JPS6411144B2 - - Google Patents

Info

Publication number
JPS6411144B2
JPS6411144B2 JP56030651A JP3065181A JPS6411144B2 JP S6411144 B2 JPS6411144 B2 JP S6411144B2 JP 56030651 A JP56030651 A JP 56030651A JP 3065181 A JP3065181 A JP 3065181A JP S6411144 B2 JPS6411144 B2 JP S6411144B2
Authority
JP
Japan
Prior art keywords
round steel
steel bar
refraction angle
flaw detection
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56030651A
Other languages
Japanese (ja)
Other versions
JPS57144457A (en
Inventor
Masayoshi Iwasaki
Akio Suzuki
Hitoshi Uchiumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP56030651A priority Critical patent/JPS57144457A/en
Publication of JPS57144457A publication Critical patent/JPS57144457A/en
Publication of JPS6411144B2 publication Critical patent/JPS6411144B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/27Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the material relative to a stationary sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/32Arrangements for suppressing undesired influences, e.g. temperature or pressure variations, compensating for signal noise
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/262Linear objects
    • G01N2291/2626Wires, bars, rods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/263Surfaces
    • G01N2291/2634Surfaces cylindrical from outside

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、丸棒鋼の超音波探傷方法に関し、丸
棒鋼中の微細な皮下非金属介在物等の表皮下欠陥
を超音波探傷法で検出する方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an ultrasonic flaw detection method for round steel bars, and detects subcutaneous defects such as minute subcutaneous nonmetallic inclusions in round steel bars by ultrasonic flaw detection. Regarding how to.

(従来の技術) 丸棒鋼の製造ラインにおいては、製造段階のビ
レツト状態での探傷が一般に行なわれており、通
常、表面から深さが材直径の約10%の範囲内は探
傷し品質を保証している。従つて、最終検査で
は、その深さの範囲に存在する微細な非金属介在
物を検出する必要がある。しかし、この種の丸棒
鋼の表皮下の検査に超音波探傷法を採用する技術
は、従来、殆んど提案されていない。
(Conventional technology) In the production line of round steel bars, flaw detection is generally carried out in the billet state at the production stage, and usually flaws are detected within a range of approximately 10% of the material diameter from the surface to ensure quality. are doing. Therefore, in the final inspection, it is necessary to detect minute nonmetallic inclusions present within this depth range. However, almost no technology has been proposed to date that employs ultrasonic flaw detection for subcutaneous inspection of this type of round steel bar.

これに比較的近い技術としては、米国において
ASTM規格E588にベアリング用鋼を超音波探傷
し、得られたエコーの頻度により鋼材の品質判定
を行なう方法が規定されている。これは、5MHz
又は10MHzの焦点型探触子を用いて垂直探傷を行
ない、基準を超えたエコーの数を計数積算し、そ
の積算値から介在物量を推定し品質レベルを判定
しようとするものである。
A technology relatively similar to this is in the United States.
ASTM standard E588 stipulates a method for conducting ultrasonic flaw detection on bearing steel and determining the quality of the steel material based on the frequency of the obtained echoes. This is 5MHz
Alternatively, vertical flaw detection is performed using a 10MHz focused probe, the number of echoes exceeding the standard is counted and integrated, and the amount of inclusions is estimated from the integrated value to determine the quality level.

また、丸棒鋼の探傷法には、2分割型探触子を
用いたものも一部提案されている。
In addition, some flaw detection methods for round steel bars using a two-piece probe have been proposed.

(発明が解決しようとする課題) 垂直探傷であると、材表面からの反射エコーが
ノイズとなつて邪魔になり、表面直下にある非金
属介在物の検出ができないという欠点がある。
(Problems to be Solved by the Invention) Vertical flaw detection has the disadvantage that echoes reflected from the material surface become noise and become an obstruction, making it impossible to detect nonmetallic inclusions directly beneath the surface.

2分割型探触子を用いるものでは、表面下5mm
以浅は不感帯であつて探傷不能になるという欠点
がある。
For those using a two-piece probe, 5mm below the surface.
The disadvantage is that the shallower area is a dead zone and cannot be detected.

本発明は上記に鑑み、丸棒鋼中の表皮下深さが
材直径の約10%以浅の欠陥を、材表面からのノイ
ズに邪魔されることなく検出できる超音波探傷方
法を提供することを目的とする。
In view of the above, an object of the present invention is to provide an ultrasonic flaw detection method that can detect defects in a round steel bar whose subcutaneous depth is approximately 10% or less of the material diameter without being disturbed by noise from the material surface. shall be.

