JPH095304A - Ultrasonic flaw detection method in welded part between straight pipe and elbow - Google Patents

Ultrasonic flaw detection method in welded part between straight pipe and elbow

Info

Publication number
JPH095304A
JPH095304A JP7174384A JP17438495A JPH095304A JP H095304 A JPH095304 A JP H095304A JP 7174384 A JP7174384 A JP 7174384A JP 17438495 A JP17438495 A JP 17438495A JP H095304 A JPH095304 A JP H095304A
Authority
JP
Japan
Prior art keywords
probe
probes
elbow
flaw detection
straight pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7174384A
Other languages
Japanese (ja)
Inventor
Tasuku Shirai
翼 白井
Takashi Shibayama
隆 柴山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP7174384A priority Critical patent/JPH095304A/en
Publication of JPH095304A publication Critical patent/JPH095304A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE: To detect a flaw in a weld between a straight pipe and an elbow by arrang ing two probes so that a horizontal isosceles triangle whose base line is composed of the line connecting the probes to each other and vortex is at the intersection of the perpendicular bisector of the base line and a surface to be inspected can be formed. CONSTITUTION: A transmitting probe 1 and a receiving probe 2 are arranged so that, a transmitting beam LT and a receiving beam LR can be propagated through the vicinity of the internal surface of a section to be inspected in nearly the same line when the beams LT and LR are viewed from the side face in the axial direction. Consequently, both the beam LT from the probe 1 and the beam LR of reflected echoes from a defect F are propagated in parallel with the internal surface of a plate in the longitudinal section of the section to be inspected at the position where the defect exists and the noise of reflected echoes, etc., from penetration beads can be reduced remarkably, because the defect can be detected without making ultrasonic waves to incident to the penetration beads. Therefore, since the noise of reflected echoes, etc., from the penetration beads of the weld of an austenitic stainless steel pipe are remarkably reduced, the defect can be detected with high accuracy through a weld metal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ステンレス鋼管溶接部
の探傷試験に好適な直管とエルボとの溶接部の超音波探
傷方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for ultrasonic flaw detection of a welded portion between a straight pipe and an elbow, which is suitable for flaw detection testing of a welded portion of a stainless steel pipe.

【0002】[0002]

【従来の技術】原子力発電所では、その稼働中は、配管
溶接部には超音波探傷試験が行われている。従来の探傷
要領では、垂直0°と横波斜角45°,60°による被
検体の溶接部を挟んで両方向から超音波が入射するよう
に行われており、炭素鋼管の探傷には有効である。とこ
ろで、図2部分縦断面図に示すように、例えば、被検体
11が直管11aとエルボ11bとの溶接部12からな
るものにおいては、エルボ11bの曲率半径が小さいと
き、その腹側の探傷時に被検面と横波探触子21の接触
面の間に隙間dが生ずるため超音波が透入しなくなり、
斜線で示すような探傷不可能範囲が生ずる。これを避け
るためには、直管11a側からエルボ11b側を探傷す
ることが望ましい。しかし被検体11がステンレス鋼管
の溶接部12の場合、後記するように、横波探傷では溶
接金属中での減衰や林状エコーが大きく、そのため横波
探触子21を直管11a側からの探傷に適用することは
できない。また、被検体がオーステナイト系ステンレス
鋼の場合は、溶接金属が柱状晶となる関係上、音速の異
方性が生じ、特に横波による探傷では、異方性が著し
い。そのため、横波探傷では、溶接金属の裏波部付近か
らの疑似エコーが発生するので、欠陥エコーとの識別が
一般的に困難である。さらに、横波探傷では、溶接金属
中での減衰や林状エコーが大きいので、横波探傷はステ
ンレス鋼管の溶接部の探傷には必ずしも有効ではない。
この対策としては、横波探触子の代わりに縦波探触子の
適用が考えられ、従来の縦波探触子は林状エコーによる
ノイズを低減するために、図3縦断面図に示す前後分割
型や、図4斜視図に示す左右分割型が提案されている。
2. Description of the Related Art In a nuclear power plant, an ultrasonic flaw detection test is conducted on a welded portion of a pipe during its operation. In the conventional flaw detection procedure, ultrasonic waves are incident from both directions across the welded portion of the subject with a vertical angle of 0 ° and transverse wave oblique angles of 45 ° and 60 °, which is effective for flaw detection of carbon steel pipes. . By the way, as shown in the partial longitudinal sectional view of FIG. 2, for example, in the case where the subject 11 is composed of the welded portion 12 of the straight pipe 11a and the elbow 11b, when the radius of curvature of the elbow 11b is small, the flaw detection on the ventral side is performed. At some time, since a gap d is created between the surface to be inspected and the contact surface of the transverse wave probe 21, ultrasonic waves do not penetrate,
An undetectable range occurs as shown by the diagonal lines. In order to avoid this, it is desirable to detect flaws from the straight pipe 11a side to the elbow 11b side. However, when the specimen 11 is the welded portion 12 of the stainless steel pipe, as will be described later, in transverse wave flaw detection, attenuation and forest-like echo in the weld metal are large, and therefore the transverse wave probe 21 is used for flaw detection from the straight pipe 11a side. Not applicable. Further, when the test object is austenitic stainless steel, the anisotropy of sound velocity occurs due to the fact that the weld metal becomes columnar crystals, and the anisotropy is particularly remarkable in flaw detection by transverse waves. Therefore, in the transverse wave flaw detection, a pseudo echo is generated from the vicinity of the back wave portion of the weld metal, and it is generally difficult to distinguish it from the defect echo. Further, in transverse wave flaw detection, since attenuation and forest-like echo in the weld metal are large, transverse wave flaw detection is not necessarily effective for flaw detection of the welded portion of the stainless steel pipe.
As a countermeasure against this, it is conceivable to apply a longitudinal wave probe instead of the transverse wave probe, and the conventional longitudinal wave probe is used in order to reduce the noise due to the forest-like echo. A split type and a left and right split type shown in the perspective view of FIG. 4 have been proposed.

