contained in an amount of 0.5 to 5 ppm as an impurity in aluminum for aluminum alloy foil for electrolytic capacitors having high bending strength after etching. further,
JP-A-7-169657 discloses that, as impurities in aluminum used for an aluminum alloy foil for an anode of an electrolytic capacitor, Ti: 0.1 to 1 ppm, V: 0.1 to
1 ppm and Zr: described as containing one or more of 0.1 to 1 ppm. That is,
For some applications, it is necessary to reduce the group of elements M in aluminum to below the upper limit concentration.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、アル
ミニウム中の元素群Mを効率良く低減させることができ
るアルミニウムの精製方法および得られたアルミニウム
を原料として用いた電解コンデンサー用アルミニウム箔
を提供することにある。なお、本発明において、元素群
Mは硼化アルミニウムより安定な硼化物を形成する元素
からなり(例えばTi、V、Zr、Hfなどの元素が挙
げられる)、元素群αは元素群Mの中でTi、Hfから
選ばれる元素、元素群βは元素群Mの中で元素群α以外
の元素からなるものと定義する。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for purifying aluminum capable of efficiently reducing the element group M in aluminum and an aluminum foil for an electrolytic capacitor using the obtained aluminum as a raw material. Is to do. In the present invention, the element group M is composed of an element that forms a boride that is more stable than aluminum boride (for example, elements such as Ti, V, Zr, and Hf). Is defined as an element selected from Ti and Hf, and the element group β is composed of elements other than the element group α in the element group M.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記の課
題を解決すべく鋭意検討した結果、元素群Mの中でVあ
るいはZrを含むアルミニウム溶湯に、特定量のTiあ
るいはHfを添加してボロン処理を行うと、アルミニウ
ム中のVあるいはZrを効率よく低減させることができ
ることを見出した。この時、同時に元素群αも効率よく
低減させることができることを見出し、本発明を完成さ
せるに至った。
Means for Solving the Problems The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, added a specific amount of Ti or Hf to a molten aluminum containing V or Zr in the element group M. It has been found that when boron treatment is performed, V or Zr in aluminum can be efficiently reduced. At this time, they have found that the element group α can be efficiently reduced at the same time, and have completed the present invention.

【0007】すなわち、本発明は、以下の[1]〜
[3]に関するものである。 [1]元素群Mは硼化アルミニウムより安定な硼化物を
形成する元素からなり、元素群αは元素群Mの中でT
i、Hfから選ばれる元素、元素群βは元素群Mの中で
元素群α以外の元素からなるとし、元素群βの中から選
ばれる元素を1種類以上、または更に元素群αの中から
選ばれる元素を1種類以上含むアルミニウム溶湯に、元
素群αを、X/Y(式中、Xは元素群αの添加総原子濃
度、Yは元素群βの該溶湯中の総原子濃度を示す。)が
0.2〜100となるように添加し、かつ該溶湯中の元
素群Mが硼化物(MB2)を生成するのに必要な量以上
となるようにBを添加し、生成させた硼化物を分離除去
して元素群Mを低減させるアルミニウムの精製方法。 [2]上記[1]に記載のアルミニウムの精製方法を行
なって得られたアルミニウムに対して、上記[1]に記
載のアルミニウムの精製方法をさらに1回以上繰り返し
て行なうアルミニウムの精製方法。 [3]上記[1]または[2]のいずれかに記載のアル
ミニウムの精製方法により得られる、元素群Mの濃度が
それぞれ10重量ppm以下のアルミニウムを原料とし
て用いる電解コンデンサー用アルミニウム箔。
That is, the present invention provides the following [1] to
It relates to [3]. [1] The element group M is composed of elements that form a boride that is more stable than aluminum boride.
i, the element selected from Hf, the element group β is assumed to be composed of elements other than the element group α in the element group M, and one or more elements selected from the element group β, or from the element group α, X / Y (where X is the total atomic concentration of the element group α added, and Y is the total atomic concentration of the element group β in the molten aluminum containing one or more selected elements) ) Is from 0.2 to 100, and B is added so that the element group M in the molten metal is at least the amount necessary to produce boride (MB 2 ). A method for purifying aluminum in which the element group M is reduced by separating and removing the boride. [2] A method for purifying aluminum obtained by repeating the method for purifying aluminum according to [1] one or more times with respect to aluminum obtained by performing the method for purifying aluminum according to [1]. [3] An aluminum foil for an electrolytic capacitor obtained by the method for purifying aluminum according to any one of the above [1] and [2], using aluminum having a concentration of the element group M of 10 ppm by weight or less as a raw material.