(課題を解決するための手段) 本発明の特徴とするところは、丸棒鋼に対して
外表面から屈折角45±8゜になるように超音波を入
射し、材中に入つた超音波が材表面で反射する第
1反射位置で該超音波を収束させ、前記第1反射
位置の前後域からの反射信号を捉えて表皮下欠陥
を検出する点にある。
(Means for Solving the Problems) A feature of the present invention is that ultrasonic waves are incident on a round steel bar from the outer surface at a refraction angle of 45±8°, and the ultrasonic waves that have entered the material are The method is to converge the ultrasonic waves at a first reflection position where they are reflected on the material surface, and to detect subepidermal defects by capturing reflected signals from areas before and after the first reflection position.

(実施例) 以下、本発明の実施例を図面に基づき説明す
る。
(Example) Hereinafter, an example of the present invention will be described based on the drawings.

第1図は本発明方法を実施する超音波探傷装置
を示し、1は水槽、2は該水槽1の水中を通過す
る丸棒鋼であり、該水槽1の前後において一対の
スキユーロール3,3とピンチロール4とにより
夫々上下から挟持されている。
FIG. 1 shows an ultrasonic flaw detection apparatus for carrying out the method of the present invention, in which 1 is a water tank, 2 is a round steel bar that passes through the water in the water tank 1, and is connected to a pair of ski rolls 3, 3 in front and back of the water tank 1. They are held between the upper and lower sides by the rolls 4, respectively.

スキユーロール3,3は、第2図の如く水平面
内で丸棒鋼2に対し一定角度だけ傾斜するように
配置されており、軸受ケース5,5、軸受台6,
6を介して軸心廻り回転自在に支持されると共
に、巻掛伝動機構7を介して図外のモータにより
夫々矢印方向に駆動される。
The skie rolls 3, 3 are arranged so as to be inclined at a certain angle with respect to the round steel bar 2 in a horizontal plane as shown in FIG.
6 to be rotatably supported around the axis, and each is driven in the direction of the arrow by a motor (not shown) via a winding transmission mechanism 7.

ピンチロール4は、一対のスキユーロール3,
3間の上方位置で、それらスキユーロール3,3
と丸棒鋼の軸心に対して鏡映な軸心廻りに遊転自
在となるように支持部材8の下端に枢支されてい
る。これにより、丸棒鋼2はスキユーロール3,
3からの回転力を受けて、軸心廻りに回転しなが
ら長手方向に搬送される。
The pinch roll 4 is a pair of ski rolls 3,
In the upper position between 3 and 3, they skie roll 3,3
It is pivotally supported at the lower end of the support member 8 so as to be freely rotatable around an axis mirroring the axis of the round steel bar. As a result, the round bar 2 is moved to the ski roll 3,
3, and is conveyed in the longitudinal direction while rotating around the axis.

9は2焦点型レンズ10を使用した点焦点型探
触子であつて、前後一対のピンチロール4間の中
央に位置し、かつ、丸棒鋼2に対して下側から超
音波を入射するように水槽1内に設定されてい
る。この探触子9は、探触子保持調整装置11に
より上下並びに横方向に位置調整自在に支持され
ている。その他、12は探傷器、13は記録計、
14はモニタ用オツシロスコープである。
Reference numeral 9 denotes a point focus type probe using a bifocal type lens 10, which is located at the center between the pair of front and rear pinch rolls 4, and is configured to input ultrasonic waves into the round steel bar 2 from below. is set in tank 1. The probe 9 is supported by a probe holding and adjusting device 11 so that its position can be adjusted vertically and laterally. In addition, 12 is a flaw detector, 13 is a recorder,
14 is a monitoring oscilloscope.

丸棒鋼2の超音波探傷に際しては、先ず探触子
保持調整装置11を操作して、探触子9の丸棒鋼
2に対する上下並びに横方向の位置を調整する。
この探触子9の上下方向の位置調節により、第3
図で示す探触子9から丸棒鋼2の超音波入射点ま
での水距離Hを調整する。また、探触子9の横方
向の位置調整により、探触子9の中心軸と、この
中心軸と平行な丸棒鋼2の中心軸とのずらせ量で
あるオフセツト量Wを調整する。
When performing ultrasonic flaw detection on the round steel bar 2, first, the probe holding and adjusting device 11 is operated to adjust the vertical and lateral positions of the probe 9 relative to the round steel bar 2.
By adjusting the position of the probe 9 in the vertical direction, the third
The water distance H from the probe 9 to the ultrasonic incidence point of the round steel bar 2 shown in the figure is adjusted. Further, by adjusting the position of the probe 9 in the lateral direction, an offset amount W, which is the amount of shift between the center axis of the probe 9 and the center axis of the round steel bar 2 parallel to this center axis, is adjusted.

