JPH0726939B2 - Ultrasonic flaw detector - Google Patents

Ultrasonic flaw detector

Info

Publication number
JPH0726939B2
JPH0726939B2 JP62196000A JP19600087A JPH0726939B2 JP H0726939 B2 JPH0726939 B2 JP H0726939B2 JP 62196000 A JP62196000 A JP 62196000A JP 19600087 A JP19600087 A JP 19600087A JP H0726939 B2 JPH0726939 B2 JP H0726939B2
Authority
JP
Japan
Prior art keywords
probe
flaw detection
wave
flaw
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62196000A
Other languages
Japanese (ja)
Other versions
JPS6439548A (en
Inventor
護 神戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP62196000A priority Critical patent/JPH0726939B2/en
Publication of JPS6439548A publication Critical patent/JPS6439548A/en
Publication of JPH0726939B2 publication Critical patent/JPH0726939B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、超音波を利用して被探傷物中の欠陥を探傷す
る超音波探傷法のうち、水などの媒体中に被探傷物を浸
漬させて探傷する水浸法による超音波探傷において、被
探傷物の表面にごく近い探傷対象層に存在する欠陥を探
傷することができる超音波探傷装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an ultrasonic flaw detection method for flaw detection in an object to be inspected by using ultrasonic waves, and detects an object to be inspected in a medium such as water. The present invention relates to an ultrasonic flaw detection apparatus capable of flaw detection in a flaw detection target layer that is very close to the surface of an object to be flaw-detected, in ultrasonic flaw detection by a water immersion method in which flaw detection is performed.

〔従来の技術〕 この種の従来の超音波探傷法を、第3図から第6図まで
によって説明する。第3図は従来例を示す一部断面の正
面図であり、被探傷物20が水などの媒体22中に図示のよ
うに配置され、被探傷物20の表面から比較的深いt2の距
離にある探傷対象層30を探傷している状態を示してい
る。すなわち、媒体22中において探触子40から送信され
たパルス状の送信波(T)24は媒体22中を伝播して被探
傷物20に入射し、さらに探傷対象層30に伝播して到達す
る。この時送信波(T)24の一部は被探傷物20の表面で
反射して表面反射波Sとなり、残部は被探傷物20中に伝
播して探傷対象層30に傷,クラックなどの欠陥32があれ
ば、この欠陥32で反射して欠陥反射波Fとなって、それ
ぞれ探触子40に戻って第4図に示すように受信される。
第4図は第3図に示した探傷による送信波(T)24と、
その各反射波S,Fとを示したオシログラム42である。第
4図において、横軸は時間であり、縦軸は波高を示し通
常は陰極線式のオシログラフで観測される探傷図形を示
し、いづれもパルス状の波形でTは送信波24を,Sは表面
反射波を,Fは欠陥反射波Fを示している。第3図と第4
図とに示したものは、被探傷物20において、その表面と
探傷対象層30の欠陥32との距離t2が十分にあるので、オ
シログラム42の通り表面反射波Sと欠陥反射波Fとは、
横軸上で十分に分離しており、欠陥反射波Fは表面反射
波Sに重なって観測が妨げられることなく、その欠陥32
の有無やその大きさを観測することができる。すなわ
ち、第3図は探傷対象層30の探傷が可能な状態を示して
いる。
[Prior Art] A conventional ultrasonic flaw detection method of this type will be described with reference to FIGS. 3 to 6. FIG. 3 is a front view of a partial cross section showing a conventional example, in which the flaw detection object 20 is arranged in a medium 22 such as water as shown in the figure, and a relatively deep distance t 2 from the surface of the flaw detection object 20. 3 shows a state in which the flaw detection target layer 30 in FIG. That is, the pulsed transmission wave (T) 24 transmitted from the probe 40 in the medium 22 propagates in the medium 22, enters the flaw detection target 20, and further propagates and reaches the flaw detection target layer 30. . At this time, a part of the transmitted wave (T) 24 is reflected by the surface of the flaw detection object 20 to become a surface reflection wave S, and the rest propagates into the flaw detection object 20 and is flawed or cracked in the flaw detection target layer 30. If there are any 32, they are reflected by the defect 32 to form a defect reflected wave F, which returns to the probe 40 and is received as shown in FIG.
FIG. 4 shows the transmitted wave (T) 24 by the flaw detection shown in FIG.
It is an oscillogram 42 showing the respective reflected waves S and F. In Fig. 4, the horizontal axis is time, the vertical axis is the wave height, and usually shows a flaw detection pattern observed by a cathode ray oscilloscope. In both cases, T is the transmitted wave 24 and S is the pulsed waveform. Surface reflected waves and F are defect reflected waves F. Figures 3 and 4
Since the distance t 2 between the surface of the object to be inspected 20 and the defect 32 of the layer to be inspected 20 is sufficient in the object to be inspected 20 as shown in the drawing, the surface reflected wave S and the defect reflected wave F are as shown in the oscillogram 42. ,
The defect 32 is sufficiently separated on the horizontal axis, and the defect reflected wave F overlaps the surface reflected wave S without obstructing the observation.
It is possible to observe the presence or absence of and its size. That is, FIG. 3 shows a state in which the flaw detection of the flaw detection target layer 30 is possible.

第5図は同じく従来例を示す一部断面の正面図であり、
第3図との相異点は被探傷物20の表面と探傷対象層30の
欠陥32との距離t3が極めて短く浅いことであり、このた
め表面反射波Sと欠陥反射波Fとは第5図に示すように
極めて接近するため、第6図に示すそのオシログラム44
の通り表面反射波Sと欠陥反射波Fとは重なってしまっ
て横軸上で分離が困難で、欠陥反射波Fの観察が不可能
な状態、すなわち探傷対象層30の探傷ができない状態を
示している。
FIG. 5 is a partially sectional front view showing a conventional example,
The difference from FIG. 3 is that the distance t 3 between the surface of the object to be inspected 20 and the defect 32 of the layer 30 to be inspected is extremely short and shallow. Therefore, the surface reflected wave S and the defect reflected wave F are As shown in Fig. 5, the oscillograms 44 shown in Fig. 6 are very close to each other.
As shown in the figure, the surface reflected wave S and the defect reflected wave F overlap each other and it is difficult to separate them on the horizontal axis, and it is impossible to observe the defect reflected wave F, that is, the state where the flaw detection target layer 30 cannot be flaw-detected. ing.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

このような被探傷物20の表面にごく近い欠陥32を探傷す
るには、探触子40を被探傷物20の表面に薄いグリース層
などを介して直接接触させて、表面反射波Sの影響をさ
けて欠陥反射波Fを観測する方法はあるが、探触子40を
被探傷物20の表面に接触させたまま探触子40を水平面内
の直交二方向のX−Y方向に移動させて連続的に広い面
積の探傷対象層30の欠陥32を探傷することができないか
ら、このような方法では実用的な超音波探傷をすること
ができないという問題点がある。
In order to detect a defect 32 that is very close to the surface of the object to be detected 20, the probe 40 is brought into direct contact with the surface of the object to be detected 20 via a thin grease layer or the like, and the influence of the surface reflected wave S is exerted. Although there is a method of observing the defect reflected wave F by avoiding, the probe 40 is moved in the XY directions of two orthogonal directions in the horizontal plane while keeping the probe 40 in contact with the surface of the flaw detection object 20. Since it is impossible to continuously detect the defects 32 of the layer 30 to be inspected having a large area, there is a problem that practical ultrasonic inspection cannot be performed by such a method.

前記の水浸法超音波探傷によれば、探触子40は被探傷物
20の表面に直接接触していないから、探触子40を水平面
内の直交二方向のX−Y方向に移動させて連続的に広い
面積の探傷対象層30の欠陥32を、第3図と第4図とに示
したようにその被探傷物20の表面との距離t2が十分にあ
るときは探傷が可能であるものの、第5図と第6図とに
示したようにその被探傷物20の表面との距離t3が極めて
短いときは、表面反射波Sと欠陥反射波Fとの分離が困
難なため、探傷ができないという問題があった。探傷
中、この表面反射波Sは常に得られているのが一般で、
またその表面反射波Sの波高は欠陥反射波Fの波高に較
べてはるかに大きいため、大変に邪魔な存在となってい
る。なお前記に説明したように超音波パルスが被探傷物
20に対してほぼ垂直に入射,反射して探傷する場合に
は、超音波パルスの波動様式(モード)はすべて縦波が
利用される。
According to the ultrasonic immersion flaw detection method described above, the probe 40 is an object to be detected.
Since the probe 40 is not in direct contact with the surface of the probe 20, the probe 40 is moved in the XY directions of two orthogonal directions in the horizontal plane to continuously detect the defects 32 of the detection target layer 30 having a large area as shown in FIG. As shown in FIGS. 4A and 4B, when the distance t 2 from the surface of the flaw detection object 20 is sufficient, flaw detection is possible, but as shown in FIGS. 5 and 6, the flaw detection is performed. When the distance t 3 from the surface of the object 20 is extremely short, it is difficult to separate the surface reflected wave S and the defect reflected wave F, and there is a problem that flaw detection cannot be performed. Generally, the surface reflected wave S is always obtained during flaw detection.
Further, since the wave height of the surface reflected wave S is much larger than the wave height of the defect reflected wave F, it is a very disturbing existence. As explained above, the ultrasonic pulse is
In the case of incident light that is incident and reflected almost perpendicularly to 20, the longitudinal wave is used as the wave mode of the ultrasonic pulse.

本発明は、探傷の妨げとなる表面反射波Sを除去する
か、あるいは表面反射波Sの波高を極めて小さくするこ
とによって、被探傷物20の表面に近い探傷対象層30の欠
陥32の探傷ができる超音波探傷装置を提供することを目
的とする。
According to the present invention, by removing the surface reflected wave S that interferes with flaw detection or by making the wave height of the surface reflected wave S extremely small, flaw detection of the defect 32 of the flaw detection target layer 30 close to the surface of the flaw detection target 20 can be performed. An object is to provide an ultrasonic flaw detector that can be used.

〔問題点を解決するための手段〕[Means for solving problems]

前記の問題点を解決するために、本発明は、媒体中に設
置された被探傷物に対して、この媒体を介して送信探触
子からパルス状の送信波を送信し、被探傷物内部の探傷
対象層中に欠陥が存在するときにはその欠陥からの欠陥
反射波を受信探触子で受信して、これらの各波を表示す
るオシログラムによって探傷する水浸法による超音波探
傷装置であって、離れて設けた送信探触子と受信探触子
と、この送信探触子の送信点と受信探触子の受信点との
間隔距離と角度方向とを自在に調節して保持する保持機
構と、この保持機構を介して取り付けた両探触子が水平
面内の直交二方向のX−Y方向に駆動されるX−Y駆動
部と、前記送信探触子の下方の外面にその筒状の一端部
が挿入固定されその他端部が頭切錐管状に成形されその
内面に被探傷物の表面反射波を補そく散乱吸収させる吸
音材が設けられている吸音筒とを備えて成るものとす
る。
In order to solve the above-mentioned problems, the present invention transmits a pulsed transmission wave from a transmitting probe to an object to be inspected installed in a medium through the medium so that the inside of the object to be inspected is transmitted. When there is a defect in the layer to be flaw-detected, the ultrasonic wave flaw detection device by the water immersion method is used in which the reflected wave from the defect is received by the receiving probe and flaw detection is performed by the oscillogram displaying each of these waves. , A transmission probe and a reception probe that are provided separately, and a holding mechanism that freely adjusts and holds the distance and the angular direction between the transmission point of the transmission probe and the reception point of the reception probe. And an XY drive unit in which both probes attached via the holding mechanism are driven in two XY directions orthogonal to each other in a horizontal plane, and a cylindrical shape on the outer surface below the transmission probe. One end is inserted and fixed, and the other end is formed into a truncated pyramid tube, and the inner surface of the It shall comprising a sound absorbing cylinder sound absorbing material to complement Suk scattering surface reflected wave is provided.

〔作用〕[Action]

本発明は水などの媒体中に設置された被探傷物に対して
行なう水浸法による超音波探傷装置であって、一端部が
筒状で他端部が頭切円錐管状に成形され、内面に吸音材
が設けられている吸音筒を取り付けた送信波を送信する
送信探触子を、被探傷物の表面の送信波の入射点におい
て、屈折角が45度の横波が発生するような角度で配置
し、この縦波超音波である送信波によって入射点で反射
した表面反射波を、前記の吸音筒によって補そく散乱吸
収させ、一方被探傷物内部に発生した横波で、探傷対象
層中に欠陥が存在するときこの欠陥によって反射した欠
陥反射波を受信探触子で受信して、これらの各波を表示
オシログラムにより探傷する装置である。
The present invention is an ultrasonic flaw detection apparatus by a water immersion method performed on a flaw detection object placed in a medium such as water, in which one end is formed into a cylindrical shape and the other end is formed into a truncated conical tube, and an inner surface is formed. At the incident point of the transmitted wave on the surface of the object to be inspected, a transmitting probe that transmits a transmitted wave with a sound absorbing tube provided with a sound absorbing material is installed at an angle such that a transverse wave with a refraction angle of 45 degrees is generated. The surface reflection wave reflected at the incident point by the transmission wave that is the longitudinal ultrasonic wave is scattered and absorbed by the sound absorbing cylinder, while the transverse wave generated inside the flaw detection object This is a device in which when a defect is present in the substrate, a defect reflected wave reflected by this defect is received by a reception probe and each of these waves is detected by a display oscillogram.

表面反射波の妨害のために従来探傷が困難であった被探
傷物の表面に近い探傷対象層中の欠陥の探傷が、本発明
によって可能になった。
The present invention enables flaw detection of a defect in a flaw detection target layer close to the surface of the flaw detection object, which has conventionally been difficult to perform flaw detection due to interference of surface reflected waves.

送信探触子の送信点と受信探触子の受信点との間隔距離
と角度方向とは、被探傷物の材質や探傷対象層の深さに
より異なるので、これらはホルダや調整ねじによる保持
機構によって自在に調節して保持されるようにして、X
−Y駆動部に取り付けられている。
The distance between the transmitting point of the transmitting probe and the receiving point of the receiving probe and the angle direction differ depending on the material of the flaw detection object and the depth of the flaw detection target layer. And adjust it to hold it freely.
-Attached to the Y drive.

〔実施例〕〔Example〕

第1図は本発明の実施例を示す一部断面の正面図であ
る。柱状の送信探触子2と受信探触子4とは環状のホル
ダ6内をその軸線方向に移動が自在で、それぞれ止めね
じ8によって固定されてホルダ6に保持される。このホ
ルダ6,6が自在な取り付け角度で固定できる調整ねじ10,
10によってX−Y駆動部12に取り付けられている。この
送信探触子2の送信点Aと受信探触子4の受信点Bとの
間隔距離と角度方向とを、このホルダ6,止めねじ8,調整
ねじ10から成る保持機構13が、自在に調節して保持して
X−Y駆動部12に取り付けられている。このX−Y駆動
部12は水平面内の直交二方向のX−Y方向に駆動され
る。送信探触子2の下方の外面には筒状の吸音筒14の一
端部が挿入され、止めねじ16によって送信探触子2に固
定されている。この吸音筒14の他端部は頭切錐管状に成
形され、吸音筒14の内面には吸音材15が設けられてい
る。前記の説明のようにして、送信探触子2と受信探触
子4とはX−Y駆動部12に取り付けられ探傷装置18が構
成されている。
FIG. 1 is a partial sectional front view showing an embodiment of the present invention. The columnar transmission probe 2 and the reception probe 4 are freely movable in the annular holder 6 in the axial direction, and are fixed by set screws 8 and held by the holder 6. Adjustment screws 10, which can fix the holders 6, 6 at any mounting angle.
It is attached to the XY drive 12 by 10. The holding mechanism 13 including the holder 6, the set screw 8 and the adjusting screw 10 can freely set the distance and the angular direction between the transmitting point A of the transmitting probe 2 and the receiving point B of the receiving probe 4. It is adjusted, held and attached to the XY drive 12. The XY driving unit 12 is driven in the XY directions which are two orthogonal directions in the horizontal plane. One end of a cylindrical sound absorbing tube 14 is inserted on the outer surface below the transmitting probe 2 and is fixed to the transmitting probe 2 by a set screw 16. The other end of the sound absorbing cylinder 14 is formed in a truncated cone shape, and a sound absorbing material 15 is provided on the inner surface of the sound absorbing cylinder 14. As described above, the transmission probe 2 and the reception probe 4 are attached to the XY drive unit 12 to form the flaw detection device 18.

被探傷物20が水などの媒体22中に図示のように設置さ
れ、この被探傷物20に向かって探傷装置18が図示のよう
に配置され、送信探触子2からパルス状の送信波24が送
信される。この送信波24はその一部が被探傷物20の表面
から表面反射波26として反射され、図示のように吸音筒
14内に補そく,散乱され、吸音筒14の内面の吸音材15に
より吸音される。一方送信波24は被探傷物20の表面のP
点で屈折されて被探傷物20中に伝播波28となって被探傷
物20中を伝播し、探傷対象層30に存在する欠陥32で伝播
欠陥反射波34となって反射して被探傷物20の表面のQ点
に達し、このQ点で屈折されて再び媒体22中に欠陥反射
波36となって受信探触子4に到達して受信される。
The flaw detection object 20 is installed in a medium 22 such as water as shown in the figure, and the flaw detection device 18 is arranged toward the flaw detection object 20 as shown in the figure, and a pulsed transmission wave 24 is transmitted from the transmission probe 2. Will be sent. A part of this transmitted wave 24 is reflected as a surface reflected wave 26 from the surface of the flaw detection target 20, and as shown in the figure, a sound absorbing cylinder
The sound is absorbed by the sound absorbing material 15 on the inner surface of the sound absorbing cylinder 14 after being scattered and scattered inside the sound absorbing cylinder 14. On the other hand, the transmitted wave 24 is P on the surface of the flaw detection object 20.
It is refracted at a point and propagates in the flaw-detected object 20 as a propagating wave 28 and propagates in the flaw-detecting object 20, and is reflected by a defect 32 existing in the flaw-detection target layer 30 as a propagating defect reflected wave 34 to be detected. It reaches the point Q on the surface of 20, and is refracted at this point Q, and again becomes a defective reflected wave 36 in the medium 22 and reaches the receiving probe 4 to be received.

送信探触子2および受信探触子4の被探傷物20の表面に
対する取付け角度や距離や、両探触子2,4の点A,B間の距
離の調整は保持機構13の調節ねじ10,10およびホルダ6,6
中の両探触子2,4の位置をそれぞれ調整することによ
り、所定の幾何学的配置を保った状態の探傷装置18が構
成され、この探傷装置18がX−Yの二次元方向に走査さ
れ、被探傷物20の所定の範囲の探傷対象層30を走査し
て、欠陥32を検知する。
The adjustment angle and distance of the transmitting probe 2 and the receiving probe 4 with respect to the surface of the flaw detection target 20 and the distance between the points A and B of both the probes 2 and 4 are adjusted by the adjusting screw 10 of the holding mechanism 13. , 10 and holder 6,6
By adjusting the positions of both the probes 2 and 4 inside, a flaw detector 18 in a state where a predetermined geometrical arrangement is maintained is constructed, and the flaw detector 18 scans in the two-dimensional X-Y direction. Then, the flaw detection target layer 30 in a predetermined range of the flaw detection target 20 is scanned to detect the defect 32.

第2図は本発明の原理を示すために、超音波の経路を示
した説明図である。すなわち媒体22中において送信探触
子2と受信探触子4とをそれぞれ図示したように鉛直線
23,35に対して内方に角度βだけ傾けて、媒体22中に表
面が水平に設置された被探傷物20に向けて配置する。こ
れは実際には前記の第1図において説明したように、保
持機構13の調節ねじ10,10の調節によって角度βに調節
し、全体として探傷装置18にして被探傷物20に接近させ
て、第2図に示したように配置するのである。
FIG. 2 is an explanatory view showing the path of ultrasonic waves in order to show the principle of the present invention. That is, in the medium 22, the transmitting probe 2 and the receiving probe 4 are plumbed as shown in FIG.
It is inclined inwardly by an angle β with respect to 23 and 35, and is arranged toward the flaw detection object 20 whose surface is horizontally installed in the medium 22. This is actually adjusted to the angle β by adjusting the adjusting screws 10 and 10 of the holding mechanism 13 as described in FIG. 1 above to make the flaw detection device 18 as a whole and to approach the flaw detection object 20, It is arranged as shown in FIG.

これにより送信探触子2の点Aから送信波24を送信する
と、被探傷物20の表面の点Pに鉛直線23に対して角度β
で入射し、この送信波24の一部は点Pで角度2βで反射
して表面反射波26となって矢印S方向に反射される。一
方この送信波24の残部は点Pで鉛直線23に対して角度α
に屈折して伝播波28となって被探傷物20中を伝播し、被
探傷物20の表面からt1の深さにある探傷対象層30にある
欠陥32にこの伝播波28が当ると、ここで角度2αで伝播
欠陥反射波34となって反射して、被探傷物20の表面の点
Qに達する。この点Qで伝播欠陥反射波34は屈折されて
再び媒体22中に鉛直線35に対して角度βで、欠陥反射波
36となって矢印F方向に伝播され、受信探触子4の点B
に到達して受信される。
As a result, when the transmission wave 24 is transmitted from the point A of the transmission probe 2, an angle β is formed at a point P on the surface of the flaw detection object 20 with respect to the vertical line 23.
At a point P, a part of the transmitted wave 24 is reflected at an angle 2β and becomes a surface reflected wave 26, which is reflected in the direction of arrow S. On the other hand, the remainder of the transmitted wave 24 is at an angle α with respect to the vertical line 23 at point P.
When the propagating wave 28 hits the defect 32 in the flaw detection target layer 30 at a depth of t 1 from the surface of the flaw detection object 20, the propagating wave 28 is propagated through the flaw detection object 20 by refracting to the propagating wave 28, Here, the reflected wave 34 is reflected by the propagation defect reflected at an angle 2α and reaches the point Q on the surface of the flaw detection target 20. At this point Q, the propagating defect reflected wave 34 is refracted and is again reflected in the medium 22 at an angle β with respect to the vertical line 35.
36 and propagated in the direction of arrow F, and point B of the receiving probe 4
Is reached and received.

ここで、送信探触子2と受信探触子4との幾何学的な配
置は次の通りとする。
Here, the geometrical arrangement of the transmitting probe 2 and the receiving probe 4 is as follows.

すなわち、送信探触子2から媒体22に送信される送信波
24の波動様式(モード)は縦波であるが、媒体22中に図
示のように配置された被探傷物20の点Pにこの送信波24
が入射されて、この点Pにおいて角度α=45度に屈折さ
れて横波に変換されて伝播波28が発生するように送信探
触子2の角度βを決定する。また受信探触子4は、伝播
波28が欠陥32で角度2α=90度で反射した伝播欠陥反射
波34が、被探傷物20の表面の点Qで、縦波に変換された
欠陥反射波36が角度βで到達するように配置される。
That is, the transmission wave transmitted from the transmission probe 2 to the medium 22.
Although the wave mode of 24 is a longitudinal wave, the transmitted wave 24 is transmitted to the point P of the flaw detection target 20 arranged in the medium 22 as shown in the figure.
Is incident, and is refracted at an angle α = 45 degrees at this point P to be converted into a transverse wave and a propagating wave 28 is generated, so that the angle β of the transmitting probe 2 is determined. Further, in the reception probe 4, the propagation defect reflected wave 34, which is the propagation wave 28 reflected by the defect 32 at an angle 2α = 90 degrees, is converted into a longitudinal reflection wave at the point Q on the surface of the flaw detection target 20. 36 are arranged so that they arrive at an angle β.

前記の点P,点Qでは超音波パルスの屈折が起り、媒体22
中の縦波超音波の音速をCl、被探傷物20中の横波超音波
の音速をCSとするとき、屈折に関するスネルの法則によ
って、 ゆえに また被探傷物20の表面から欠陥32が存在する探傷対象層
30までの距離をt1とすると、点Pと点Qとの間の距離▲
▼は、 ▲▼=2t1×tan 45゜=2t1 ……(3) また送信探触子2の点Aと受信探触子4の点Bとの間の
距離▲▼は、点A,点Bから被探傷物20の表面までの
垂直距離をhとすると、 ▲▼=2・h・tan β+▲▼=2(h・tan β
+t1) ……(4) なおここで被探傷物20の中に、横波を角度α=45゜で入
射させる理由は、点Pと点Qとの距離(2t1)をできる
だけ離すことによって、点Pでの表面反射波26が受信探
触子4にできる限り入射しないようにするためである。
ただしこのままでは送信探触子2と受信探触子4とは接
近しているために、表面反射波26の一部は受信探触子4
に入射するので、これを除去する手段が必要となる。そ
こで前記に説明した第1図に示すように、送信探触子2
の下方の外面には筒状の吸音筒14の一端部が挿入され、
止めねじ16によって固定され、この吸音筒14内に表面反
射波26が補そく,散乱され、吸音筒14の内面の吸音材15
によって表面反射波26を吸収し、間隔PQを利用して欠陥
反射波36のみを受信探触子4で受信できるようにする。
At the points P and Q, the ultrasonic pulse is refracted and the medium 22
When the sound velocity of the longitudinal ultrasonic wave in the medium is Cl and the sound velocity of the transverse ultrasonic wave in the flaw detection object 20 is C S , according to Snell's law regarding refraction, therefore In addition, the layer to be inspected where defects 32 exist from the surface of the inspected object 20
If the distance to 30 is t 1, then the distance between point P and point Q ▲
▼ is ▲ ▼ = 2t 1 × tan 45 ° = 2t 1 (3) Also, the distance ▲ ▼ between the point A of the transmitting probe 2 and the point B of the receiving probe 4 is the point A, If the vertical distance from the point B to the surface of the flaw detection object 20 is h, then ▲ ▼ = 2 · h · tan β + ▲ ▼ = 2 (h · tan β
+ T 1 ) (4) Here, the reason why the transverse wave is incident on the flaw detection object 20 at the angle α = 45 ° is that the distance (2t 1 ) between the point P and the point Q is separated as much as possible. This is to prevent the surface reflected wave 26 at the point P from entering the receiving probe 4 as much as possible.
However, as it is, the transmitting probe 2 and the receiving probe 4 are close to each other, so that part of the surface reflected wave 26 is received by the receiving probe 4.
Since it is incident on, it is necessary to have a means for removing it. Therefore, as shown in FIG. 1 described above, the transmission probe 2
One end of the cylindrical sound absorbing cylinder 14 is inserted into the outer surface below the
The sound absorbing cylinder 14 is fixed by the set screw 16, the surface reflected wave 26 is complemented and scattered in the sound absorbing cylinder 14, and the sound absorbing material 15 on the inner surface of the sound absorbing cylinder 14 is provided.
The surface reflected wave 26 is absorbed by the above, and only the defective reflected wave 36 can be received by the receiving probe 4 by utilizing the interval PQ.

その他の理由として、横波ではα=45゜での入射,反射
が最も高い反射率が得られること、被探傷物20中での縦
波は臨界角となって再び媒体22中に発射されることがな
いため考慮する必要がなく、横波だけを考えればよく、
取扱いが簡単になることがあげられる。
Other reasons are that the incident wave at α = 45 ° and the highest reflectivity are obtained for the transverse wave, and the longitudinal wave in the flaw detection object 20 becomes a critical angle and is launched into the medium 22 again. There is no need to consider because there is no
It is easy to handle.

被探傷物20中の横波超音波の音速CSは被探傷物20の材質
により異り、探傷対象層30までの被探傷物20の表面から
の距離t1も探傷の諸元によって異るから、前記の(2)
式,(4)式によってβ,▲▼を計算し、この得ら
れた結果によって保持機構13によって自在に調節して、
正しいβ,▲▼の値に探傷装置18を調節する。
The acoustic velocity C S of the transverse ultrasonic waves in the flaw detection object 20 differs depending on the material of the flaw detection object 20, and the distance t 1 to the flaw detection target layer 30 from the surface of the flaw detection object 20 also differs depending on the specifications of the flaw detection. , (2) above
Β and ▲ ▼ are calculated by the formulas and the formula (4), and the holding mechanism 13 freely adjusts according to the obtained result,
Adjust the flaw detector 18 to the correct β and ▲ ▼ values.

本発明の探傷装置は、その内面に被探傷物20からの表面
反射波26を、送信探触子2に取り付けた吸音筒14によっ
て、補そく散乱吸収させるようにしたため、欠陥反射波
36に対する表面反射波26の妨害を除去することができ
る。これによって、従来探傷が困難であった被探傷物20
の表面に近い探傷対象層30中の欠陥32の探傷が、本発明
によって可能になった。
In the flaw detection device of the present invention, the surface reflection wave 26 from the flaw detection object 20 is made to be scattered and absorbed by the sound absorbing cylinder 14 attached to the transmission probe 2 on its inner surface.
The interference of the surface reflected wave 26 with respect to 36 can be eliminated. As a result, the object to be inspected 20 which was conventionally difficult to inspect
The present invention enables the flaw detection of the defect 32 in the flaw detection target layer 30 close to the surface of the.

なお、本発明の実施例は前記に示したものの他に、逆T
字状のX−Y駆動部の水平ビーム上に、水平方向移動自
在に1対のスライダを設け、このスライダに左右ねじを
有する送りねじを螺合させこの送りねじの軸方向移動を
スラスト軸受で支持させて、送りねじを回転することに
よって1対のスライダを等しい距離づつ開閉させること
ができる。つぎに各スライダに回転支軸を設けて、これ
により送信探触子,受信探触子のおのおののホルダを回
転自在に支承し、この各ホルダからほぼ水平な内側方向
に長穴付きのアームを重ね合せする状態に突設させる。
この重ね合せられた1対のアームの長穴中に滑り子を設
け、この滑り子を移動機構によって鉛直方向に移動させ
ると、1対のスライダは互に逆方向に回転することがで
きる。
The embodiment of the present invention is not limited to the one described above,
A pair of sliders that can move in the horizontal direction are provided on the horizontal beam of the character-shaped XY drive unit, and a feed screw having left and right threads is screwed onto this slider to allow axial movement of the feed screw by a thrust bearing. By supporting and rotating the feed screw, a pair of sliders can be opened and closed by equal distances. Next, each slider is provided with a rotation support shaft, which rotatably supports the holders of the transmitting probe and the receiving probe, and from each of these holders, an arm with an elongated hole is formed in a substantially horizontal inward direction. It is made to project in the state where it overlaps.
A pair of sliders is provided in the elongated holes of the pair of arms, and the pair of sliders can rotate in opposite directions by moving the sliders in the vertical direction by a moving mechanism.

前記の説明のようにした保持機構によって探触装置を構
成したので、送りねじと滑り子の移動とによって、送
信,受信の両探触子の送信点,受信点間の距離と、送信
波,欠陥反射波の鉛直線に対する傾き角(β)との調節
が、第1図に示した実施例よりも一層容易にかつ正確に
実施することができる。
Since the probe device is configured by the holding mechanism as described above, the distance between the transmitting point and the receiving point of both the transmitting and receiving probes, the transmitting wave, The adjustment of the inclination angle (β) of the defect reflected wave with respect to the vertical line can be performed more easily and accurately than in the embodiment shown in FIG.

〔発明の効果〕〔The invention's effect〕

本発明によれば、送信専用の送信探触子から超音波の送
信波を媒体中に設置された被探傷物に対して斜め方向か
ら入射させ、被探傷物の表面からの表面反射波と、被探
傷物内部の探傷対象層中に欠陥が存在するときにはその
欠陥からの欠陥反射波とを、被探傷物のそれぞれ別の離
れた位置から分離して取り出せるようにしたので、探傷
上妨害となる被探傷物表面よりの表面反射波を除去する
ことができるようになるので、この表面反射波を送信探
触子に挿入固定された吸音筒に補そく,散乱,吸音させ
て、欠陥反射波のみを受信探触子で受信して欠陥の探傷
をすることが可能となった。
According to the present invention, the transmission wave of the ultrasonic wave from the transmission probe dedicated to transmission is incident on the flaw detection object installed in the medium from an oblique direction, and the surface reflection wave from the surface of the flaw detection object, When there is a defect in the layer to be inspected inside the object to be inspected, the defect reflected wave from the defect can be taken out separately from each separate position of the object to be inspected, which is an obstacle to flaw detection. Since it becomes possible to remove the surface reflected wave from the surface of the flaw detection object, this surface reflected wave is compensated by the sound absorbing cylinder inserted and fixed in the transmitting probe, scattered, and made to absorb sound, and only the defect reflected wave is obtained. It is possible to detect flaws by receiving with the receiving probe.

本発明によれば、従来表面反射波と欠陥反射とを分離す
ることができないため探傷できなかった点に対して、特
に被探傷物の表面に近い浅い探傷対象層中の欠陥の探傷
ができる簡単な構造で安価な超音波探傷装置を提供する
ことができる。
According to the present invention, it is possible to detect a defect in a layer to be detected, which is shallow especially near the surface of the object to be inspected, in contrast to the point that the conventional surface reflection wave and the defect reflection cannot be separated. It is possible to provide an inexpensive ultrasonic flaw detector with a simple structure.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例を示す一部断面の正面図、第2
図は本発明の原理を示すために超音波の経路を示した説
明図、第3図から第6図までは従来の超音波探傷法を説
明する図で第3図は従来例を示す一部断面の正面図で被
探傷物の表面から比較的深い探傷対象層を探傷している
状態を示す図、第4図は第3図に示した探傷による波形
図、第5図は従来例を示す一部断面の正面図で被探傷物
の表面から極めて短く浅い距離の探傷対象層を探傷して
いる状態を示す図、第6図は第5図に示した探傷による
波形図である。 2……送信探触子、4……受信探触子、12……X−Y駆
動部、14……吸音筒、18……探傷装置、20……被探傷
物、22……媒体(水)、24……送信波、30……探傷対象
層、32……欠陥、36……欠陥反射波、40……探触子、4
2,44……オシログラム。
FIG. 1 is a partially sectional front view showing an embodiment of the present invention, and FIG.
The figure is an explanatory view showing the path of an ultrasonic wave to show the principle of the present invention. FIGS. 3 to 6 are views for explaining a conventional ultrasonic flaw detection method. FIG. 3 is a part showing a conventional example. FIG. 4 is a front view of a cross section showing a state in which a relatively deep layer to be inspected is being inspected from the surface of an object to be inspected, FIG. 4 is a waveform diagram by the flaw detection shown in FIG. 3, and FIG. 5 is a conventional example. FIG. 6 is a waveform diagram of the flaw detection shown in FIG. 5, showing a state in which the flaw detection target layer is extremely short and shallow from the surface of the flaw detection object in a front view of a partial cross section. 2 ... Transmitting probe, 4 ... Receiving probe, 12 ... XY drive, 14 ... Sound absorbing cylinder, 18 ... Flaw detector, 20 ... Flawed object, 22 ... Medium (water ), 24 …… transmit wave, 30 …… flaw detection layer, 32 …… defect, 36 …… defect reflected wave, 40 …… probe, 4
2,44 ... Oscillogram.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】媒体中に設置された被探傷物に対して、こ
の媒体を介して送信探触子からパルス状の送信波を送信
し、被探傷物内部の探傷対象層中に欠陥が存在するとき
にはその欠陥からの欠陥反射波を受信探触子で受信し
て、これらの各波を表示するオシログラムにより探傷す
る水浸法による超音波探傷装置であって、離れて設けた
送信探触子と受信探触子と、この送信探触子の送信点と
受信探触子の受信点との間隔距離と角度方向とを自在に
調節して保持する保持機構と、この保持機構を介して取
り付けた両探触子が水平面内の直交二方向のX−Y方向
に駆動されるX−Y駆動部と、前記の送信探触子の下方
の外面にその筒状の一端部が挿入固定されその他端部が
頭切錐管状に成形されその内面に被探傷物の表面反射波
を補そく散乱吸収させる吸音材が設けられている吸音筒
とを備えて成ることを特徴とする超音波探傷装置。
1. A flaw is present in a layer to be inspected inside a flaw detection object, in which a pulsed transmission wave is transmitted from a transmission probe to the flaw detection object placed in the medium. In this case, the ultrasonic wave flaw detection device by the water immersion method detects flaws reflected waves from the flaw by the reception probe, and flaws are detected by the oscillogram displaying each of these waves. And a receiving probe, a holding mechanism that freely adjusts and holds the distance between the transmitting point of the transmitting probe and the receiving point of the receiving probe, and the angle direction, and the holding mechanism is attached via this holding mechanism. And an XY drive unit in which both probes are driven in two XY directions orthogonal to each other in a horizontal plane, and a cylindrical one end portion of which is inserted and fixed to an outer surface below the transmission probe. The end is shaped like a truncated cone, and its inner surface absorbs and scatters the surface reflected waves of the flaw. That ultrasonic flaw detector sound absorbing material is characterized in that it comprises a sound absorbing tube provided.
【請求項2】特許請求の範囲第1項記載の装置におい
て、送信探触子と受信探触子とをおのおのその軸線方向
に移動自在に保持するホルダと、このホルダが自在な取
付け角度で固定できる調整ねじによってX−Y駆動部に
固定する保持機構を備えて成ることを特徴とする超音波
探傷装置。
2. A device according to claim 1, wherein a holder for holding each of the transmitting probe and the receiving probe so as to be movable in the axial direction thereof, and the holder is fixed at a freely attaching angle. An ultrasonic flaw detector comprising a holding mechanism that is fixed to an XY drive unit by an adjustable screw.
JP62196000A 1987-08-05 1987-08-05 Ultrasonic flaw detector Expired - Lifetime JPH0726939B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62196000A JPH0726939B2 (en) 1987-08-05 1987-08-05 Ultrasonic flaw detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62196000A JPH0726939B2 (en) 1987-08-05 1987-08-05 Ultrasonic flaw detector

Publications (2)

Publication Number Publication Date
JPS6439548A JPS6439548A (en) 1989-02-09
JPH0726939B2 true JPH0726939B2 (en) 1995-03-29

Family

ID=16350552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62196000A Expired - Lifetime JPH0726939B2 (en) 1987-08-05 1987-08-05 Ultrasonic flaw detector

Country Status (1)

Country Link
JP (1) JPH0726939B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101465075B1 (en) * 2014-02-28 2014-11-26 성균관대학교산학협력단 Apparatus for detecting water immersion ultrasonic flaw

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5637799A (en) * 1992-04-15 1997-06-10 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method and apparatus for evaluating multilayer objects for imperfections
JP2002310996A (en) * 2001-04-09 2002-10-23 Tokyo Yogyo Co Ltd Method for measuring filling state of filling bed of molten metal storage container and apparatus used therefor
JP5791485B2 (en) * 2011-12-15 2015-10-07 三菱重工業株式会社 Pipe insertion type ultrasonic flaw detector
JP6095916B2 (en) * 2012-08-23 2017-03-15 三菱日立パワーシステムズ株式会社 Ultrasonic flaw detection method and apparatus
JP6368660B2 (en) * 2015-02-27 2018-08-01 日立Geニュークリア・エナジー株式会社 Ultrasonic inspection method and ultrasonic inspection apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101465075B1 (en) * 2014-02-28 2014-11-26 성균관대학교산학협력단 Apparatus for detecting water immersion ultrasonic flaw

Also Published As

Publication number Publication date
JPS6439548A (en) 1989-02-09

Similar Documents

Publication Publication Date Title
US4807476A (en) Variable angle transducer system and apparatus for pulse echo inspection of laminated parts through a full radial arc
US3977236A (en) Apparatus and method for ultrasonic fastener hole inspection
US7370534B2 (en) Multiangle ultrasound imager
US4641532A (en) Apparatus for adjustably mounting ultrasonic testing devices
JP2007147544A (en) Ultrasonic flaw detection method, and ultrasonic flaw detector
US5515728A (en) Ultrasonic fixture assembly for holding multiple ultrasonic transducers
JP2013088242A (en) Ultrasonic testing method and ultrasonic testing apparatus
JPH0726939B2 (en) Ultrasonic flaw detector
KR101716997B1 (en) Ultrasonic probe
US5195372A (en) Ultrasonic testing method for detecting flaws of balls for structural members and apparatus for said method
JP2002005903A (en) Ultrasonic inspection device and flaw detection method
JP3390748B2 (en) Ultrasonic flaw detector for turbine rotor blade implanted part and flaw detection method using the same
US5125272A (en) Ultrasonic crack sizing method
EP0429302B1 (en) Ultrasonic testing method for detecting flaws of balls and apparatus for said method
JP2011529170A (en) Improved ultrasonic non-destructive inspection using coupling check
KR102232470B1 (en) A flaw detector with angle adjustment
JPH07244028A (en) Apparatus and method for ultrasonically detecting flaw on spherical body to be detected
JPH11183445A (en) Flaw detector
JPS5933226B2 (en) Method and device for detecting diagonal cracks in seamless pipes using ultrasonic waves
JP4175762B2 (en) Ultrasonic flaw detector
JPH0278949A (en) Ultrasonic flaw detecting device
JPS6365362A (en) Ultrasonic flaw detection device
Knollman et al. Real‐time ultrasonic imaging methodology in nondestructive testing
JP2001133444A (en) Ultrasonic flaw detection method and device
JPS5917155A (en) Method for detecting defect by ultrasonic wave method