【0008】[0008]

【発明の実施の形態】以下、本発明について更に詳細に
説明する。本発明において、硼化アルミニウムより安定
な硼化物を形成する元素(元素群M)とは、実用のアル
ミニウム溶解の温度範囲、すなわち、アルミニウムの液
相線温度〜850℃において、LB2(Lは任意の元
素)で表される硼化物の生成ギブス自由エネルギーが、
AlB2のそれより小さい元素を表す。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. In the present invention, an element (element group M) that forms a boride that is more stable than aluminum boride is defined as LB 2 (L is in the temperature range of practical aluminum dissolution, that is, in the liquidus temperature range of aluminum to 850 ° C.). Gibbs free energy of formation of boride represented by
Represents an element smaller than that of AlB 2 .

【0009】本発明においては、精製する原料であるア
ルミニウム、すなわち、元素群Mは硼化アルミニウムよ
り安定な硼化物を形成する元素からなり、元素群αは元
素群Mの中でTi、Hfから選ばれる元素、元素群βは
元素群Mの中で元素群α以外の元素からなるとし、元素
群βの中から選ばれる元素を1種類以上、または更に元
素群αの中から選ばれる元素を1種類以上含むアルミニ
ウム溶湯に、元素群αを、X/Y(式中、Xは元素群α
の添加総原子濃度、Yは元素群βの該溶湯中の総原子濃
度を示す。)が0.2〜100となるように添加する。
なお、ここでいう総原子濃度の単位は原子ppmとす
る。1.0重量ppm未満の元素については、0重量p
pmとみなして合計を計算するものとする。X/Yが
0.2未満であると、元素群βを効率良く低減させるこ
とが困難である。また、X/Yが100を超えると、元
素群βの低減効率がこれ以上上昇することはなく、また
コスト高になり経済的メリットもない。X/Yが1.0
〜100となるように元素群αを添加すると、元素群β
をさらに効率よく低減させることができる。
In the present invention, aluminum as a raw material to be purified, that is, the element group M is composed of an element that forms a boride that is more stable than aluminum boride, and the element group α is included in the element group M from Ti and Hf. The selected element, element group β is assumed to be composed of elements other than element group α in element group M, and one or more elements selected from element group β, or an element selected from element group α, In an aluminum melt containing at least one type, an element group α is added to X / Y (where X is an element group α
Indicates the total atomic concentration of the element group β, and Y indicates the total atomic concentration of the element group β in the molten metal. ) Is 0.2 to 100.
Note that the unit of the total atomic concentration here is atomic ppm. For elements less than 1.0 ppm by weight, 0 weight p
pm and the sum is calculated. If X / Y is less than 0.2, it is difficult to efficiently reduce the element group β. When X / Y exceeds 100, the reduction efficiency of the element group β does not increase any more, and the cost increases and there is no economic merit. X / Y is 1.0
When the element group α is added so as to be 100, the element group β
Can be more efficiently reduced.

【0010】X/Yが1.0〜100となるように元素
群αを添加し、かつ元素群βの中でVに対した元素群α
としてTiおよび/またはHfを選択した場合、あるい
は元素群βの中でZrに対した元素群αとしてHfを選
択した場合、該元素群βの低減効率が高く、具体的には
該元素群βの濃度を2重量ppm以下まで低減させるこ
とが容易となる。
The element group α is added so that X / Y becomes 1.0 to 100, and the element group α with respect to V in the element group β is added.
When Ti and / or Hf is selected as the element group, or when Hf is selected as the element group α with respect to Zr in the element group β, the reduction efficiency of the element group β is high, and specifically, the element group β Can easily be reduced to 2 ppm by weight or less.

【0011】本発明においてはアルミニウム溶湯に元素
群αを添加することになるが、本発明の実施例に示すと
おり、添加した元素群αも同時に効率良く低減させるこ
とができる。もともと元素群αが含まれるアルミニウム
溶湯についても、本発明を適用することができる。例え
ば、(V+Ti)、あるいは(Zr+Ti)、あるいは
(V+Zr+Ti)、あるいは(V+Hf)、あるいは
(Zr+Hf)、あるいは(V+Zr+Hf)、あるい
は(V+Zr+Ti+Hf)が含まれるアルミニウム溶
湯などが挙げられる。もともとアルミニウム溶湯に含ま
れる元素群αの総原子濃度(X’)については特に限定
されないが、X’≦Yのアルミニウム溶湯において、本
発明による精製方法で、元素群βの低減効率がより一層
高いものとなる。元素群αを添加する方法は特に限定は
されないが、例えば元素群αを比較的多量に含むアルミ
ニウムと混ぜ合わせる方法や、元素群αの金属単体、元
素群αを含む化合物、またはAl−元素群α合金を添加
する方法が挙げられる。
In the present invention, the element group α is added to the molten aluminum. However, as shown in the embodiment of the present invention, the added element group α can be efficiently reduced at the same time. The present invention can also be applied to a molten aluminum that originally contains the element group α. For example, molten aluminum containing (V + Ti), (Zr + Ti), (V + Zr + Ti), (V + Hf), (Zr + Hf), (V + Zr + Hf), or (V + Zr + Ti + Hf) can be used. The total atomic concentration (X ′) of the element group α originally contained in the molten aluminum is not particularly limited. However, in the molten aluminum of X ′ ≦ Y, the purification efficiency of the element group β in the molten aluminum is even higher. It will be. The method of adding the element group α is not particularly limited. For example, a method of mixing with the aluminum containing the element group α in a relatively large amount, a metal simple substance of the element group α, a compound containing the element group α, or an Al-element group There is a method of adding an α alloy.