そして、各スキユーロール3,3を回転駆動す
ることで、丸棒鋼2は、スキユーロール3,3及
びピンチロール4によつて水槽1の前後で上下か
ら挟持された状態で、軸心廻りに回転しながら長
手方向に一定速度で搬送される。そして、探触子
9から超音波を発信することで探傷が行なわれ
る。
By rotationally driving each of the skie rolls 3, 3, the round steel bar 2 is rotated around its axis while being pinched from above and below by the skie rolls 3, 3 and the pinch rolls 4 at the front and back of the water tank 1. It is conveyed at a constant speed in the longitudinal direction. Then, flaw detection is performed by transmitting ultrasonic waves from the probe 9.

上記超音波探傷装置により、丸棒鋼2に対して
外表面から屈折角αが45±80となるように超音波
を入射し、かつ、その丸棒鋼2の材中に入つた超
音波を材表面で反射する第1反射位置〔以下1B
点と略記する〕で収束させる。また、探傷器12
では、1B点の前後の範囲Gにゲートをかけて、
その範囲Gから生じる反射信号を捉えて、丸棒鋼
2中の表面下約10%の範囲内にある非金属介在物
を検出する。
Using the above ultrasonic flaw detection device, ultrasonic waves are incident on the round steel bar 2 from the outer surface so that the refraction angle α is 45± 80 , and the ultrasonic waves that have entered the material of the round steel bar 2 are detected. The first reflection position reflected by the surface [hereinafter 1B
(abbreviated as point)]. In addition, flaw detector 12
Now, apply a gate to the range G before and after point 1B,
The reflected signal generated from the range G is captured to detect nonmetallic inclusions within a range of about 10% below the surface of the round steel bar 2.

なお、上記探傷に際し、丸棒鋼2中の微細な介
在物を検出するためには、結晶粒界からのノイズ
の低減を図る必要があり、ビーム径の細い超音波
ビームを使用することが望ましい。一般に、レン
ズ10等により超音波を収束させた時、その超音
波ビームに生じる広がり角θ(6dBダウンの広が
り角)は次の式で示される。
In addition, in the above flaw detection, in order to detect fine inclusions in the round steel bar 2, it is necessary to reduce noise from grain boundaries, and it is desirable to use an ultrasonic beam with a small beam diameter. Generally, when an ultrasonic wave is converged by a lens 10 or the like, the spread angle θ (6 dB down spread angle) generated in the ultrasonic beam is expressed by the following formula.

θ=2sin-1(0.51λ/D) λ:波長 D:探触子の直径 また、収束された超音波ビームのビーム径d
は、焦点までの距離Lと式で表わされる広がり
角θとによつて次の式のように決まる。
θ=2sin -1 (0.51λ/D) λ: Wavelength D: Diameter of probe Also, beam diameter d of the focused ultrasound beam
is determined by the distance L to the focal point and the spread angle θ expressed by the following equation.

d=2L tanθ/2 但しdは波長λ以下にはならない。 d=2L tanθ/2 However, d cannot be less than the wavelength λ.

従つて、探触子9が大きく、波長が短かく、焦
点距離が短かくなるほど、超音波ビームは細く収
束することができ、その点での音圧も上昇して検
出感度を向上させることができ好ましい。
Therefore, the larger the probe 9, the shorter the wavelength, and the shorter the focal length, the narrower the ultrasound beam can be focused, and the sound pressure at that point will also increase, improving detection sensitivity. It's good to be able to do it.

また、水中に丸棒鋼2を沈め、その外表面から
超音波を入射すると、丸棒鋼2の表面の曲率に起
因するレンズ効果により材中ではビームが広が
る。そのため、超音波ビームが第4図に示す如く
1B点に焦点を持つようにするためには、その広
がりを考慮して超音波ビームを材中に入射する必
要がある。この場合、レンズ10を一定にすれ
ば、水距離Hを大きくすると焦点位置は手前に移
動し、小さくすると反対方向に移動する。このこ
とは、水距離Hを変化させて幾何光学的作図を行
なつた結果を示す第5図A〜Cからもわかる。な
お、この作図結果からも明らかなように、水距離
Hを大きくすれば、1B点以遠でもう一度焦点を
結ぶ条件があることが分かる。
Furthermore, when the round steel bar 2 is submerged in water and ultrasonic waves are applied from its outer surface, the beam spreads inside the material due to the lens effect caused by the curvature of the surface of the round steel bar 2. Therefore, the ultrasonic beam is as shown in Figure 4.
In order to have a focal point at point 1B, it is necessary to consider the spread of the ultrasonic beam and enter it into the material. In this case, if the lens 10 is kept constant, increasing the water distance H will move the focal point toward you, and decreasing it will move the focal point in the opposite direction. This can also be seen from FIGS. 5A to 5C, which show the results of geometrical optical drawing while changing the water distance H. Note that, as is clear from this plotting result, if the water distance H is increased, there is a condition for refocusing beyond point 1B.

