JPS5933226B2 - Method and device for detecting diagonal cracks in seamless pipes using ultrasonic waves - Google Patents

Method and device for detecting diagonal cracks in seamless pipes using ultrasonic waves

Info

Publication number
JPS5933226B2
JPS5933226B2 JP54024221A JP2422179A JPS5933226B2 JP S5933226 B2 JPS5933226 B2 JP S5933226B2 JP 54024221 A JP54024221 A JP 54024221A JP 2422179 A JP2422179 A JP 2422179A JP S5933226 B2 JPS5933226 B2 JP S5933226B2
Authority
JP
Japan
Prior art keywords
probe
angle
tube
flaw detection
seamless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54024221A
Other languages
Japanese (ja)
Other versions
JPS55116251A (en
Inventor
真一 福田
忠之 沖中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP54024221A priority Critical patent/JPS5933226B2/en
Publication of JPS55116251A publication Critical patent/JPS55116251A/en
Publication of JPS5933226B2 publication Critical patent/JPS5933226B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 本発明は金属の継目なし管(以下シームレス管と記す)
に発生する斜め割れを検知するための超音波探傷方法及
び装置に関するものである。
[Detailed Description of the Invention] The present invention provides a seamless metal pipe (hereinafter referred to as a seamless pipe).
The present invention relates to an ultrasonic flaw detection method and device for detecting diagonal cracks that occur in.

金属管を超音波探傷する場合、管周斜角探傷及び管軸斜
角探傷が従来一般に行われている。管周斜角探傷では管
軸方向の欠陥が検知され、管軸斜角探傷では管周方向の
欠陥が検知される。管軸方向に溶接部を有する溶接管は
、このような従来法により問題なく探傷することが可能
である。しかし、シームレス管に存在する欠陥は管軸方
向に対して傾いた割れ(以下これを斜め割れと記す)が
主流を占めており、従来の管周斜角探傷および管軸斜角
探傷ではほとんど検出することが出来ない。本発明は、
シームレス管の斜め割れを確実に検知することる目的と
し、従来行われている管周斜角探傷において、超音波ビ
ームを入射方向を含む管軸平行面内で傾斜させて斜め割
れに直角に当るように入射させることを特徴とする。従
来の管周斜角探傷は、第1図のごとく探触子3を偏心さ
せ(管断面の中心線から距離xだけ平行にずらす)、超
音波ビームを入射角iをもつて管1に入射させて欠陥2
からの反射ビームを探触子3で受けている。
When performing ultrasonic flaw detection on metal tubes, tube circumference angle flaw detection and tube axis angle flaw detection have conventionally been generally performed. In tube circumferential angle flaw detection, defects in the tube axis direction are detected, and in tube axis angle flaw detection, defects in the tube circumferential direction are detected. A welded pipe having a welded portion in the direction of the pipe axis can be detected for flaws without any problem by such a conventional method. However, most of the defects that exist in seamless pipes are cracks that are inclined to the pipe axis direction (hereinafter referred to as diagonal cracks), and these are rarely detected by conventional pipe circumferential angle flaw detection and pipe axis angle flaw detection. I can't do it. The present invention
The purpose is to reliably detect diagonal cracks in seamless pipes, and in conventional pipe circumferential angle flaw detection, the ultrasonic beam is tilted in a plane parallel to the pipe axis, including the direction of incidence, and hits the diagonal crack at right angles. It is characterized by making it incident like this. In conventional tube circumferential angle flaw detection, the probe 3 is decentered (shifted in parallel by a distance x from the center line of the tube cross section) as shown in Fig. 1, and the ultrasonic beam is made incident on the tube 1 at an incident angle i. Let me defect 2
The probe 3 receives the reflected beam from the

このとき入射ビームは管軸方向に対して直角に、すなわ
ち第2図における破線で示すごとく3Aの位置の探触子
からα二00で入射させている。この場合第2図のよう
な斜め割れ2による反射ビームは探触子の方向から外れ
るため斜め割れを検知することができない。本発明にお
いては、第1図のごとく探触子3を偏心させて超音波ビ
ームを管周方向に斜角入射させ、かつ第2図実線のごと
く入射方向を含む管軸平行面内で探触子を角α傾斜させ
て、ビームを斜め割れ2に直角に近い角度で当てる。
At this time, the incident beam is made perpendicular to the tube axis direction, that is, as shown by the broken line in FIG. 2, the incident beam is made incident from the probe at a position of 3A at α200. In this case, the beam reflected by the diagonal crack 2 as shown in FIG. 2 deviates from the direction of the probe, so that the diagonal crack cannot be detected. In the present invention, as shown in FIG. 1, the probe 3 is decentered to make the ultrasonic beam incident obliquely in the circumferential direction of the tube, and the probe is probed in a plane parallel to the tube axis including the direction of incidence, as shown by the solid line in FIG. The child is tilted at an angle α, and the beam hits the diagonal crack 2 at an angle close to a right angle.