【0012】さらに、本発明においては、添加した元素
群αを含むアルミニウム溶湯中の元素群Mが難溶性の硼
化物(MB2)を生成するに必要な量(=理論B量)以
上となるようにBを添加する。 なお、ここでいう理論
B量とは、該溶湯中の元素群MがそれぞれTiB2、V
2などの二硼化物を生成するのに必要なB量を表す。
B添加量が理論B量未満であると、元素群Mを効率良く
低減させることが困難である。B添加量の上限について
は特に限定されなく、B添加量が多いほど元素群Mの低
減効率が高くなるが、同時に処理後残留するB濃度が高
くなるので、処理後アルミニウム中に残留するB濃度
が、アルミニウム用途の許容B濃度以下となるようにB
添加量を制御することが好ましい。ただし、B処理と同
時あるいは後にアルミニウムの偏析精製などを実施して
Bを低減できる場合は、この効果の分も考慮してBを添
加することができる。あらかじめアルミニウムにBが含
まれる場合、その含有量分も考慮してBを添加すること
ができる。Bを添加する方法は特に限定されないが、例
えば、Bを比較的多量に含むアルミニウムと混ぜ合わせ
る方法や、金属硼素、または硼弗化カリなどの硼素化合
物、またはAl−B合金を添加する方法が挙げられる。
Further, in the present invention, the element group M in the molten aluminum containing the added element group α is in an amount (= theoretical B amount) required to produce a hardly soluble boride (MB 2 ). B is added as described above. Here, the theoretical B amount means that the element group M in the molten metal is TiB 2 and V
It represents the amount of B necessary to produce a diboride such as B 2 .
If the B addition amount is less than the theoretical B amount, it is difficult to efficiently reduce the element group M. The upper limit of the amount of B added is not particularly limited. The higher the amount of B added, the higher the reduction efficiency of the element group M. However, the concentration of B remaining after the treatment increases at the same time. , So that the B concentration is below the allowable B concentration for aluminum
It is preferable to control the amount added. However, when B can be reduced by performing segregation purification of aluminum at the same time as or after the B treatment, B can be added in consideration of this effect. When B is contained in aluminum in advance, B can be added in consideration of the content. The method of adding B is not particularly limited. For example, a method of mixing with aluminum containing a relatively large amount of B, a method of adding metallic boron, a boron compound such as potassium borofluoride, or an Al-B alloy are used. No.

【0013】本発明においては、元素群α、Bの添加条
件は、添加した元素群α、Bがアルミニウム溶湯中に溶
解する条件であれば特に限定はされないが、例えば、元
素群αの中でTiの添加を例に取ると、Tiを100重
量ppm〜10重量%含むアルミニウムを用いて680
〜850℃の該溶湯に30分〜5時間かけて溶解させる
方法、Bの添加はBを100重量ppm〜5重量%含む
アルミニウムを用いて680℃〜850℃の該溶湯に3
0分〜5時間かけて溶解させる方法等が採用できる。元
素群α、B添加後に該溶湯を機械的に攪拌することは、
添加元素の溶解・拡散や硼化物形成が促進する効果があ
り、本発明において好ましい実施形態である。
In the present invention, the conditions for adding the element groups α and B are not particularly limited as long as the added element groups α and B are dissolved in the molten aluminum. Taking the addition of Ti as an example, using aluminum containing 100 wt ppm to 10 wt% of Ti, 680
A method of dissolving in the molten metal at a temperature of from 680 ° C. to 850 ° C. using aluminum containing 100% by weight to 5% by weight of B.
A method of dissolving in 0 minutes to 5 hours can be adopted. Mechanically stirring the molten metal after the addition of the element groups α and B,
This has an effect of accelerating dissolution / diffusion of an additive element and boride formation, and is a preferred embodiment in the present invention.