また、屈折角αを調整するためには、オフセツ
ト量Wを調整すればよい。これは、屈折角αとオ
フセツト量Wとの関係は次の式で示されること
による。
Further, in order to adjust the refraction angle α, the offset amount W may be adjusted. This is because the relationship between the refraction angle α and the offset amount W is expressed by the following equation.

sin α=Vs/Vw×W/R Vs:材中の横波音速、Vw:水中の音速、 R:材中の半径 すなわち、オフセツト量Wの概念を導入するこ
とで、探触子9の平行移動だけで屈折角αの制御
をでき、探傷作業の簡便化を図れる。
sin α=Vs/Vw×W/R Vs: Transverse sound velocity in the material, Vw: Sound velocity in water, R: Radius in the material In other words, by introducing the concept of offset amount W, the parallel movement of the probe 9 The refraction angle α can be controlled simply by using the same method, and the flaw detection work can be simplified.

第6図乃至第8図に、丸棒鋼2中に直径1mmの
横穴人工欠陥を異なる深さに作り、そのエコー高
さを実際に測定した結果を示す。なお、丸棒鋼2
の外径40mm、2焦点レンズの焦点距離周方向69
mm、軸方向110mm、周波数5MHz、探触子径19mmと
した。また、第3図に示す丸棒鋼2中のa.b.c点
それぞれにおける信号を第6図及び第7図ではそ
れぞれ〇.△及び×印で示した。
Figures 6 to 8 show the results of actually measuring the echo heights of artificial horizontal holes with a diameter of 1 mm made at different depths in the round steel bar 2. In addition, round steel bar 2
The outer diameter of the lens is 40 mm, and the focal length of the bifocal lens is 69 in the circumferential direction.
mm, axial direction 110 mm, frequency 5 MHz, and probe diameter 19 mm. In addition, the signals at each point ABC in the round steel bar 2 shown in FIG. 3 are shown as 0.0 in FIG. 6 and FIG. 7, respectively. Indicated by △ and × marks.

第6図A〜Dはそれぞれ異なつた深さの人工欠
陥での、屈折角45゜の時の水距離H(μsec)と感
度、即ち水距離Hとエコー高さ(V)との関係を
示す。
Figures 6A to 6D show the relationship between water distance H (μsec) and sensitivity, that is, water distance H and echo height (V) at a refraction angle of 45°, for artificial defects of different depths. .

第7図A〜Dはそれぞれ異なつた深さの人工欠
陥での、オフセツト変化(mm)と感度、即ち屈折
角(α)の変化とエコー高さ(V)との関係を示
す。
FIGS. 7A to 7D show the relationship between offset change (mm) and sensitivity, that is, change in refraction angle (α) and echo height (V), for artificial defects of different depths.

第8図はオフセツト変化(mm)、即ち屈折角
(α)の変化とノイズエコー高さ(V)(1B点か
らのノイズエコー)との関係を示す。
FIG. 8 shows the relationship between the offset change (mm), that is, the change in the refraction angle (α), and the noise echo height (V) (noise echo from point 1B).

なお、第6図及び第7図のエコー高さは、探傷
器の感度を40dBにした時、第8図のノイズエコ
ー高さは探傷器の感度を80dBにした時のデータ
である。また、前述のようにオフセツト変化と屈
折角変化は一義的に対応していることから、第7
図及び第8図の横軸にはオフセツト量と屈折角を
併記している。更に、ノイズエコー高さは材表面
の微妙な凹凸によつて変化するため、第8図では
その最大値と最小値との上下幅を示し、それらの
平均値を〇印でプロツトしている。
Note that the echo heights in FIGS. 6 and 7 are data when the sensitivity of the flaw detector is set to 40 dB, and the noise echo height in FIG. 8 is data when the sensitivity of the flaw detector is set to 80 dB. Furthermore, since the offset change and the refraction angle change uniquely correspond as mentioned above, the seventh
The offset amount and the refraction angle are also shown on the horizontal axes of the figures and FIG. 8. Furthermore, since the noise echo height varies depending on the subtle unevenness of the material surface, Fig. 8 shows the vertical width between the maximum and minimum values, and plots their average value with a circle.

第6図及び第7図より、1B点以降のC点にお
いて検出すると、水距離Hにそれほど依存せず、
高感度で検出できることがわかる。
From Figures 6 and 7, when detected at point C after point 1B, it does not depend much on the water distance H;
It can be seen that detection is possible with high sensitivity.