【0003】[0003]

【発明が解決しようとする課題】まず、図3の前後分割
型の縦波探触子22では、送信用振動子23と受信用振
動子24の屈折角θT ,θR を適当に設定することによ
り、被検体11中の深さDの位置のビーム交点で送信ビ
ームLT ,受信ビームLR の焦点を結ばせる。また、図
4の左右分割型の縦波探触子22では、発信用振動子2
3と受信用振動子24とを左右に配置し、被検体11中
のビーム交点Dで送信ビームLT ,受信ビームLR の焦
点を結ばせる。しかしながら、このような分割型縦波探
触子22を用い溶接金属を介して探傷する場合、図5説
明図に示すように、被検体11の表面に縦波探触子22
を当て溶接部12へ縦波を送ると、裏波14からの反射
エコーNがノイズとなって出現するため、欠陥Fのエコ
ーSとの識別が必ずしも容易ではないというような問題
があり、したがって直管とエルボとの溶接部に対し直管
側から溶接金属を介してエルボ側を探傷することが容易
ではない。
First, in the longitudinal wave type probe 22 of front and rear division type shown in FIG. 3, the refraction angles θ T and θ R of the transmitting oscillator 23 and the receiving oscillator 24 are set appropriately. As a result, the transmission beam L T and the reception beam L R are focused at the beam intersection at the position of the depth D in the subject 11. Further, in the left-right split type longitudinal wave probe 22 of FIG.
3 and the reception transducer 24 are arranged on the left and right, and the transmission beam L T and the reception beam L R are focused at the beam intersection D in the subject 11. However, when the split type longitudinal wave probe 22 is used for flaw detection via weld metal, as shown in the explanatory view of FIG. 5, the longitudinal wave probe 22 is provided on the surface of the subject 11.
When a longitudinal wave is applied to the welding portion 12 by hitting, the reflected echo N from the back wave 14 appears as noise, and therefore there is a problem that it is not always easy to distinguish the defect F from the echo S. It is not easy to detect flaws on the elbow side from the straight pipe side through the weld metal with respect to the welded portion of the straight pipe and the elbow.