【0014】本発明においては、生成させた難溶性の硼
化物を該アルミニウム溶湯から分離除去する時の溶湯温
度は、実用のアルミニウム溶解温度範囲であれば特に限
定はされないが、元素群Mをより効率良く低減させるた
めに、溶湯温度を、該溶湯の液相線温度より高く、かつ
800℃以下とするのが好ましい。溶湯温度が液相線温
度未満であると、該溶湯中に凝固相が生じ、凝固相に硼
化物が取り込まれるなど、生成させた難溶性の硼化物を
分離除去できない場合がある。また、溶湯温度が800
℃より高いと、元素群Mを効率良く低減させることが困
難となる場合がある。生成させた難溶性の硼化物を該溶
湯から分離除去する時の溶湯温度は、より好ましくは該
溶湯の液相線温度より高く、かつ750℃以下、さらに
好ましくは該溶湯の液相線温度より高く、かつ700℃
以下である。
In the present invention, the temperature of the molten metal at the time of separating and removing the hardly soluble boride formed from the molten aluminum is not particularly limited as long as it is within a practical aluminum melting temperature range. In order to efficiently reduce the temperature, it is preferable that the temperature of the molten metal be higher than the liquidus temperature of the molten metal and 800 ° C. or less. When the temperature of the molten metal is lower than the liquidus temperature, a solidified phase is formed in the molten metal, and a boride is taken into the solidified phase. In some cases, the formed hardly soluble boride cannot be separated and removed. In addition, the molten metal temperature is 800
If the temperature is higher than ℃, it may be difficult to efficiently reduce the element group M. The temperature of the molten metal at the time of separating and removing the formed hardly soluble boride from the molten metal is more preferably higher than the liquidus temperature of the molten metal, and 750 ° C. or lower, more preferably lower than the liquidus temperature of the molten metal. High and 700 ° C
It is as follows.

【0015】本発明においては、元素群βは、元素群M
の中で元素群α以外の元素からなるが、その中でも元素
周期表のIVa、Va、VIa族から選ばれる元素、特に
V、Zrから選ばれる元素の場合、本発明による低減効
率が大きい。本発明は、元素群βの少なくとも1種類が
単独で2重量ppm以上含まれるアルミニウム溶湯につ
いて適用することができる。元素群βの濃度の上限は特
に限定されないが、元素群βの少なくとも1種類が単独
で30重量ppm以上含まれる場合には、本発明による
方法を2回以上繰り返して実施すると、より微量まで元
素群βを低減させることができる。すなわち、前記
〔1〕に記載のアルミニウムの精製方法を行なって得ら
れたアルミニウムに対して、〔1〕に記載のアルミニウ
ムの精製方法をさらに1回以上繰り返して行なうことに
より、より微量まで元素群βを低減させることができ
る。この時、2回目以降の精製において、難溶性の硼化
物を分離除去する時の溶湯温度を、それ以前の精製で実
施した該溶湯温度より低く設定することが好ましい。
In the present invention, the element group β is the element group M
Among them, elements other than the element group α are included. Among them, an element selected from the group IVa, Va, or VIa of the periodic table, particularly an element selected from V and Zr, has a large reduction efficiency according to the present invention. The present invention can be applied to an aluminum melt containing at least one element group β alone in an amount of 2 ppm by weight or more. The upper limit of the concentration of the element group β is not particularly limited. However, when at least one kind of the element group β is independently contained in an amount of 30 ppm by weight or more, the method according to the present invention may be repeated twice or more to obtain a trace amount of the element. The group β can be reduced. That is, by repeating the method for purifying aluminum according to [1] one or more times with respect to aluminum obtained by performing the method for purifying aluminum according to [1], the element group can be reduced to a trace amount. β can be reduced. At this time, in the second and subsequent purifications, it is preferable to set the temperature of the molten metal at the time of separating and removing the hardly soluble boride lower than the temperature of the molten metal performed in the previous purification.

【0016】次に、生じた難溶性の硼化物をアルミニウ
ム溶湯から分離除去する方法は特に限定されないが、ア
ルミニウム溶湯と比較すると生成された難溶性の硼化物
は比重が大きいので、最も簡単には該溶湯の静置などに
よる該硼化物の自然沈降分離が採用できる。例えば、元
素群αとBを添加・溶解後、アルミニウム溶湯を1〜1
00時間かけて沈静した後に該溶湯の上澄みを回収した
り、またはアルミニウム溶湯を1〜100時間かけて沈
静した後に一度該溶湯を凝固し硼化物が含まれる部分を
切断等により除去する方法等が挙げられる。その他の該
硼化物の分離除去方法として、遠心力を利用した遠心分
離、アルミニウム溶湯中へのガス吹込みによる浮上分
離、耐火性フィルターを用いたろ過分離、またはこれら
を2種類以上を組み合わせて行う方法等が採用できる。
Next, the method of separating and removing the hardly soluble boride generated from the molten aluminum is not particularly limited. However, since the hardly soluble boride generated has a higher specific gravity than the molten aluminum, it is most easily used. Spontaneous settling and separation of the boride by allowing the molten metal to stand can be employed. For example, after adding and dissolving the element groups α and B, the molten aluminum is adjusted to 1 to 1
For example, a method of collecting the supernatant of the molten metal after settling for 00 hours, or a method of solidifying the molten aluminum once for 1 to 100 hours and then solidifying the molten metal and removing a portion containing boride by cutting or the like. No. Other methods for separating and removing the boride include centrifugal separation using centrifugal force, flotation separation by blowing gas into molten aluminum, filtration separation using a fire-resistant filter, or a combination of two or more of these. A method can be adopted.