これは、上記人工欠陥の探傷に際し丸棒鋼2に
入射した超音波ビームの実測形状が、第9図に示
すように、1B点以遠で細く収束されていること
と符号する。よつて、超音波ビームを1B点で収
束させれば、その1B点の前後域で高感度の探傷
をできることがわかる。
This corresponds to the fact that the actually measured shape of the ultrasonic beam incident on the round steel bar 2 during the detection of the artificial defect is narrowly converged from point 1B onwards, as shown in FIG. Therefore, it can be seen that if the ultrasonic beam is focused at point 1B, highly sensitive flaw detection can be performed in the area before and after point 1B.

また、探傷器12においてゲートをかける範囲
Gは、欠陥での超音波の反射が等方的であれば、
1B点の前方域のみ、あるいは1B点の後方域のみ
でよい。しかし、実欠陥での超音波の反射は異方
性があるため、丸棒鋼2の探触子9に対する軸中
心の相対回転により異なる2方向から欠陥を観察
できるように、1B点の前後域にゲートをかける
ものとする。
Furthermore, the range G to which the gate is applied in the flaw detector 12 is as follows, if the reflection of ultrasonic waves at the defect is isotropic.
Only the area in front of point 1B or only the area behind point 1B is sufficient. However, since the reflection of ultrasonic waves from an actual defect is anisotropic, the area before and after point 1B is set so that the defect can be observed from two different directions by rotating the round steel bar 2 relative to the probe 9 around its axis. A gate shall be applied.

なお、第3図ではゲート範囲Gは、超音波の入
射位置から1B点までの長さをLとして、1/2L〜
3/2Lの範囲、すなわち1B点の前後1/2Lの範囲
にゲートをかけているが、これに限定されるもの
でなく、1B点の前後域であればよく、その範囲
はニーズとの関係で定まる。
In addition, in Fig. 3, the gate range G is 1/2L to 1B, where L is the length from the ultrasound incident position to point 1B.
The gate is applied to the range of 3/2L, that is, the range of 1/2L before and after the 1B point, but it is not limited to this, and any range before and after the 1B point is sufficient, and the range depends on the needs. It is determined by

次に第8図から、屈折角αの変化によつてS/
Nが大きく変化することがわかる。すなわち、屈
折角αが35゜より小さくなると、ノイズエコーが
急増する。これは、1B点では屈折角αと同じ角
度で超音波ビームが当り、屈折角αが小さくなる
と、丸棒鋼2の表面の微細な凹凸に起因するノイ
ズエコーが大きくなることによる。従つて、屈折
角αは35゜以上とする必要がある。
Next, from Fig. 8, we can see that by changing the refraction angle α, S/
It can be seen that N changes significantly. That is, when the refraction angle α becomes smaller than 35°, the noise echo increases rapidly. This is because the ultrasonic beam hits the point 1B at the same angle as the refraction angle α, and as the refraction angle α becomes smaller, the noise echo caused by minute irregularities on the surface of the round steel bar 2 becomes larger. Therefore, the refraction angle α needs to be 35° or more.

次に、第10図に屈折角αと探傷可能な深さの
材直径に対する百分率との関係を示す。これは、
第14図に示すように丸棒鋼2の直径をD、探傷
可能な深さ(図示のように超音波の中心軸が通過
する領域)をdとすると、以下の式により求め
られる。
Next, FIG. 10 shows the relationship between the refraction angle α and the percentage of the detectable depth with respect to the diameter of the material. this is,
As shown in FIG. 14, when the diameter of the round steel bar 2 is D and the detectable depth (the area through which the central axis of the ultrasonic wave passes as shown) is d, it is determined by the following formula.

d/D×100=(1/2D−1/2D・sinα)10
0/D =50(1−sinα) この結果、検出範囲を材直径の10%までとする
と、屈折角αの上限は53゜となることがわかる。
d/D×100=(1/2D-1/2D・sinα)10
0/D = 50 (1-sin α) As a result, it can be seen that if the detection range is set to 10% of the material diameter, the upper limit of the refraction angle α is 53°.

なお、第14図から、前記ゲート範囲Gを1/2
L〜3/2Lとすれば、探傷可能な深さ領域をすべ
てカバーできることがわかる。
In addition, from FIG. 14, the gate range G is 1/2
It can be seen that if L to 3/2L is used, the entire depth range that can be detected can be covered.

以上のことから、超音波の屈折角を45゜±8゜と
して、1B点の前後域からの反射信号を捉えれば、
材表面からのノイズに邪魔されることなく、材直
径の約10%以浅の欠陥を検出できることが確認さ
れる。
From the above, if the refraction angle of the ultrasonic wave is set to 45° ± 8° and the reflected signals from the front and rear regions of point 1B are captured,
It has been confirmed that defects shallower than approximately 10% of the material diameter can be detected without being disturbed by noise from the material surface.