なお第1図、第2図中の点Pはシームレス管への入射点
を示す。探触子の傾斜角度αは50以上200以下とす
るのがよい。シームレス管に各種斜め割れのスリット傷
を人工的に作成し、探触子の傾斜角度αを変化させて疵
検出を行つた結果を第3図に示す。入射角i=190、
屈折角θ=450とし、周波数4MH2、探触子直径1
0mm、焦点距離20.9nの点集束型音響レンズをつ
けた探触子を用いた。第3図から明らかなごとく、スリ
ット傷からの最大エコー高さを得るための探触子傾斜角
度αは、スリツト傷の傾きθsの約1/2である。ここ
でθsは第2図に示すごとくスリツト傷と管軸方向との
なす角度である。実際に存在する斜め割れの傾き角度(
θs)は、シームレス管の製造方法、製造条件等によつ
て異なるが、通常のシームレス管においては探触子の傾
斜角度αを5゜〜2『の間で調整することによつて感度
よく検出することができる。その他の探傷条件について
は、探触子の振動子直径を小さく、周波数を低くし、さ
らに音響レンズを用いて超音波ビームを点集束的に絞つ
た方がよい。
Note that point P in FIGS. 1 and 2 indicates the point of incidence on the seamless tube. The inclination angle α of the probe is preferably 50 or more and 200 or less. Figure 3 shows the results of flaw detection by artificially creating various diagonal slit flaws in a seamless tube and varying the inclination angle α of the probe. Incident angle i=190,
Refraction angle θ = 450, frequency 4MH2, probe diameter 1
A probe equipped with a point-focusing acoustic lens having a diameter of 0 mm and a focal length of 20.9 nm was used. As is clear from FIG. 3, the probe inclination angle α for obtaining the maximum echo height from the slit scratch is approximately 1/2 of the inclination θs of the slit scratch. Here, θs is the angle formed between the slit scratch and the tube axis direction, as shown in FIG. Inclination angle of actually existing diagonal cracks (
θs) varies depending on the manufacturing method and manufacturing conditions of the seamless pipe, but in normal seamless pipes, it can be detected with good sensitivity by adjusting the inclination angle α of the probe between 5° and 2'. can do. Regarding other flaw detection conditions, it is better to reduce the diameter of the transducer of the probe, lower the frequency, and further narrow down the ultrasonic beam to a point using an acoustic lens.

平板に幅0.5鰭、長さ80鰭、探さ1.011のスリ
ツト傷を作成し、入射角1=19゜、屈折角θ=45゜
で超音波ビームを入射させ、スリツト傷の傾きθsを変
えたときのスリツト傷.によるエコー高さを測定した。
ここでθs=0傷は超音波ビームをスリツト傷に直角に
入射させた場合である。第4図に示すごとく振動子直径
が小さい程、又第5図に示すごとく周波数が低い程、ス
リツト傷の傾きによるエコー高さの低下が小さくなる。
すなわち傷の傾きの影響を受け難くなる。さらに第6図
に示すごとく、点集束型音響レンズを用いて焦点距離を
短かくする程、傷の傾きによる影響を受け難くなる。次
に本発明の斜め割れ検出装置を図面により詳細に説明す
る。
A slit wound with a width of 0.5 fins, a length of 80 fins, and a depth of 1.011 is created on a flat plate, and an ultrasonic beam is incident at an incident angle of 1 = 19° and a refraction angle of θ = 45°, and the inclination of the slit scar is determined by θs. Slit damage when changing. The echo height was measured by
Here, the θs=0 scratch is the case where the ultrasonic beam is incident on the slit scratch at right angles. As shown in FIG. 4, the smaller the diameter of the transducer, or as shown in FIG. 5, the lower the frequency, the smaller the reduction in echo height due to the inclination of the slit flaws.
In other words, it becomes less susceptible to the influence of the inclination of the scratches. Further, as shown in FIG. 6, the shorter the focal length using the point-focusing acoustic lens, the less the effect of the inclination of the scratches. Next, the diagonal crack detection device of the present invention will be explained in detail with reference to the drawings.