【0017】また、本発明のアルミニウムの精製方法
を、凝固アルミニウムとアルミニウム溶湯との間で相対
速度を生じさせて行うようなアルミニウムの偏析精製法
と組み合わせて実施しても、精製アルミニウムから難溶
性の硼化物を分離除去することが可能である。
Further, even if the method for purifying aluminum of the present invention is carried out in combination with a method for purifying aluminum by segregating and purifying the aluminum by generating a relative velocity between the solidified aluminum and the molten aluminum, it is difficult to remove the aluminum from the purified aluminum. Can be separated and removed.

【0018】本発明の方法により得られる元素群Mが低
減されたアルミニウムは、通常の電解コンデンサー用
箔、スパッタリングターゲット、ハードディスク基板、
超電導安定化材、ボンディングワイヤー等の原料として
使用できる。中でも電解コンデンサー用箔に好適に使用
できる。
The aluminum obtained by the method of the present invention, in which the element group M is reduced, can be used as a usual electrolytic capacitor foil, sputtering target, hard disk substrate,
It can be used as a raw material for superconducting stabilizers, bonding wires, etc. Among them, it can be suitably used for foil for electrolytic capacitors.

【0019】本発明の方法により得られる元素群Mが低
減されたアルミニウムは、例えば、電解コンデンサー用
箔に用いる場合は、元素群Mがそれぞれ10重量ppm
以下が好ましいとされ、さらに好ましくは元素群Mがそ
れぞれ5重量ppm以下、最も好ましくは元素群Mの中
で元素群αおよびV、Zrがそれぞれ2重量ppm以下
かつその他の元素群Mの濃度がそれぞれ5重量ppm以
下であり、本発明の精製方法により容易に達成できる。
The aluminum obtained by the method of the present invention, in which the element group M is reduced, is used, for example, in the case of foil for an electrolytic capacitor, when the element group M is 10 wt ppm.
The following are preferred, and the element group M is more preferably 5 ppm by weight or less, and most preferably the element group α, V, and Zr are 2 ppm by weight or less and the concentration of the other element group M is less than 5 ppm. Each is 5 ppm by weight or less, and can be easily achieved by the purification method of the present invention.

【0020】電解コンデンサー用箔への加工方法は通常
の方法に従えばよいが、例えば、「アルミニウム材料の
基礎と工業技術」(社団法人 軽金属協会 1991
年)の第347頁〜第350頁等に記載されているよう
に、スラブ鋳造、熱間圧延、冷間圧延、箔圧延などの工
程を経て電解コンデンサー用箔に加工する方法が採用で
きる。
The method for processing the foil for electrolytic capacitors may be in accordance with a usual method. For example, "Basic and industrial technology of aluminum material" (Light Metal Association of Japan, 1991)
As described in pages 347-350 of the year, a method of processing into a foil for an electrolytic capacitor through steps such as slab casting, hot rolling, cold rolling, and foil rolling can be adopted.

【0021】[0021]

【実施例】次に本発明の精製方法を実施例により更に詳
細に説明するが、本発明はこれらに限定されるものでは
ない。なお、本発明において、T原料に用いたアルミニ
ウム中の不純物分析は、GDMS(VG Microt
race(英国)製 VG9000)を用いて実施し
た。また、処理後のアルミニウム中の不純物分析は、
i、V、Zr、B濃度は、発光分光分析装置(島津製作
所(株)製 CQM−75)を用いて、Hf濃度はIC
P−AES[セイコー電子工業(株)製、SPS120
0VR]を用いて実施した。
EXAMPLES Next, the purification method of the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto. In the present invention, the analysis of impurities in aluminum used as the T raw material was performed by GDMS (VG Microt).
race (United Kingdom) VG9000). The analysis of impurities in aluminum after the treatment
The i, V, Zr, and B concentrations were measured using an emission spectrometer (CQM-75 manufactured by Shimadzu Corporation), and the Hf concentration was measured using an IC.
P-AES [manufactured by Seiko Denshi Kogyo KK, SPS120
0VR].