なお、一般に丸棒鋼2には製品相互間の製造誤
差による径のバラツキが生じることがある。この
誤差に起因するオフセツト量Wの変動に基づく屈
折角の変化を推定するため、対象としている丸棒
鋼2の公称径に対して、超音波を屈折角45°で入
射するオフセツト量で探傷した時に、外径誤差に
より屈折角が何度変るかを計算した結果を第12
図に示す。その結果、実材の外径変動は±1.8%
であり、それによる屈折角の変動は約±1゜となる
ことがわかつた。従つて、探傷材の径にバラツキ
があるような場合は、その誤差の考慮も必要とな
る。
Note that, in general, the diameter of the round steel bar 2 may vary due to manufacturing errors between products. In order to estimate the change in the refraction angle based on the variation in the offset amount W caused by this error, when the nominal diameter of the target round steel bar 2 is inspected using the offset amount when ultrasonic waves are incident at a refraction angle of 45°, , the result of calculating how many times the refraction angle changes due to the outer diameter error is shown in the 12th
As shown in the figure. As a result, the outer diameter variation of the actual material is ±1.8%
It was found that the resulting variation in the refraction angle was about ±1°. Therefore, if there is variation in the diameter of the flaw detection material, it is necessary to take this error into account.

また、実際に探傷する場合、材料の曲りに起因
するオフセツト量の変動も考慮しておく必要があ
る。そこで、材料の曲りによる屈折角の変動に着
目して探傷精度と探傷装置との関係を説明する。
Furthermore, when actually performing flaw detection, it is necessary to take into account variations in the amount of offset caused by bending of the material. Therefore, the relationship between flaw detection accuracy and flaw detection equipment will be explained by focusing on changes in the refraction angle due to material bending.

上記第2図の実施例のように、探触子9の前後
2箇所でスキユーロール3,3とピンチロール4
とにより丸棒鋼2を強制的に保持する場合、曲り
の影響は、次の式に表わされるような量で示さ
れ、これはオフセツト及び水距離の変動として現
われる。
As in the embodiment shown in FIG. 2 above, the skie rolls 3 and 3 and the pinch roll 4
When the round steel bar 2 is forcibly held by .

Δζ=X.Y Δζ:材中心の変位量(mm) X:材の曲り量mm/m Y:ピンチロール間距離 水距離の変動による感度の変化は、本発明の探
傷法を採用する場合には前述のように小さい。
Δζ=XY Δζ: Amount of displacement at the center of the material (mm) As small as.

オフセツトの変動による屈折角の変化を、屈折
角45±8゜の範囲内に変動を収めるための曲り許容
量は、径の誤差による第12図の変動を考慮に入
れると、−2.1%〜+1.8%となる。従つて、厳し
い方の1.8%をとると、曲りの許容量は、上記実
施例の装置では、次の式となる。
The allowable amount of bending to keep the change in refraction angle due to offset variation within the range of 45±8° is -2.1% to +1, taking into account the variation in Figure 12 due to diameter error. .8%. Therefore, if the stricter value of 1.8% is taken, the allowable amount of bending for the device of the above embodiment is as follows.

Xcr=0.018/YD D:材料径 Xcr:曲り許容量 第13図Aに示す如く一対のスキユーロール1
5,15上に管材16を載せて搬送しながら探触
子17,18で探傷する場合、或いは同Bに示す
如く管材16と同心状の回転リング19に一対の
探触子17,18を設け、巻掛伝動機構20を介
してモータ21により回転リング19を回転させ
ながら探傷する場合であれば、管材16の径の誤
差の半分に相当するオフセツト変動が必然的に加
えられる。同様に45±8゜に屈折角を抑えるために
は、曲りによる屈折角変化分を0.9%に抑える必
要が生ずる。よつて、第13図に示すような装置
の場合、曲りの許容量は次の式に示される。
Xcr=0.018/YD D: Material diameter Xcr: Bending allowance A pair of ski rolls 1 as shown in Figure 13A
5, 15 while transporting the tube material 16, or as shown in FIG. If flaw detection is performed while rotating the rotary ring 19 by the motor 21 via the winding transmission mechanism 20, an offset variation equivalent to half the error in the diameter of the tube material 16 is inevitably added. Similarly, in order to suppress the refraction angle to 45±8°, it is necessary to suppress the change in the refraction angle due to bending to 0.9%. Therefore, in the case of the device shown in FIG. 13, the allowable amount of bending is expressed by the following equation.

Xcr=0.019/YD 式と式とを比較すると、曲り許容量は、第
13図に示す装置では前記実施例の装置に比べて
倍程小さくなる。例えば、材料径50mm.ピンチロ
ール間距離400mmの場合、式による曲り許容量
は2.25mm/mとなり、通常の丸棒鋼製品の品質管
理規準2mm/mの曲り以内となる。従つて、第1
3図に示すような装置では探傷のために材料の曲
りに対する管理を厳しくする必要があるのに対
し、前記実施例装置によれば、探傷のために特別
な曲りの管理が不要であり、第13図のものを用
いるよりも第2図のものを用いた方が好ましい。
もつとも、材料の曲りに対する管理を厳しくする
ことに何ら支障がなければ、第13図示の装置を
用いて探傷してもよい。
Comparing the equations Xcr=0.019/YD and Equation, the bending tolerance in the device shown in FIG. 13 is about twice as small as in the device of the previous embodiment. For example, material diameter is 50mm. When the distance between the pinch rolls is 400mm, the bending tolerance according to the formula is 2.25mm/m, which is within the 2mm/m bending standard for normal round steel bar products. Therefore, the first
In the device shown in Fig. 3, it is necessary to strictly control the bending of the material for flaw detection, whereas according to the device of the above embodiment, there is no need for special bending control for flaw detection. It is better to use the one shown in Figure 2 than the one shown in Figure 13.
However, if there is no problem in strictly controlling bending of the material, flaw detection may be performed using the apparatus shown in FIG. 13.

なお、軸方向に長い欠陥を探傷する場合には、
線焦点型の探触子を用いればよい。
In addition, when detecting defects that are long in the axial direction,
A line focus type probe may be used.

(発明の効果) 本発明によれば、丸棒鋼に超音波を45゜±8゜で
入射し、材表面の第1反射位置で収束させてその
前後域からの反射信号により欠陥を検出するの
で、材直径の約10%以浅の欠陥をすべて、材表面
からのノイズに邪魔されることなく検出できる。
(Effects of the Invention) According to the present invention, ultrasonic waves are incident on a round steel bar at an angle of 45°±8°, converged at the first reflection position on the material surface, and defects are detected by the reflected signals from the areas before and after the first reflection position. , all defects shallower than approximately 10% of the material diameter can be detected without being disturbed by noise from the material surface.

しかも、第1反射位置の前方域あるいは後方域
のみでなく、前後域からの反射信号を捉えるの
で、材の探触子に対する相対回転に伴なつて同じ
欠陥を異なる方向から2回探傷でき、対象物に方
向性がある場合にも確実に検出できる。
Moreover, since the reflected signals are captured not only from the front or rear area of the first reflection position but also from the front and rear areas, the same defect can be detected twice from different directions as the material rotates relative to the probe. Even if objects have directionality, they can be detected reliably.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を例示するものであつ
て、第1図は探傷装置の概要を示す一部破断斜視
図、第2図はスキユーロール部の平面図、第3図
及び第4図は超音波の入射状態を示す説明図、第
5図は超音波の収束状況を示す幾何光学的な図、
第6図は水距離と感度との関係を示す図、第7図
は屈折角と感度との関係を示す図、第8図は屈折
角とノイズとの関係を示す図、第9図はビーム形
状の測定結果を示す図、第10図は屈折角と探傷
可能な深さとの関係を示す図、第11図はオフセ
ツト量と屈折角との関係を示す図、第12図は外
径誤差と屈折角との関係を示す図、第13図は異
なる探傷装置を示す図、第14図は屈折角と探傷
深さとの関係の説明図である。 2……丸棒鋼、3……スキユーロール、4……
ピンチロール、9……探触子、10……レンズ、
12……探傷器。
The drawings illustrate one embodiment of the present invention, in which Fig. 1 is a partially cutaway perspective view showing an outline of the flaw detection device, Fig. 2 is a plan view of the skie roll section, and Figs. An explanatory diagram showing the incident state of ultrasonic waves, FIG. 5 is a geometrical optical diagram showing the convergence state of ultrasound waves,
Figure 6 shows the relationship between water distance and sensitivity, Figure 7 shows the relationship between refraction angle and sensitivity, Figure 8 shows the relationship between refraction angle and noise, and Figure 9 shows the relationship between beam Figure 10 shows the relationship between the refraction angle and the detectable depth, Figure 11 shows the relationship between the offset amount and the refraction angle, and Figure 12 shows the relationship between the outer diameter error and the refraction angle. FIG. 13 is a diagram showing a different flaw detection apparatus, and FIG. 14 is an explanatory diagram of the relationship between refraction angle and flaw detection depth. 2... Round steel bar, 3... Skew roll, 4...
Pinch roll, 9... probe, 10... lens,
12...Flaw detector.

Claims (1)

【特許請求の範囲】[Claims] 1 丸棒鋼に対して外表面から屈折角45±8゜にな
るように超音波を入射し、材中に入つた超音波が
材表面で反射する第1反射位置で該超音波を収束
させ、前記第1反射位置の前後域からの反射信号
を捉えて表皮下欠陥を検出することを特徴とする
丸棒鋼の超音波探傷方法。
1. Ultrasonic waves are incident on the round steel bar from the outer surface at a refraction angle of 45 ± 8°, and the ultrasonic waves that have entered the material are focused at the first reflection position where they are reflected on the material surface, An ultrasonic flaw detection method for round steel bars, characterized in that subcutaneous defects are detected by capturing reflected signals from areas before and after the first reflection position.
JP56030651A 1981-03-03 1981-03-03 Ultrasonic flaw detection for round steel bar Granted JPS57144457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56030651A JPS57144457A (en) 1981-03-03 1981-03-03 Ultrasonic flaw detection for round steel bar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56030651A JPS57144457A (en) 1981-03-03 1981-03-03 Ultrasonic flaw detection for round steel bar

Publications (2)

Publication Number Publication Date
JPS57144457A JPS57144457A (en) 1982-09-07
JPS6411144B2 true JPS6411144B2 (en) 1989-02-23

Family

ID=12309695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56030651A Granted JPS57144457A (en) 1981-03-03 1981-03-03 Ultrasonic flaw detection for round steel bar

Country Status (1)

Country Link
JP (1) JPS57144457A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6417462U (en) * 1987-07-20 1989-01-27
KR100521078B1 (en) * 2002-03-21 2005-10-12 팬아시아 페이퍼 코리아 주식회사 Roll Ultrasonic Test Method and its Apparatus
JP5558666B2 (en) * 2007-12-19 2014-07-23 山陽特殊製鋼株式会社 Surface defect evaluation apparatus and method for round bar steel by water immersion ultrasonic flaw detection using an electronic scanning array probe
JP5012529B2 (en) * 2008-01-21 2012-08-29 日本精工株式会社 Method for manufacturing raceway member for rolling device
CN110988127B (en) * 2019-12-16 2022-10-11 宝武杰富意特殊钢有限公司 Signal identification method for detecting defects on surface and near surface of round bar by rotary ultrasonic

Also Published As

Publication number Publication date
JPS57144457A (en) 1982-09-07

Similar Documents

Publication Publication Date Title
CA2298085C (en) Edge detection and seam tracking with emats
CN101467035B (en) Ultrasonic flaw detecting method, manufacturing method for welded steel pipe, and ultrasonic flaw detecting apparatus
JPS6391554A (en) Method and apparatus for ultrasonic flaw detection of welded part in steel pipe
EP1043584A1 (en) Method and apparatus for ultrasonic flaw detection of weld portion
KR101163549B1 (en) Calibration block for phased-array ultrasonic inspection
KR101163554B1 (en) Calibration block for phased-array ultrasonic inspection and verification
JP4345734B2 (en) Quality inspection method for welded steel pipe welds
JPS6411144B2 (en)
JP4284762B2 (en) Evaluation method of sliding member for highly reliable toroidal continuously variable transmission
JP3761292B2 (en) Ultrasonic measurement method of welded part with wheel assembly
JP5920401B2 (en) Ultrasonic flaw detection apparatus and method for electric sewing tube and quality assurance method
JP3033438B2 (en) Ultrasonic flaw detection method for piping
JP3744444B2 (en) Ultrasonic flaw detection method
KR870001259B1 (en) Steel piece inspection using electronic beam
JP3800133B2 (en) Ultrasonic flaw detection method and apparatus for welded steel pipe welds
JPS5933226B2 (en) Method and device for detecting diagonal cracks in seamless pipes using ultrasonic waves
JP4175762B2 (en) Ultrasonic flaw detector
JP2501489B2 (en) Method and apparatus for ultrasonic flaw detection of steel pipe
JP2726359B2 (en) Ultrasonic flaw detector for cylindrical surface
JP3389599B2 (en) Ultrasonic flaw detection method for steel pipe and ultrasonic flaw detection apparatus for steel pipe
JPH07294498A (en) Ultrasonic flaw detecting method and device therefor
JPH0562299B2 (en)
JP2002122573A (en) Method and apparatus for inspection of defect of round material
JPS599554A (en) Ultrasonic flaw detection for anisotropic material
JPH0257973A (en) Angle beam flaw detecting head for pipe and angle beam flaw detecting apparatus using said head