第7図〜第10図は本発明装置の具体例を示す図で、第
7図は側面図、第8図は正面図、第9図は平面図、第1
0図は探触子ヘツドの拡大斜視図である。水4中に浸漬
したシームレス管1は図示しない回転、搬送装置により
回転しつつ長さ方向に送られる。シームレス管1の上方
に探触子保持体5を設け、これに探触子調整用の各種機
構を取りつける。超音波ビームを安定してシームレス管
1に入射せしめるためにアーム7を介してゴム製の案内
ローラー6を取りつける。探触子3は探触子ヘツド8に
取りつけ、この探触子ヘツド8を支持アーム9を介して
保持板13(第9図)に取りつける。保持板13は第9
図に示すごとく探触子保持体5の56部に摺動可能に取
りつける。探触子3とシームレス管1との水平距離yを
調整するためにマイクロメータネジ10により、軸11
を介してウオーム12を回転せしめラツクによつて噛み
合つた保持板13を移動させる。探触子3の偏心量xを
調整するために、探触子ヘツド8をマイクロメータネジ
14により上下移動させる。探触子3の傾斜角度αを調
整するために、探触子ヘツド8の支持アーム9に固定ネ
ジ16によつて固定したギア15を、マイクロメータネ
ジ17により軸18を介してウオーム19を回転させて
行う。このとき保持板に施した角度目盛20を読みとつ
て調整する。又、本図面ではシームレス管1の長さ方向
に探触子3を2個配列した例を示したが、第8図に示す
この探触子の間かくuを調整するため、第10図に示す
調整ネジ21によつて探触子ヘツド8と支持アーム9と
を摺動させる。以下本発明の実施例を示す。
7 to 10 are diagrams showing specific examples of the device of the present invention, in which FIG. 7 is a side view, FIG. 8 is a front view, FIG. 9 is a plan view, and FIG.
Figure 0 is an enlarged perspective view of the probe head. The seamless pipe 1 immersed in water 4 is conveyed in the length direction while being rotated by a rotating and conveying device (not shown). A probe holder 5 is provided above the seamless tube 1, and various mechanisms for adjusting the probe are attached to it. A guide roller 6 made of rubber is attached via an arm 7 to make the ultrasonic beam stably enter the seamless tube 1. The probe 3 is attached to a probe head 8, and the probe head 8 is attached via a support arm 9 to a holding plate 13 (FIG. 9). The holding plate 13 is the ninth
As shown in the figure, it is slidably attached to part 56 of the probe holder 5. In order to adjust the horizontal distance y between the probe 3 and the seamless tube 1, the shaft 11 is adjusted using a micrometer screw 10.
The worm 12 is rotated through the rack, and the retaining plate 13, which is engaged with the rack, is moved. In order to adjust the eccentricity x of the probe 3, the probe head 8 is moved up and down by the micrometer screw 14. In order to adjust the inclination angle α of the probe 3, a gear 15 is fixed to the support arm 9 of the probe head 8 with a fixing screw 16, and a worm 19 is rotated via a shaft 18 with a micrometer screw 17. Let me do it. At this time, the angle scale 20 provided on the holding plate is read and adjusted. In addition, although this drawing shows an example in which two probes 3 are arranged in the length direction of the seamless tube 1, in order to adjust the distance u of the probes shown in FIG. The probe head 8 and the support arm 9 are slid by the adjustment screw 21 shown. Examples of the present invention will be shown below.

外径25.411、肉厚2.3m1のステンレス鋼シー
ムレス管を第7〜10図に示す装置を用いて探傷した。
探傷条件としては、探触子とシームレス管との水平距離
y=291t1t、偏心量x=4.3詣、探触子の傾斜
角α=1001周波数4MHz1振動子直径D=101
11振動子材料チタン酸バリウム系磁器、点集束型音響
レンズF=20mmを用いた。探傷した結果管長さ方向
との傾きが5゜〜3『、深さ0.2U1以上、長さ21
1以上の自然欠陥をS/N比良く確実に検出することが
できた。第7図〜第9図の本発明装置は、シームレス管
の左右に対称にそれぞれ2個の探触子を配した例を示し
たが、シームレス管の搬送速度を下げれば両側にそれぞ
れ1個設けてもよい。
A stainless steel seamless tube with an outer diameter of 25.411 mm and a wall thickness of 2.3 m1 was tested for flaws using the apparatus shown in FIGS. 7 to 10.
The flaw detection conditions are: horizontal distance between the probe and the seamless tube y = 291t1t, eccentricity x = 4.3cm, probe inclination angle α = 1001, frequency 4MHz, 1 transducer diameter D = 101
11 The vibrator material was barium titanate-based porcelain, and a point-focusing acoustic lens F=20 mm was used. As a result of flaw detection, the inclination with the pipe length direction was 5° to 3', depth 0.2U1 or more, length 21
One or more natural defects could be reliably detected with a good S/N ratio. The apparatus of the present invention shown in FIGS. 7 to 9 shows an example in which two probes are arranged symmetrically on the left and right sides of the seamless tube, but if the conveyance speed of the seamless tube is lowered, one probe can be placed on each side. You can.

又それぞれ3個以上並べれば、搬送速度をより向上させ
ることができる。さらに、斜め割れが管軸方向に対して
両側に傾いている場合は、第7〜9図の例のように、シ
ームレス管の両側に探触子を配すことが必要となるが、
シームレス管の製造方法によつては管軸方向に対して、
片側にのみ傾いた斜め割れだけが存在する場合があり、
そのような場合には、シームレス管の片側にのみ探触子
を配すればよい。以上述べたごとく、本発明の方法およ
び装置によれば従来検知不可能であつたシームレス管の
斜め割れを効果的に検出することが可能となり、製品の
品質管理に威力を発揮する。
Moreover, if three or more of each type are arranged, the conveyance speed can be further improved. Furthermore, if the diagonal crack is inclined on both sides with respect to the pipe axis direction, it is necessary to place probes on both sides of the seamless pipe, as in the examples shown in Figures 7 to 9.
Depending on the manufacturing method of seamless pipes, in the direction of the pipe axis,
There may be only diagonal cracks tilted to one side,
In such a case, the probe may only be placed on one side of the seamless tube. As described above, according to the method and apparatus of the present invention, it becomes possible to effectively detect diagonal cracks in seamless pipes, which were previously undetectable, and are effective in controlling the quality of products.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、管周斜角探傷を示す図、第2図は本発明にお
ける超音波ビームの傾斜角αの説明図、第3図は探触子
の傾斜角αによる斜め割れの検出能を示す図、第4図〜
第6図は好ましい探傷条件を示す図、第7図は本発明装
置の1例を示す側面図、第8図は同じく正面図、第9図
は同じく平面図、第10図は本発明装置の一部である探
触子ヘツドの斜視図である。 1・・・・・・管、2・・・・・・欠陥、3・・・・・
・探触子、4・・・・・・水、5・・・・・・保持体、
6・・・・・案内ローラー 7・・・・・・アーム、8
・・・・・・ヘツド、9・・・・・・支持アーム、10
マイクロメータネジ、11・・・・・・軸、12・・・
・・・ウオーム、13・・・・・・保持板、14・・・
・・・マイクロメータネジ、15・・・・・・ギア、1
6・・・・・・固定ネジ、17・・・・・・マイクロメ
ータネジ、18・・・・・・軸、19・・・・・・ウオ
ーム、20・・・・・・角度目盛。
Fig. 1 is a diagram showing oblique angle flaw detection on the pipe circumference, Fig. 2 is an explanatory diagram of the inclination angle α of the ultrasonic beam in the present invention, and Fig. 3 is a diagram showing the ability to detect diagonal cracks by the inclination angle α of the probe. Figures shown in Figure 4~
Fig. 6 is a diagram showing preferred flaw detection conditions, Fig. 7 is a side view showing an example of the device of the present invention, Fig. 8 is a front view, Fig. 9 is a plan view, and Fig. 10 is a diagram of the device of the present invention. FIG. 3 is a perspective view of a part of the probe head. 1...Tube, 2...Defect, 3...
・Probe, 4...Water, 5...Holder,
6...Guide roller 7...Arm, 8
...Head, 9...Support arm, 10
Micrometer screw, 11...shaft, 12...
... Worm, 13... Holding plate, 14...
... Micrometer screw, 15 ... Gear, 1
6...Fixing screw, 17...Micrometer screw, 18...Shaft, 19...Worm, 20...Angle scale.

Claims (1)

【特許請求の範囲】 1 金属管の管周斜角超音波探傷において、超音波ビー
ムを入射方向を含む管軸平行面内で5°以上20°以下
傾斜させて入射することを特徴とする超音波によるシー
ムレス管の斜め割れ検出方法。 2 金属管の管周斜角超音波探傷において、被検査金属
管を浸漬する液体槽の上部に探触子保持体を設け、該保
持体に探触子の高さ、探触子と被検査金属管との距離お
よび超音波ビームの傾斜角度をそれぞれ調整するマイク
ロメータねじを備えたことを特徴とする超音波によるシ
ームレス管の斜め割れ検出装置。
[Scope of Claims] 1. An ultrasonic test method in which an ultrasonic beam is incident at an angle of 5° or more and 20° or less in a plane parallel to the tube axis including the direction of incidence in circumferential angle ultrasonic flaw detection of a metal tube. Method for detecting diagonal cracks in seamless pipes using sound waves. 2. In circumferential angle ultrasonic flaw detection of metal tubes, a probe holder is provided at the top of the liquid tank in which the metal tube to be inspected is immersed, and the height of the probe, the probe and the object to be inspected are set on the holder. An apparatus for detecting diagonal cracks in seamless pipes using ultrasonic waves, characterized by being equipped with micrometer screws that adjust the distance to the metal pipe and the inclination angle of the ultrasonic beam.
JP54024221A 1979-03-01 1979-03-01 Method and device for detecting diagonal cracks in seamless pipes using ultrasonic waves Expired JPS5933226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54024221A JPS5933226B2 (en) 1979-03-01 1979-03-01 Method and device for detecting diagonal cracks in seamless pipes using ultrasonic waves

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54024221A JPS5933226B2 (en) 1979-03-01 1979-03-01 Method and device for detecting diagonal cracks in seamless pipes using ultrasonic waves

Publications (2)

Publication Number Publication Date
JPS55116251A JPS55116251A (en) 1980-09-06
JPS5933226B2 true JPS5933226B2 (en) 1984-08-14

Family

ID=12132223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54024221A Expired JPS5933226B2 (en) 1979-03-01 1979-03-01 Method and device for detecting diagonal cracks in seamless pipes using ultrasonic waves

Country Status (1)

Country Link
JP (1) JPS5933226B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6050450A (en) * 1983-08-31 1985-03-20 Aichi Steel Works Ltd Ultrasonic flaw detection and its apparatus for round- sectioned material
WO2007024000A1 (en) 2005-08-26 2007-03-01 Sumitomo Metal Industries, Ltd. Ultrasonic probe, ultrasonic flaw detector, ultrasonic flaw detecting method and production method of seamless pipe
JP4524764B2 (en) 2008-03-31 2010-08-18 住友金属工業株式会社 Ultrasonic flaw detection method and apparatus
JP6618728B2 (en) * 2015-07-09 2019-12-11 Ntn株式会社 Method for manufacturing outer joint member of constant velocity universal joint and ultrasonic flaw detection inspection method for welded part
CN107894460A (en) * 2017-12-25 2018-04-10 常州常宝精特钢管有限公司 A kind of body is oblique to hinder method of detection
CN108195944A (en) * 2017-12-25 2018-06-22 常州常宝精特钢管有限公司 A kind of oblique wound of tube body is popped one's head in and failure detector

Also Published As

Publication number Publication date
JPS55116251A (en) 1980-09-06

Similar Documents

Publication Publication Date Title
JP4816731B2 (en) Ultrasonic flaw detection method, welded steel pipe manufacturing method, and ultrasonic flaw detection apparatus
US3924453A (en) Ultrasonic testing of tubing employing a spiral wave generator
KR100585972B1 (en) Ultrasonic device for inspection of metal parts
GB1559469A (en) Method and apparatus for automatic ultrasonic flaw detection
JPS5933226B2 (en) Method and device for detecting diagonal cracks in seamless pipes using ultrasonic waves
JPH07244028A (en) Apparatus and method for ultrasonically detecting flaw on spherical body to be detected
JP2001056318A (en) Flaw detection method of pipe by ultrasonic waves and ultrasonic flaw detector
JPH11183445A (en) Flaw detector
JPH0726939B2 (en) Ultrasonic flaw detector
JP2726359B2 (en) Ultrasonic flaw detector for cylindrical surface
JP4359892B2 (en) Ultrasonic flaw detection method
JPH0599902A (en) Apparatus for inspecting rectangular steel material
JPH0232249A (en) Ultrasonic flaw detection probe
JPS6411144B2 (en)
JPH0684958B2 (en) Ultrasonic flaw detection method for ERW pipe end
JP3573967B2 (en) Plate wave ultrasonic inspection method
JP2022052580A (en) Ultrasonic flaw detection method for tubular analyte
JPH0257973A (en) Angle beam flaw detecting head for pipe and angle beam flaw detecting apparatus using said head
JPH0278949A (en) Ultrasonic flaw detecting device
JPH04500723A (en) Ultrasonic flaw detection equipment for elongated, rotationally symmetric specimens using the 1-probe pulse reflection method
JPH05126808A (en) Ultrasonic flaw detecting method
JP2003344364A (en) Ultrasonic flaw detection method of solid shaft
JPH0894589A (en) Testing device for welded portion of rectangular steel pipe
JP3788672B2 (en) Ultrasonic flaw detection method
JPS5853756A (en) Discrimination of defects for steel pipe