【0022】実施例1〜5 表1に記載の不純物を含む原料アルミニウム2kgを、
電気炉を用いて黒鉛るつぼ(内径100mmΦ)中で溶
解した。雰囲気には4l/分でアルゴンガスを流した。
溶湯温度750℃で元素群αが別表1記載の濃度となる
ように、TiあるいはHfを1000重量ppm程度含
むアルミニウム母合金(5N Alベースで作製)を添
加した。計算されたX/Y(式中、Xは元素群αの添加
総原子濃度、Yは元素群βの該溶湯中の総原子濃度を示
す。)は、0.3〜13であった(元素群Mの中で、<
1.0重量ppmについては0重量ppmとみなして計
算)。溶湯温度820℃で、Bを該溶湯中の元素群Mが
MB2を生成するに必要な量以上となるようにAl−4
%B母合金を添加し、30分毎に黒鉛棒を用いて該溶湯
を数回攪拌し、該溶湯温度で2時間かけて溶解した。そ
の後、別表1記載の沈静温度まで溶湯温度を下げた後に
15時間かけて沈静し、生成した硼化物粒子を沈降分離
させた。沈静後の該溶湯を黒鉛るつぼごと炉外に取り出
して、該溶湯を凝固させた。該溶湯を炉外に取り出して
該溶湯が全部凝固するまで約5分間であった。沈静後凝
固試料の底部から1cm上部で水平に切断し、その切断
面にて元素分析を実施した。ボロン処理後の不純物量を
表1に示すが、元素群Mは効率よく低減し、かつ残留量
も10重量ppm以下であった。
Examples 1 to 5 2 kg of raw aluminum containing impurities described in Table 1 was
It was melted in a graphite crucible (inner diameter 100 mmΦ) using an electric furnace. Argon gas was flowed into the atmosphere at 4 l / min.
An aluminum mother alloy (made on the basis of 5N Al) containing about 1000 ppm by weight of Ti or Hf was added so that the element group α had the concentration shown in Appendix 1 at a melt temperature of 750 ° C. The calculated X / Y (where X represents the total atomic concentration of the element group α and Y represents the total atomic concentration of the element group β in the molten metal) was 0.3 to 13 (element). In group M, <
1.0 ppm by weight is calculated assuming 0 ppm by weight). At a molten metal temperature of 820 ° C., B was changed to Al-4 so that the element group M in the molten metal became an amount necessary for generating MB 2 or more.
% B master alloy was added, and the melt was stirred several times using a graphite bar every 30 minutes, and melted at the melt temperature for 2 hours. Thereafter, the temperature of the molten metal was lowered to the settling temperature shown in Table 1 and then settled for 15 hours, and the formed boride particles were settled and separated. The calcined melt was taken out of the furnace together with the graphite crucible to solidify the melt. The molten metal was taken out of the furnace and it took about 5 minutes for the molten metal to solidify completely. After settling, the solidified sample was cut horizontally 1 cm above the bottom from the bottom, and the cut surface was subjected to elemental analysis. The amount of impurities after the boron treatment is shown in Table 1. As shown in Table 1, the content of the element group M was efficiently reduced, and the residual amount was 10 ppm by weight or less.

【0023】比較例1〜2 表1に記載の不純物を含む原料アルミニウム2kgを、
電気炉を用いて黒鉛るつぼ(内径100mmΦ)中で溶
解した。元素群αを添加しない以外は、実施例記載の方
法でボロン処理を実施した。沈静後凝固試料の底部から
1cm上部で水平に切断し、その切断面にて元素分析を
実施した。ボロン処理後の不純物量を表1に示すが、元
素群Mは低減しなかった、あるいは低減しても10重量
ppm以上残留していた。
Comparative Examples 1 and 2 2 kg of raw aluminum containing the impurities described in Table 1 was
It was melted in a graphite crucible (inner diameter 100 mmΦ) using an electric furnace. Boron treatment was performed by the method described in the example, except that the element group α was not added. After settling, the solidified sample was cut horizontally 1 cm above the bottom from the bottom, and the cut surface was subjected to elemental analysis. The amount of impurities after boron treatment is shown in Table 1. The element group M was not reduced, or remained at 10 ppm by weight or more even if it was reduced.

【0024】以上の実施例、比較例の条件、得られた結
果を表1に示す。なお、表中に記載のない元素群Mの濃
度は全て1.0重量ppm未満である。
Table 1 shows the conditions of the above Examples and Comparative Examples and the obtained results. Note that the concentrations of the element groups M not described in the table are all less than 1.0 ppm by weight.

【0025】[0025]

【表1】 [Table 1]

【0026】これまで、アルミニウム中の不純物元素の
中で、元素群Mの中には効率良く低減させるのが難しい
元素があり、比較例1〜2に示すように、現在実施され
ているような通常のボロン処理でも元素群Mは低減しな
いか、またはボロン処理後も比較的多量の元素群Mが残
留していた。これに対し、実施例1〜5に示す本発明に
よる精製方法によると、元素群Mが効率良く低減できて
いるのがわかる。
Heretofore, among the impurity elements in aluminum, there are elements that are difficult to reduce efficiently in the element group M, and as shown in Comparative Examples 1 and 2, The element group M was not reduced by the ordinary boron treatment, or a relatively large amount of the element group M remained after the boron treatment. On the other hand, according to the purification method of the present invention shown in Examples 1 to 5, it can be seen that the element group M can be efficiently reduced.