【0004】本発明はこのような事情に鑑みて提案され
たもので、裏波からの反射エコーのノイズが大幅に低減
され、高精度の探傷を可能とする直管とエルボとの溶接
部の超音波探傷方法を提供することを目的とする。
The present invention has been proposed in view of the above circumstances, and the noise of the reflection echo from the back wave is significantly reduced, and the welded portion between the straight pipe and the elbow which enables highly accurate flaw detection. An object is to provide an ultrasonic flaw detection method.

【0005】[0005]

【課題を解決するための手段】このような目的を達成す
るために、請求項1の発明は、それぞれオーステナイト
系ステンレス鋼からなる前後方向の直管の前端にエルボ
の後端を同軸的に溶接してなる被検体の環状溶接部を超
音波探傷するに際して、上記直管の前端部上面にその前
後方向中心線に対して左右対称的に配設された送信用探
触子,受信用探触子からなる1対の探触子を設け、両探
触子を結ぶ線の前後方向への垂直2等分線の上記溶接部
のエルボ側被検面との交点に上記各探触子の送信ビー
ム,受信ビームを指向させて、上記送信ビームの上記被
検面からの反射波を上記受信用探触子により受信するに
当たり、上記左右1対の探触子を底辺の左右端とし、上
記交点を頂点とする水平二等辺三角形がほぼ形成される
ように、両探触子を配設したことを特徴とする。
In order to achieve such an object, the invention of claim 1 coaxially welds the rear end of an elbow to the front end of a straight pipe in the front-rear direction made of austenitic stainless steel. When ultrasonic flaw detection is performed on the annular welded portion of the subject, the transmitting probe and the receiving probe are symmetrically arranged on the upper surface of the front end of the straight pipe with respect to the longitudinal center line thereof. A pair of probes consisting of a child is provided, and each probe is transmitted to the intersection of the vertical bisector in the front-rear direction of the line connecting both probes with the elbow side test surface of the welded part. When the reflected beam from the surface to be inspected of the transmission beam is received by the reception probe by directing the beam and the reception beam, the pair of left and right probes are set to the left and right ends of the bottom, and the intersection point is set. Set both probes so that a horizontal isosceles triangle with And it said that it has set.

【0006】また、請求項2の発明は、請求項1におい
て、その左右1対の探触子の送信ビーム,受信ビームの
被検面に対する屈折角を60°〜80°とする縦波探触
子としたことを特徴とする。
According to a second aspect of the present invention, in the first aspect, a longitudinal wave probe is used in which the pair of left and right probes has a transmission beam and a reception beam having a refraction angle of 60 ° to 80 ° with respect to the surface to be inspected. Characterized by being a child.

【0007】[0007]

【作用】このような構成によれば、図1に示すように、
左方に送信用として配置した縦波60°〜80°の送信
用探触子1から送信される縦波が、被検部となる送信ビ
ームLT 及び受信ビームLR の交点でその被検体面に接
するように欠陥Fの面に入射し、欠陥Fからの反射エコ
ーは右方に配置した縦波60°〜80°の受信用探触子
2で検出される。それ故、このような探傷方法によれ
ば、被検溶接部の裏波に超音波を入射させることなし
に、欠陥を検出できるので、裏波からの反射エコー等の
ノイズが大幅に低減される。
According to this structure, as shown in FIG.
A longitudinal wave transmitted from the transmission probe 1 having a longitudinal wave of 60 ° to 80 ° arranged for transmission on the left side is the subject at the intersection of the transmission beam L T and the reception beam L R , which is the subject. The light is incident on the surface of the defect F so as to be in contact with the surface, and the reflection echo from the defect F is detected by the receiving probe 2 having a longitudinal wave of 60 ° to 80 ° arranged on the right side. Therefore, according to such a flaw detection method, a defect can be detected without injecting an ultrasonic wave into the backside wave of the welded portion to be inspected, so that noise such as a reflection echo from the backside wave is significantly reduced. .

【0008】[0008]

【実施例】本発明方法を直管とエルボとの同軸的溶接部
の探傷に適用した一実施例を図面について説明すると、
図1はその3面図を示し、同図(A)はその上面図,同
図(B)は同図(A)の管軸方向の正面図、同図(C)
は同図(A),(B)のC−C矢視縦断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the method of the present invention is applied to flaw detection of a coaxial weld between a straight pipe and an elbow will be described with reference to the drawings.
FIG. 1 shows its three-view drawing, FIG. 1 (A) is a top view thereof, FIG. 1 (B) is a front view in the pipe axis direction of FIG.
[Fig. 4] is a vertical cross-sectional view taken along line CC of Figs.

【0009】上図において、図2と同一の符号はそれぞ
れ同図と同一の部材を示し、1は送信用探触子,2は受
信用探触子であり、屈折角はいずれも縦波60°〜80
°である。Fは溶接部近傍の内表面欠陥である。両探触
子1,2は、それぞれのビームの入射点と欠陥Fがほぼ
同一平面上となるように配置され、送信用探触子1から
送信ビームLT を送信し、欠陥Fからの反射エコーの受
信ビームLR を受信用探触子2で受信する。ここで、欠
陥Fは同図(A)に示すように、両探触子1,2の垂直
2等分線であるとともに、直管11aの中心線上にあ
り、欠陥Fは同垂直2等分線と溶接部材のエルボ側開先
面(以下被検面という)上の交点上にあって、F,1,
2はFを頂点とする水平正三角形に近い2等辺三角形の
3頂点の関係にある。
In the above figure, the same reference numerals as in FIG. 2 denote the same members as in the same figure, respectively, 1 is a transmitting probe, 2 is a receiving probe, and the refraction angles are longitudinal waves 60. ° ~ 80
°. F is an inner surface defect near the weld. The probes 1 and 2 are arranged such that the incident point of each beam and the defect F are substantially on the same plane, and the transmission probe 1 transmits the transmission beam L T and the reflection from the defect F occurs. The reception beam L R of the echo is received by the reception probe 2. Here, as shown in FIG. 3A, the defect F is a vertical bisector of both the probes 1 and 2, and is on the center line of the straight pipe 11a. F, 1, on the intersection of the line and the elbow-side groove surface of the welded member (hereinafter referred to as the test surface)
2 has a relationship of three vertices of an isosceles triangle that is close to a horizontal equilateral triangle having F as a vertex.

【0010】その際、同図(B)に示すように、管軸方
向の側面から見たとき、送信ビームLT と受信ビームL
R がほぼ同一直線上にあり、かつ被検部材11の内表面
近傍を通過するように両探触子を配置する。このような
配置は、両探触子の屈折角と探触子の欠陥までの距離Y
b を適切に設定することにより可能である。例えば、板
厚13.5mmの4インチ配管では、Yb を80mmと
すると、両探触子間距離Lb は70mmとなり、屈折角
は78°となる。このような装置において、被検部11
をその中心線の周りに緩く回動しながら、エルボの溶接
部内表面を走査して、その都度、受信波を受信する。ま
た、その際、必要に応じて、被検部は静止し、両探触子
1,2を同一相互関係位置を保持した状態で全体的配置
を不変に保って、被検体をその中心線の周りに回動する
こともできる。
At this time, as shown in FIG. 1B, the transmission beam L T and the reception beam L when viewed from the side in the tube axis direction.
Both probes are arranged so that R is substantially on the same straight line and passes near the inner surface of the member 11 to be tested. With such an arrangement, the angle of refraction of both probes and the distance Y to the defect of the probes are
This is possible by setting b appropriately. For example, in a 4-inch pipe having a plate thickness of 13.5 mm, if Y b is 80 mm, the distance L b between both probes is 70 mm, and the refraction angle is 78 °. In such a device, the test part 11
While gently rotating around the center line, the inner surface of the weld of the elbow is scanned, and the received wave is received each time. Further, at that time, if necessary, the subject is stationary, the probe 1 and the probe 2 are held in the same mutual relation position, and the overall arrangement is kept unchanged, so that the subject is placed on the center line of the subject. It can also be rotated around.

【0011】このように探触子を配置した超音波探傷法
によれば、同図(B)に示すように、直管中心線に直交
する横鉛直面に正対する方向から見ると、送信探触子か
らの送信ビームLT 及び欠陥Fからの反射エコーの受信
ビームLR とも欠陥がある位置の縦断面では板の内表面
に平行に伝播することになる。したがって、裏波に超音
波を入射させることなしに、欠陥を検出できるので、裏
波からの反射エコー等のノイズが大幅に低減される。か
くして、このような超音波探傷法によれば、オーステナ
イト系ステンレス鋼管の溶接部の裏波からの反射エコー
等のノイズが大幅に低減されるので、溶接金属を介して
欠陥を高精度で検出することが可能となるのである。
According to the ultrasonic flaw detection method in which the probe is arranged in this way, as shown in FIG. 1B, when viewed from the direction directly facing the horizontal vertical plane orthogonal to the straight pipe center line, Both the transmitted beam L T from the tentacle and the received beam L R of the reflected echo from the defect F propagate parallel to the inner surface of the plate in the longitudinal section at the position where the defect exists. Therefore, the defect can be detected without applying ultrasonic waves to the back wave, and thus noise such as reflected echo from the back wave is significantly reduced. Thus, according to such an ultrasonic flaw detection method, noise such as a reflection echo from the back wave of the welded portion of the austenitic stainless steel pipe is significantly reduced, so that the defect can be detected with high accuracy through the weld metal. It becomes possible.

【0012】[0012]

【発明の効果】要するに請求項1の発明によれば、それ
ぞれオーステナイト系ステンレス鋼からなる前後方向の
直管の前端にエルボの後端を同軸的に溶接してなる被検
体の環状溶接部を超音波探傷するに際して、上記直管の
前端部上面にその前後方向中心線に対して左右対称的に
配設された送信用探触子,受信用探触子からなる1対の
探触子を設け、両探触子を結ぶ線の前後方向への垂直2
等分線の上記溶接部のエルボ側被検面との交点に上記各
探触子の送信ビーム,受信ビームを指向させて、上記送
信ビームの上記被検面からの反射波を上記受信用探触子
により受信するに当たり、上記左右1対の探触子を底辺
の左右端とし、上記交点を頂点とする水平二等辺三角形
がほぼ形成されるように、両探触子を配設したことによ
り、裏波からの反射エコーのノイズが大幅に低減され、
高精度の探傷を可能とする直管とエルボとの溶接部の超
音波探傷方法を得るから、本発明は産業上極めて有益な
ものである。
In summary, according to the first aspect of the present invention, the annular welded portion of the subject is formed by coaxially welding the rear end of the elbow to the front end of the straight pipe in the front-rear direction made of austenitic stainless steel. At the time of sonic flaw detection, a pair of probes consisting of a transmission probe and a reception probe are provided on the upper surface of the front end portion of the straight pipe symmetrically with respect to the longitudinal center line thereof. , Perpendicular to the front-back direction of the line connecting both transducers 2
The transmission beam and the reception beam of each probe are directed to the intersection of the bisector and the elbow side test surface of the welded portion, and the reflected wave from the test surface of the transmission beam is received by the reception probe. By receiving the probes, the probes are arranged so that the pair of left and right probes are at the left and right ends of the base and the horizontal isosceles triangle with the intersection as the apex is substantially formed. , The noise of the reflection echo from the back wave is greatly reduced,
The present invention is extremely useful industrially because an ultrasonic flaw detection method for a welded portion of a straight pipe and an elbow that enables flaw detection with high precision is obtained.

【0013】請求項2の発明によれば、請求項1におい
て、その左右1対の探触子の送信ビーム,受信ビームの
被検面に対する屈折角を60°〜80°とする縦波探触
子としたことにより、裏波からの反射エコーのノイズが
大幅に低減され、高精度の探傷を可能とする直管とエル
ボとの溶接部の超音波探傷方法を得るから、本発明は産
業上極めて有益なものである。
According to a second aspect of the present invention, in the first aspect, a longitudinal wave probe is used in which the pair of left and right probes has a transmission beam and a reception beam having a refraction angle of 60 ° to 80 ° with respect to the surface to be inspected. Since the noise of the reflection echo from the back wave is significantly reduced by using the child, an ultrasonic flaw detection method for a welded portion between a straight pipe and an elbow that enables flaw detection with high accuracy is obtained. It is extremely useful.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す3面図であって、同図
(A)はその上面図,同図(B)は図1の管軸方向から
見た正面図,同図(C)は図1のC−C矢視縦断面図兼
作用説明図である。
FIG. 1 is a three-view drawing showing an embodiment of the present invention, in which FIG. 1 (A) is a top view thereof, and FIG. 1 (B) is a front view seen from the axial direction of FIG. 2C is a vertical sectional view taken along the line CC of FIG.

【図2】直管及びエルボの溶接部の被検体における横波
被探触子によるを示す部分縦断面図である。
FIG. 2 is a partial vertical cross-sectional view showing a shear wave probe in a subject of a welded portion of a straight pipe and an elbow.

【図3】従来の前後分割型探触子を示す縦断面図であ
る。
FIG. 3 is a vertical cross-sectional view showing a conventional front and rear split type probe.

【図4】従来の左右分割型探触子を示す斜視図である。FIG. 4 is a perspective view showing a conventional left and right split type probe.

【図5】従来の被検体の溶接部における縦波探触子のノ
イズ発生の説明図である。
FIG. 5 is an explanatory diagram of noise generation of a longitudinal wave probe in a conventional weld portion of a subject.

【符号の説明】[Explanation of symbols]

1 送信用探触子 2 受信用探触子 10 被検体 11 被検部 11a 直管 11b エルボ 12 溶接部 13 被検面(エルボ側開先面) 14 裏波 LT 送信ビーム Lb 探触子間距離 LR 受信ビーム Yb 欠陥と探触子間距離DESCRIPTION OF SYMBOLS 1 Transmitting probe 2 Receiving probe 10 Test object 11 Test part 11a Straight pipe 11b Elbow 12 Welded part 13 Test surface (elbow side groove surface) 14 Back wave L T Transmit beam L b Probe Distance L R Received beam Y b Distance between defect and probe

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 それぞれオーステナイト系ステンレス鋼
からなる前後方向の直管の前端にエルボの後端を同軸的
に溶接してなる被検体の環状溶接部を超音波探傷するに
際して、上記直管の前端部上面にその前後方向中心線に
対して左右対称的に配設された送信用探触子,受信用探
触子からなる1対の探触子を設け、両探触子を結ぶ線の
前後方向への垂直2等分線の上記溶接部のエルボ側被検
面との交点に上記各探触子の送信ビーム,受信ビームを
指向させて、上記送信ビームの上記被検面からの反射波
を上記受信用探触子により受信するに当たり、上記左右
1対の探触子を底辺の左右端とし、上記交点を頂点とす
る水平二等辺三角形がほぼ形成されるように、両探触子
を配設したことを特徴とする直管とエルボとの溶接部の
超音波探傷方法。
1. A front end of a straight pipe, which is formed by coaxially welding a rear end of an elbow to a front end of a straight pipe in the front-rear direction made of austenitic stainless steel, by ultrasonic flaw detection. A pair of probes consisting of a transmitting probe and a receiving probe, which are arranged symmetrically with respect to the front-rear direction center line, are provided on the upper surface of the part, and the front and rear of the line connecting both the probes. The transmitted beam and the received beam of each probe are directed to the intersection of the perpendicular bisector of the probe with the elbow-side surface to be inspected, and a reflected wave of the transmission beam from the surface to be inspected is directed. When the probe for reception is received, the pair of left and right probes are used as left and right ends of the bottom side, and both probes are formed so that a horizontal isosceles triangle having the intersection as the apex is formed substantially. An ultrasonic flaw detection method for a welded portion between a straight pipe and an elbow, which is characterized by being provided.
【請求項2】 請求項1において、その左右1対の探触
子の送信ビーム,受信ビームの被検面に対する屈折角を
60°〜80°とする縦波探触子としたことを特徴とす
る直管とエルボとの溶接部の超音波探傷方法。
2. The longitudinal wave probe according to claim 1, wherein the pair of left and right probes has a transmission beam and a reception beam having a refraction angle of 60 ° to 80 ° with respect to the test surface. Ultrasonic flaw detection method for welds between straight pipes and elbows.
JP7174384A 1995-06-16 1995-06-16 Ultrasonic flaw detection method in welded part between straight pipe and elbow Pending JPH095304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7174384A JPH095304A (en) 1995-06-16 1995-06-16 Ultrasonic flaw detection method in welded part between straight pipe and elbow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7174384A JPH095304A (en) 1995-06-16 1995-06-16 Ultrasonic flaw detection method in welded part between straight pipe and elbow

Publications (1)

Publication Number Publication Date
JPH095304A true JPH095304A (en) 1997-01-10

Family

ID=15977679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7174384A Pending JPH095304A (en) 1995-06-16 1995-06-16 Ultrasonic flaw detection method in welded part between straight pipe and elbow

Country Status (1)

Country Link
JP (1) JPH095304A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003057214A (en) * 2001-08-10 2003-02-26 Nkk Corp Ultrasonic flaw detection method and apparatus in fillet welding section
JP2017096770A (en) * 2015-11-24 2017-06-01 日立Geニュークリア・エナジー株式会社 Ultrasonic inspection method and device
CN106932489A (en) * 2015-12-30 2017-07-07 核动力运行研究所 Welding line ultrasonic check device at a kind of pipeline reducing diameter
JP2018194528A (en) * 2017-05-22 2018-12-06 日立Geニュークリア・エナジー株式会社 Ultrasound wave inspection system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003057214A (en) * 2001-08-10 2003-02-26 Nkk Corp Ultrasonic flaw detection method and apparatus in fillet welding section
JP2017096770A (en) * 2015-11-24 2017-06-01 日立Geニュークリア・エナジー株式会社 Ultrasonic inspection method and device
CN106932489A (en) * 2015-12-30 2017-07-07 核动力运行研究所 Welding line ultrasonic check device at a kind of pipeline reducing diameter
CN106932489B (en) * 2015-12-30 2023-06-13 核动力运行研究所 Ultrasonic inspection device for welding line at reducing position of pipeline
JP2018194528A (en) * 2017-05-22 2018-12-06 日立Geニュークリア・エナジー株式会社 Ultrasound wave inspection system

Similar Documents

Publication Publication Date Title
US4685334A (en) Method for ultrasonic detection of hydrogen damage in boiler tubes
JP4544240B2 (en) Tubular ultrasonic inspection apparatus and ultrasonic inspection method
JP4910770B2 (en) Tubular ultrasonic inspection apparatus and ultrasonic inspection method
JPH0352908B2 (en)
CN103969341A (en) Ultrasonic testing special probe for butt girth welding of austenitic stainless steel pipe
JP2011149888A (en) Compound-type ultrasonic probe, and ultrasonic flaw detection method by tofd method using the probe
JP4728838B2 (en) Ultrasonic spot weld evaluation method and apparatus
JP5574731B2 (en) Ultrasonic flaw detection test method
JP2002062281A (en) Flaw depth measuring method and its device
JP4144703B2 (en) Tube inspection method using SH waves
JP3140157B2 (en) Ultrasonic flaw detection method for planar defects
JPH095304A (en) Ultrasonic flaw detection method in welded part between straight pipe and elbow
CN110687205A (en) Ultrasonic longitudinal wave reflection method and diffraction time difference method combined detection method and TOFD probe applied to method
JPWO2020039850A1 (en) Bonding interface evaluation method and bonding interface evaluation device
JP2016050811A (en) Ultrasonic flaw detector and ultrasonic flaw detection method based on tofd flaw detection technique
CN205691552U (en) A kind of heat exchanger tube sheet angle welding ultrasound wave automatic detection device
卜阳光 et al. Research on ultrasonic phased array multi-mode total focusing inspection technology for nozzle fillet welds
JPH08136512A (en) Ultrasonic flaw detection method at seam welded part of steel pipe
CN203758968U (en) Ultrasonic-detecting special probe for butt-joint ring welding seam of austenite stainless steel tube
JP4175762B2 (en) Ultrasonic flaw detector
JPH05119025A (en) Flaw detection method of circumference welding part
JP2007263956A (en) Ultrasonic flaw detection method and apparatus
JPH022924A (en) Ultrasonic wave flaw detecting apparatus for seam welded pipe
JP2003057214A (en) Ultrasonic flaw detection method and apparatus in fillet welding section
CN211086201U (en) Ultrasonic longitudinal wave reflection method and diffraction time difference method combined detection probe group

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19991006