【0027】[0027]

【発明の効果】本発明によれば、アルミニウム中のT
i、V、Zr等の硼化アルミニウムより安定な硼化物を
形成する元素を効率良く低減させることができ、また、
本発明により精製して得られるアルミニウムは、電解コ
ンデンサー用箔、スパッタリングターゲット、ハードデ
ィスク基板、超電導安定化材、ボンディングワイヤー等
の原料として使用できる。中でも電解コンデンサー用箔
に好適に使用できる。
According to the present invention, T in aluminum
elements that form borides more stable than aluminum boride, such as i, V, and Zr, can be efficiently reduced;
The aluminum obtained by purification according to the present invention can be used as a raw material for foil for electrolytic capacitors, sputtering targets, hard disk substrates, superconducting stabilizers, bonding wires, and the like. Among them, it can be suitably used for foil for electrolytic capacitors.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】元素群Mは硼化アルミニウムより安定な硼
化物を形成する元素からなり、元素群αは元素群Mの中
でTi、Hfから選ばれる元素、元素群βは元素群Mの
中で元素群α以外の元素からなるとし、元素群βの中か
ら選ばれる元素を1種類以上、または更に元素群αの中
から選ばれる元素を1種類以上含むアルミニウム溶湯
に、元素群αを、X/Y(式中、Xは元素群αの添加総
原子濃度、Yは元素群βの該溶湯中の総原子濃度を示
す。)が0.2〜100となるように添加し、かつ該溶
湯中の元素群Mが硼化物を生成するのに必要な量以上と
なるようにBを添加し、生成させた硼化物を分離除去し
て元素群Mを低減させることを特徴とするアルミニウム
の精製方法。
An element group M is composed of an element that forms a boride more stable than aluminum boride. An element group α is an element selected from Ti and Hf in the element group M, and an element group β is an element group of the element group M. In the molten aluminum containing at least one element selected from the element group β, or at least one element selected from the element group α, the element group α , X / Y (where X represents the total atomic concentration of the element group α and Y represents the total atomic concentration of the element group β in the molten metal), and 0.2 to 100, and B is added so that the amount of the element group M in the molten metal is equal to or more than that necessary for generating a boride, and the generated boride is separated and removed to reduce the element group M. Purification method.
【請求項2】X/Yが1.0〜100である請求項1に
記載のアルミニウムの精製方法。
2. The method for purifying aluminum according to claim 1, wherein X / Y is 1.0 to 100.
【請求項3】生成させた硼化物を分離除去する時の溶湯
温度が、該溶湯の液相線温度より高く、かつ800℃以
下である請求項1または2に記載のアルミニウムの精製
方法。
3. The method for purifying aluminum according to claim 1, wherein the temperature of the molten metal at the time of separating and removing the formed boride is higher than the liquidus temperature of the molten metal and 800 ° C. or less.
【請求項4】元素群αが、Ti単独の元素である請求項
1〜3のいずれかに記載のアルミニウムの精製方法。
4. The method for purifying aluminum according to claim 1, wherein the element group α is an element of Ti alone.
【請求項5】元素群αが、Hf単独の元素である請求項
1〜3のいずれかに記載のアルミニウムの精製方法。
5. The method for purifying aluminum according to claim 1, wherein the element group α is an element of Hf alone.
【請求項6】元素群βが、IVa、Va、VIa族から選ば
れる元素である請求項1〜5のいずれかに記載のアルミ
ニウムの精製方法。
6. The method for purifying aluminum according to claim 1, wherein the element group β is an element selected from the group IVa, Va and VIa.
【請求項7】元素群βが、V、Zrから選ばれる元素で
ある請求項1〜5のいずれかに記載のアルミニウムの精
製方法。
7. The method for purifying aluminum according to claim 1, wherein the element group β is an element selected from V and Zr.
【請求項8】請求項1〜7に記載のアルミニウムの精製
方法を行なって得られたアルミニウムに対して、請求項
1〜7に記載のアルミニウムの精製方法をさらに1回以
上繰り返して行なうことを特徴とするアルミニウムの精
製方法。
8. The method for purifying aluminum obtained by performing the method for purifying aluminum according to claim 1 to 7, wherein the method for purifying aluminum is further repeated one or more times. Characteristic method of refining aluminum.
【請求項9】請求項1〜8のいずれかに記載のアルミニ
ウムの精製方法により得られる、元素群Mの濃度がそれ
ぞれ10重量ppm以下のアルミニウムを原料として用
いることを特徴とする電解コンデンサー用アルミニウム
箔。
9. An aluminum for an electrolytic capacitor, characterized by using, as a raw material, aluminum having a concentration of the element group M of not more than 10 ppm by weight, obtained by the method for purifying aluminum according to claim 1. Foil.
JP20018699A 1998-07-27 1999-07-14 Aluminum purification method and use of the obtained aluminum Expired - Fee Related JP4253936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20018699A JP4253936B2 (en) 1998-07-27 1999-07-14 Aluminum purification method and use of the obtained aluminum

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-210870 1998-07-27
JP21087098 1998-07-27
JP20018699A JP4253936B2 (en) 1998-07-27 1999-07-14 Aluminum purification method and use of the obtained aluminum

Publications (3)

Publication Number Publication Date
JP2000104128A true JP2000104128A (en) 2000-04-11
JP2000104128A5 JP2000104128A5 (en) 2006-07-20
JP4253936B2 JP4253936B2 (en) 2009-04-15

Family

ID=26512013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20018699A Expired - Fee Related JP4253936B2 (en) 1998-07-27 1999-07-14 Aluminum purification method and use of the obtained aluminum

Country Status (1)

Country Link
JP (1) JP4253936B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097528A (en) * 2000-09-22 2002-04-02 Sumitomo Chem Co Ltd Purification method of aluminum
JP2009174054A (en) * 2007-12-27 2009-08-06 Showa Denko Kk Metal refining method and apparatus, refined metal, cast metal, metallic product and electrolytic capacitor
JP2009174053A (en) * 2007-12-27 2009-08-06 Showa Denko Kk Metal refining method and apparatus, refining metal, refined metal, cast metal, metallic product and electrolytic capacitor
JP2009280918A (en) * 2003-03-18 2009-12-03 Showa Denko Kk Method for refining aluminum, high purity aluminum material, method for producing aluminum material for electrode of electrolytic capacitor and aluminum material for electrode of electrolytic capacitor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097528A (en) * 2000-09-22 2002-04-02 Sumitomo Chem Co Ltd Purification method of aluminum
JP2009280918A (en) * 2003-03-18 2009-12-03 Showa Denko Kk Method for refining aluminum, high purity aluminum material, method for producing aluminum material for electrode of electrolytic capacitor and aluminum material for electrode of electrolytic capacitor
JP2009174054A (en) * 2007-12-27 2009-08-06 Showa Denko Kk Metal refining method and apparatus, refined metal, cast metal, metallic product and electrolytic capacitor
JP2009174053A (en) * 2007-12-27 2009-08-06 Showa Denko Kk Metal refining method and apparatus, refining metal, refined metal, cast metal, metallic product and electrolytic capacitor

Also Published As

Publication number Publication date
JP4253936B2 (en) 2009-04-15

Similar Documents

Publication Publication Date Title
JP5184075B2 (en) Method for purifying molten metal
Hyman et al. Microstructure evolution in TiAl alloys with B additions: conventional solidification
Guzowski et al. The role of boron in the grain refinement of aluminum with titanium
JP2003171724A (en) METHOD OF PRODUCING Al-Sc MASTER ALLOY, AND Al-Sc MASTER ALLOY OBTAINED BY THE METHOD
WO2006041271A1 (en) Method of production of pure silicon
JPS5912731B2 (en) Method for refining aluminum or aluminum alloy
EP2032725B1 (en) Crystallisation method for the purification of a molten metal, in particular recycled aluminium
JP2000104128A (en) Method for refining aluminum and use of obtained aluminum
US3257199A (en) Thermal reduction
US3397056A (en) Separation of aluminum from impure aluminum sources
JP2002097528A (en) Purification method of aluminum
WO2019198476A1 (en) Impurity removal method
US20150376017A1 (en) Method for purifying silicon
US4891065A (en) Process for producing high purity magnesium
JPH0885833A (en) Method for refining rare earth metal
JPH09235631A (en) Method for removing iron from iron-containing molten aluminum
JPH0885832A (en) Method for melting aluminum or aluminum alloy
SU1271096A1 (en) Method of processing anode deposits of electrolytic refining of aluminium
JP3462617B2 (en) Purification method of Al or Al alloy
JPH07247108A (en) Purification of silicon
JPH09235632A (en) Method for removing manganese from manganese-containing molten aluminum
CN117845089A (en) Method for removing Fe element from cast aluminum alloy
JPH01279712A (en) Method for removing impurity from aluminum alloy
USRE27509E (en) Separation of aluminum prom impure aluminum sources
JPH08295961A (en) Method for refining aluminum or aluminum alloy

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060602

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060602

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080512

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081020

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees