JP2001133444A - Ultrasonic flaw detection method and device - Google Patents

Ultrasonic flaw detection method and device

Info

Publication number
JP2001133444A
JP2001133444A JP31300799A JP31300799A JP2001133444A JP 2001133444 A JP2001133444 A JP 2001133444A JP 31300799 A JP31300799 A JP 31300799A JP 31300799 A JP31300799 A JP 31300799A JP 2001133444 A JP2001133444 A JP 2001133444A
Authority
JP
Japan
Prior art keywords
ultrasonic
flaw detection
transmitting element
flaw
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31300799A
Other languages
Japanese (ja)
Other versions
JP3281878B2 (en
Inventor
Katsu Kodama
児玉  克
Nobuhiko Nishimura
宣彦 西村
Toshihiko Imamoto
敏彦 今本
Masaaki Fujita
正昭 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18036119&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2001133444(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP31300799A priority Critical patent/JP3281878B2/en
Priority to US09/634,323 priority patent/US6380516B1/en
Priority to CNB001285785A priority patent/CN1222390C/en
Priority to MXPA00007851A priority patent/MXPA00007851A/en
Publication of JP2001133444A publication Critical patent/JP2001133444A/en
Priority to HK01103552A priority patent/HK1032929A1/en
Priority to US09/933,665 priority patent/US6550334B2/en
Priority to US09/933,664 priority patent/US6423943B1/en
Publication of JP3281878B2 publication Critical patent/JP3281878B2/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0234Metals, e.g. steel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Abstract

PROBLEM TO BE SOLVED: To provide a method an device for detecting the flaw of the internal defect of the diffusion surface of a metal material with high sensitivity. SOLUTION: By using a double-probe-type flaw detector with transmission and reception probes, ultrasonic waves are directly applied to a junction surface to be diffused at 45 degrees, and a reflection wave being reflected once on the surface of a material whose flaw is to be detected is captured while changing the distance between the two probes. The transmission and reception probes where an interval is variable are mounted to a pedestal with a bottom surface of the same curvature as that of a pipe diameter, and a support roller, a permanent magnet, an encoder, and signal wiring made of a shape storage alloy are mounted, thus providing the ultrasonic flaw detector for inspecting steel pipe for easily detecting the flaw without causing the rear surface of a thin steel pipe to fall off.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は金属材料の非破壊検
査方法に関し、更に詳しくは特に拡散接合面の欠陥を探
査するために有用な、超音波探傷方法とその装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nondestructive inspection method for a metal material, and more particularly to an ultrasonic inspection method and apparatus useful for detecting a defect on a diffusion bonding surface.

【0002】[0002]

【従来の技術】従来、鉄鋼をはじめとする金属材料の接
合には図1に示すように母材に所定角度の開先を設け、
この開先の間に肉盛り溶接をする溶融溶接法が広く行わ
れていた。肉盛り溶接部の溶接欠陥を検出する手段とし
ては、一般に超音波の発信素子と受信素子とが一体とな
ったP/Sプルーブ( Pulse Signal Probe )タイプの
超音波探傷器を使用し、図1に示すように超音波が溶接
面に垂直に当たるように照射し、同じ経路をたどって反
射してくる超音波を捕らえて溶接欠陥を検出していた。
この場合、開先するのに工数がかかり、溶接部が外形変
形したり熱による組織変化を起すので、溶接部の信頼性
を確保するには高度に熟練した技能と経済的負担を伴う
難点がある。
2. Description of the Related Art Conventionally, when joining metal materials such as iron and steel, a groove having a predetermined angle is provided in a base material as shown in FIG.
A fusion welding method of performing build-up welding during this groove has been widely performed. As a means for detecting a welding defect in a weld overlay, a P / S probe (Pulse Signal Probe) type ultrasonic flaw detector in which an ultrasonic transmitting element and a receiving element are integrated is generally used, and FIG. As shown in (1), the ultrasonic wave was irradiated so as to be perpendicular to the welding surface, and the ultrasonic wave reflected along the same path was captured to detect a welding defect.
In this case, it takes a lot of man-hours to make a groove, and the outer shape of the weld is deformed or the structure changes due to heat.Therefore, in order to ensure the reliability of the weld, there are difficulties with highly skilled skills and economic burden. is there.

【0003】近年、上記問題を解決する手段として、接
合面に拡散しやすい金属の薄いシートを挟み、接合面近
傍を塑性変形がほとんど生じない程度に高温加熱・加圧
して、接合面の間で原子を拡散させて接合を行う拡散接
合法が注目されるようになってきた。拡散接合法は特殊
な技能を必要とせず能率的にも優れ、接合面の外形の変
形も起こさずに、しかも組織変化の無い均一組織の接合
面が得られるという利点を有している(特開昭62−9
7784参照)。材料面に対して垂直に形成され接合面
の超音波探傷を行うには、図2に示すとおり超音波の発
信素子と受信素子を分離して二つの探触子に納めた二探
触子法により行うことができる。二探触子法は超音波の
発信素子と受信素子を分離して備え、超音波を材料面に
反射させて接合面に対して所定の角度で照射し、接合面
で反射した超音波を再び材料面で反射させて受信素子ま
で導き、捕捉する方法である。ところが、拡散接合法で
は開先をしないので接合面は材料面に対して垂直に形成
されるので、超音波を接合面に垂直に照射することがで
きず、超音波の発信素子と受信素子とが一体となったP
/Sプルーブタイプの超音波探傷器を使用することは不
可能である。超音波を接合面に垂直に照射して従来のP
/Sプルーブタイプの超音波探傷器を使用する方法とし
て、図3に示すように接合面に角度を持たせて切断して
突き合わせる方法も提案されている(特開平6−637
71)。しかしながらこの方法は材料の切断が難しく実
用的ではない。
In recent years, as a means for solving the above-mentioned problem, a thin sheet of a metal which is easily diffused is sandwiched between joining surfaces, and high-temperature heating and pressure are applied so that plastic deformation hardly occurs near the joining surfaces. Attention has been paid to a diffusion bonding method in which atoms are bonded by diffusion. The diffusion bonding method has the advantage that it does not require special skills and is also highly efficient, and does not cause deformation of the outer shape of the bonding surface, and has the advantage that a bonding surface having a uniform structure without any structural change can be obtained. 62-9
7784). In order to perform ultrasonic flaw detection of the joint surface formed perpendicular to the material surface, as shown in FIG. 2, a two-probe method in which an ultrasonic transmitting element and a receiving element are separated and housed in two probes Can be performed. In the two-probe method, an ultrasonic transmitting element and a receiving element are separately provided, and the ultrasonic wave is reflected on a material surface and irradiated at a predetermined angle to a bonding surface, and the ultrasonic wave reflected on the bonding surface is again reflected. In this method, the light is reflected on the material surface, guided to the receiving element, and captured. However, the diffusion bonding method does not make a groove, so the bonding surface is formed perpendicular to the material surface, so that ultrasonic waves cannot be irradiated perpendicularly to the bonding surface, and the ultrasonic transmitting and receiving elements P united
It is impossible to use an ultrasonic flaw detector of the / S probe type. The conventional P
As a method of using an ultrasonic flaw detector of the / S probe type, there has been proposed a method in which a joining surface is cut at an angle as shown in FIG.
71). However, this method is not practical because cutting the material is difficult.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
二探触子法は材料面での超音波の伝播路が長くなり、反
射を多数回利用するので超音波の減衰が激しく、反射の
たびにノイズを拾うので微少な欠陥の検出感度が落ちて
実用的でないという問題があった。本発明の目的は、単
純な素材加工を施した拡散接合面の超音波探傷方法にお
いて、欠陥検出能を大幅に改善する方法とそのための装
置を提供しようとするものである。また、本発明は特に
鋼管の拡散接合部の接合欠陥を探査するのに有用な超音
波探傷器を提供しようとするものである。
However, in the conventional two-probe method, the propagation path of the ultrasonic wave on the surface of the material becomes long and the reflection is used many times, so that the ultrasonic wave is greatly attenuated. Since the noise is picked up, there is a problem that the detection sensitivity of a minute defect is lowered and is not practical. SUMMARY OF THE INVENTION An object of the present invention is to provide a method and an apparatus for greatly improving defect detection capability in an ultrasonic flaw detection method for a diffusion bonded surface subjected to simple material processing. Another object of the present invention is to provide an ultrasonic flaw detector which is particularly useful for detecting a bonding defect at a diffusion bonding portion of a steel pipe.

【0005】[0005]

【課題を解決するための手段】本発明者らは前記課題を
解決するために鋭意研究を重ねた結果、発信素子と受信
素子を分離した二探触子法において、超音波を拡散接合
面に対して所定の角度で直接照射し、反射した超音波を
材料内で1回反射させて受信し、発信素子と探傷面との
距離及び発信素子と受信素子との距離を適宜変えて探傷
することにより、材料面に対して垂直方向の探傷面に沿
って存在する内部欠陥を見いだす方法を開発した。また
この方法に使用する装置として、一つの台座上に発信素
子と受信素子を分離して有する超音波探傷装置であっ
て、該発信素子は試料表面から内部の試料表面に垂直な
探傷面に向けて所定の角度で超音波を発射するように構
成し、該受信素子は試料表面から反射してくる超音波を
捕捉するよう構成し、該発信素子と受信素子は試料表面
上を試料表面に垂直な被測定断面に対して直角方向に任
意に移動可能とし、かつ該発信素子と該受信素子の間隔
を任意に変更可能に構成した超音波探傷装置を開発し
た。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, in a two-probe method in which a transmitting element and a receiving element are separated, ultrasonic waves are applied to a diffusion bonding surface. Directly irradiate at a predetermined angle to the object, reflect the reflected ultrasonic wave once in the material, receive it, and perform flaw detection by appropriately changing the distance between the transmitting element and the flaw detection surface and the distance between the transmitting element and the receiving element. Has developed a method for finding internal defects that exist along the flaw detection surface perpendicular to the material surface. Further, as an apparatus used in this method, there is provided an ultrasonic flaw detector having a transmitting element and a receiving element separated on one pedestal, and the transmitting element is directed from a sample surface to a flaw detection surface perpendicular to an internal sample surface. The receiving element is configured to emit ultrasonic waves at a predetermined angle, the receiving element is configured to capture ultrasonic waves reflected from the sample surface, and the transmitting element and the receiving element are perpendicular to the sample surface on the sample surface. We have developed an ultrasonic flaw detector which can be moved arbitrarily in the direction perpendicular to the section to be measured and the distance between the transmitting element and the receiving element can be changed arbitrarily.

【0006】さらに本発明の超音波探傷装置には、管材
の超音波探傷を効率良く行うための付帯装置として、上
記探傷装置の台座にローラーを取り付けて管材周囲を移
動可能とし、かつ磁石を取り付けて鋼管の探傷を行う場
合に超音波探傷装置が常に被測定鋼管材に吸い着くよう
にして落下を防止し、さらにエンコーダーを取り付けて
管材周囲の移動距離を把握できるようにした。また、探
触子の信号線やエンコーダーの信号線には形状記憶合金
を使用して管径と同じ曲率を記憶させて管周の探傷を容
易にした。以下に図面を参照して本発明を詳細に説明す
る。
Further, in the ultrasonic flaw detector according to the present invention, a roller is mounted on the base of the flaw detector so that it can move around the pipe, and a magnet is mounted as an auxiliary device for efficiently performing ultrasonic flaw detection of the pipe. When performing flaw detection on steel pipes, the ultrasonic flaw detector was always attached to the steel pipe material to be measured to prevent the steel pipe from falling, and an encoder was attached so that the moving distance around the pipe material could be grasped. In addition, the signal line of the probe and the signal line of the encoder are made of a shape memory alloy to store the same curvature as the diameter of the pipe, thereby facilitating flaw detection around the pipe. Hereinafter, the present invention will be described in detail with reference to the drawings.

【0007】[0007]

【発明の実施の形態】図4は本発明方法による超音波探
傷の原理を説明するための図である。図4において厚さ
Tの板状の被探傷材50は点Rで表面50a対して直角
な接合面J−Jを有するように拡散接合されているもの
とする。被探傷材50の一表面50aから接合面J−J
に発生する欠陥を探傷する場合を考える。図4に示す状
態で、発信探触子3の超音波発射点Pを表面50a上の
接合面J−Jとの交点Rから距離Y1 だけ移動させた点
で欠陥Fを捉え、受信探触子4が反射した超音波を点P
から距離Lだけ離れた点Sで捕捉して反射エコーが現れ
たものとする。この場合、発射された超音波は接合面J
−Jに対してθ度の角度で直接探傷面に当って点Fで反
射し、さらに被探傷材50のもう一方の面50bの点Q
で1回反射して受信探触子4に到達する。本発明では反
射による減衰を極力防ぐため、材料内部に発信した超音
波を直接探傷面に当てることが重要である。
FIG. 4 is a diagram for explaining the principle of ultrasonic flaw detection according to the method of the present invention. In FIG. 4, it is assumed that the plate-shaped flaw-detected material 50 having a thickness T is diffusion-bonded so as to have a bonding surface JJ perpendicular to the surface 50a at a point R. From one surface 50a of the material to be inspected 50 to the joining surface JJ
Consider the case of detecting a defect that occurs in a workpiece. In the state shown in FIG. 4, captures the defect F in that moves the ultrasound firing point P of outgoing probe 3 from the intersection R between the joint surface J-J on the surface 50a by a distance Y 1, received feeler The ultrasonic wave reflected by the child 4 is point P
It is assumed that a reflected echo appears at a point S that is separated by a distance L from. In this case, the emitted ultrasonic wave is
-Directly hits the flaw detection surface at an angle of θ degrees with respect to -J, is reflected at point F, and furthermore is point Q on the other surface 50b of the flaw detection material 50
And once reaches the reception probe 4. In the present invention, in order to minimize attenuation due to reflection, it is important to apply ultrasonic waves transmitted inside the material directly to the flaw detection surface.

【0008】図4において T : 板厚 d : 被探傷材料の表面から欠陥までの深さ L : 発信探触子と受信探触子との距離 θ : 超音波入射角 Y1: 接合面と発信探触子との距離 Y2: 接合面と被探傷材料内面の反射点との距離 Y3: 被探傷材料内面の反射点と受信探触子面との距
離 Y4: 接合面と受信探触子面との距離 とすると、 Y1 = d×tanθ Y2 = (T−d)×tanθ Y3 = T×tanθ Y4 = Y2 + Y3 となる。上式の関係から発信探触子と受信探触子との距
離Lと被探傷材料の表面から欠陥までの深さdとの間に
は、 L = Y4 − Y1 = Y2 + Y3− Y1 = (T−d)×tanθ + T×tanθ − d×tanθ = 2×(T−d)×tanθ ・・・・・・・・(1) の関係が成り立つ。また、発信探触子と受信探触子との
距離Lと接合面と発信探触子との距離 Y1との間には、 L = 2×(T・tanθ−Y1) ・・・・・・・・(2) の関係が成り立つ。発信探触子3を接合面J−JからY
1だけ移動させた場合の反射エコーは、発信探触子3と
受信探触子4との距離がLだけ離れた位置で検出できる
ことになり、LとY1 の関係は上記の(2)式の関係と
なる。
In FIG. 4, T: plate thickness d: depth from the surface of the material to be inspected to the defect L: distance between the transmitting probe and the receiving probe θ: ultrasonic incident angle Y 1 : bonding surface and transmitting the distance between the probe Y 2: joint surface and the distance between the reflection point of the test object material inner surface Y 3: the distance between the receiving probe surface and the reflection point of the test object material inner surface Y 4: Receive the bonding surface feeler Assuming the distance from the child plane, Y 1 = d × tan θ Y 2 = (T−d) × tan θ Y 3 = T × tan θ Y 4 = Y 2 + Y 3 . From the relation of the above equation, between the distance L between the transmitting probe and the receiving probe and the depth d from the surface of the material to be inspected to the defect, L = Y 4 −Y 1 = Y 2 + Y 3 −Y 1 = (T−d) × tan θ + T × tan θ−d × tan θ = 2 × (T−d) × tan θ (1) Further, during the outbound probe and the distance L between the receiving probe and the distance Y 1 between the joint surface and outgoing probe is, L = 2 × (T · tanθ-Y 1) ···· .. (2) holds. The transmitting probe 3 is moved from the joining surface JJ to Y
The reflected echo when moved by 1 can be detected at a position where the distance between the transmitting probe 3 and the receiving probe 4 is L, and the relationship between L and Y 1 is expressed by the above equation (2). It becomes the relationship.

【0009】発信探触子3を接合面の点Rから順次移動
させていくと、接合面J−Jに沿って被探傷材50の厚
さ方向に存在する内部欠陥を順次検知することができ
る。この状態を説明したのが図5である。図5は深さd
1 の位置に内部欠陥F1 があり、深さd2 の位置に内部
欠陥F2 がある場合を示している。発信探触子3と受信
探触子4との距離Lは、内部欠陥F1 を検出する場合は
1 であり、内部欠陥F 2 を検出する場合はL2 であ
る。接合面と発信探触子との間の距離Y1( =tとおき
かえる)と発信探触子と受信探触子との間の距離Lとの
間には、先に(2)式で示された関係が成り立つ。図5
に示すように、内部欠陥F1 を検出する場合の接合面J
−Jと発信探触子31との間の距離はt1 であり、内部
欠陥F2 を検出する場合の接合面J−Jと発信探触子3
2との間の距離はt2 である。従って、発信探触子と受
信探触子を順次移動させていけば、表面からどれくらい
の深さに欠陥があるかを探査することができる。また、
図5から内部欠陥の存在する位置が表面から深くなるほ
ど発信探触子3と受信探触子4との距離Lは短くなるこ
とが判る。この方法によれば接合面のほぼ全域を探傷す
ることができるが、発信探触子と受信探触子との距離L
の最小値は、発信探触子と受信探触子の大きさによって
決まり、実質的に零(ゼロ)にはできないから、欠陥を
検出できる深さにも限界があり、最深部には探傷不能な
部分が存在する。
The transmitting probe 3 is sequentially moved from the point R on the joint surface.
The thickness of the material 50 to be detected along the joining surface JJ
Internal defects existing in the vertical direction
You. FIG. 5 illustrates this state. FIG. 5 shows the depth d.
1 Defect F at the position1 With depth dTwo Inside position
Defect FTwo There is a case where there is. Transmitting probe 3 and receiving
The distance L from the probe 4 is determined by the internal defect F1 If you want to detect
L1 And the internal defect F Two L to detectTwo In
You. Distance Y between the joint surface and the transmitting probe1(= T and every
Frog) and the distance L between the transmitting probe and the receiving probe.
The relationship shown by the equation (2) is established between them. FIG.
As shown in FIG.1 Surface J when detecting
The distance between −J and the transmitting probe 31 is t1 And inside
Defect FTwo Interface JJ and outgoing probe 3 when detecting
The distance between the two is tTwo It is. Therefore, the transmitting probe and the receiving
If you move the Shin probe sequentially, how much from the surface
Can detect if there is a defect in the depth. Also,
FIG. 5 shows that the position where the internal defect exists is deeper from the surface.
The distance L between the transmitting probe 3 and the receiving probe 4 should be short.
I understand. According to this method, almost all areas of the joint surface are detected.
The distance between the transmitting probe and the receiving probe is L
Depends on the size of the transmitting and receiving transducers.
It is determined that it cannot be reduced to zero,
There is a limit to the depth that can be detected, and the deepest part cannot be detected.
There is a part.

【0010】図4及び図5のように材料表面における超
音波の反射が1回の場合には反射エコーも鮮明に現れ、
微小欠陥の検知能も優れている。従って、なるべく1回
反射の反射波を捉えることが重要である。探傷位置が深
くなり探触子間の距離が確保できない場合は、やむおえ
ずさらに1往復反射させた3回反射のエコーを捕捉す
る。感度は落ちるが利用は可能である。
[0010] As shown in Figs. 4 and 5, when the ultrasonic wave is reflected once on the material surface, the reflected echo clearly appears.
The ability to detect minute defects is also excellent. Therefore, it is important to capture the reflected wave of the single reflection as much as possible. In the case where the flaw detection position becomes deep and the distance between the probes cannot be ensured, it is inevitable to capture echoes reflected three times, which are reflected one more time. Sensitivity falls, but use is possible.

【0011】図7に本発明の方法による検出精度の確認
実験に結果を示す。対象試料は図6に示すとおりの、厚
さ6mmの鋼板の深さ4mmの位置に横から深さ10m
m、直径0.5mm〜3.0mmの孔を明けて、45度
の角度で超音波を照射して、板の裏面で1回反射した反
射波を捉えてそのエコー高さを比較したものである。図
7に示すとおり、本発明によれば直径0.5mmの欠陥
でも鮮明に検知することが可能であり、拡散接合面の欠
陥検査にも極めて有効であることが判る。図8には上記
実験の際の反射エコーをディスプレー表示させた際のエ
コーの様子を模式的に示した。図においてTはパルスエ
コーであり、Wは形状エコーで探傷材の端面からの反射
エコーであり、ともに欠陥の検出とは関係しない。Fが
内部欠陥によるエコーである。図8(a)は欠陥の無い
場合であり、パルスエコー以外はノイズレベルである。
これに対して図8(b)は欠陥の有る場合であり、欠陥
エコーFが鮮明に現れている。本発明では超音波を探傷
面に直接照射し、材料面での反射回数も極力少なく抑え
ているので超音波の伝播路の長さを最短にすることがで
き、このため減衰が少なく、ノイズを拾う機会も少なく
なって鮮明なエコーが観察できるようになり、微少な内
部欠陥も検知できる利点を有する。
FIG. 7 shows the results of an experiment for confirming the detection accuracy by the method of the present invention. The target sample is 10 m deep from the side at a position of 4 mm depth of a 6 mm thick steel plate as shown in FIG.
m, a hole with a diameter of 0.5 mm to 3.0 mm is drilled, ultrasonic waves are irradiated at an angle of 45 degrees, the reflected wave reflected once on the back of the plate is captured, and the echo height is compared. is there. As shown in FIG. 7, according to the present invention, it is possible to clearly detect even a defect having a diameter of 0.5 mm, and it can be seen that the present invention is extremely effective for defect inspection of a diffusion bonding surface. FIG. 8 schematically shows the state of the echo when the reflected echo in the above experiment is displayed on the display. In the figure, T is a pulse echo, W is a shape echo and a reflection echo from the end face of the flaw detection material, and both have no relation to the detection of a defect. F is an echo due to an internal defect. FIG. 8A shows a case where there is no defect, and the noise level is other than the pulse echo.
On the other hand, FIG. 8B shows a case where there is a defect, and the defect echo F clearly appears. In the present invention, the ultrasonic wave is directly radiated to the flaw detection surface, and the number of reflections on the material surface is minimized, so that the length of the ultrasonic wave propagation path can be minimized, so that attenuation is small and noise is reduced. There is an advantage that a clear echo can be observed with less chance of picking up and a minute internal defect can be detected.

【0012】本発明の他の実施の形態として、被探傷材
料に所定角度で入射させた超音波を被探傷材料表面で1
回反射させて探傷面に当て、探傷面で反射した超音波を
直接捕捉する方法を説明する。即ち、図4において発信
探触子3と受信探触子4の位置を入れ替え、超音波の伝
播路を逆向きにしたものである。探傷面に当たる超音波
は若干弱まるが、全伝播路の長さは同じであるから実用
上支障はない。この場合は先に示した(2)式の関係
は、Y1 を接合面と受信探触子との距離と読み替えれれ
ばそのまま適用することができる。
In another embodiment of the present invention, an ultrasonic wave incident on a material to be inspected at a predetermined angle is applied to the surface of the material to be inspected by one ultrasonic wave.
A method of directly reflecting the ultrasonic wave reflected by the flaw detection surface after being reflected twice and hitting the flaw detection surface will be described. That is, in FIG. 4, the positions of the transmitting probe 3 and the receiving probe 4 are switched, and the propagation path of the ultrasonic wave is reversed. Although the ultrasonic wave hitting the flaw detection surface is slightly weakened, there is no practical problem because the lengths of all the propagation paths are the same. In this case shown above (2) of the relationship it can be applied as it is if read as the distance between the receiver probe and the bonding surface of Y 1.

【0013】[0013]

【実施例】(実施例1)次に、本発明の方法に利用する
装置について説明する。図9〜図11は本発明の方法に
使用する装置の一実施例を示す図で、図9は平面図、図
10は正面図、図11は側面図である。この実施例は平
板を拡散接合した部材を探傷するための装置の例であ
る。接合面は平板面に対して直角方向に形成されてい
る。図9に示すとおり、2片の台座1の両端がフレーム
102a、102bで固定され枠組みを構成している。
また、対向する2片の台座1の間には、それぞれ発信素
子5と受信素子6を組み込んだ発信探触子3と受信探触
子4とがはめ込まれている。発信探触子3と受信探触子
4の側面には、図11に示すように腕10が取り付けら
れており、腕10は台座1に設けられた溝11にはめ込
まれていて、2片の台座1の間を台座1に沿ってX−X
方向に滑らかに摺動して移動できるようになっている。
台座1の一方には探傷面の位置を合わせるための基準線
7と探触子の移動距離を算出するためのスケール22が
設けてあり、探触子の超音波発射位置を示すマーカー8
及び9を使用することにより、探触子の移動距離が判る
ようになっている。本装置の底部は、台座1の底面と発
信探触子3及び受信探触子4の底面が同一平面上にくる
ような平滑面に仕上げられていて、図10及び図11に
示すとおり被探傷材50の表面に密着するように構成さ
れている。
(Embodiment 1) Next, an apparatus used in the method of the present invention will be described. 9 to 11 show an embodiment of the apparatus used in the method of the present invention. FIG. 9 is a plan view, FIG. 10 is a front view, and FIG. 11 is a side view. This embodiment is an example of an apparatus for flaw detection of a member formed by diffusion bonding of flat plates. The joining surface is formed at right angles to the flat plate surface. As shown in FIG. 9, both ends of the two pedestals 1 are fixed by frames 102a and 102b to form a framework.
Further, between the two opposing pedestals 1, a transmitting probe 3 and a receiving probe 4 incorporating a transmitting element 5 and a receiving element 6, respectively, are fitted. As shown in FIG. 11, an arm 10 is attached to a side surface of the transmitting probe 3 and the receiving probe 4, and the arm 10 is fitted in a groove 11 provided in the pedestal 1. XX along pedestal 1 between pedestals 1
It can slide and move smoothly in the direction.
One of the pedestals 1 is provided with a reference line 7 for adjusting the position of the flaw detection surface and a scale 22 for calculating the moving distance of the probe, and a marker 8 indicating the ultrasonic emission position of the probe.
By using (9) and (9), the moving distance of the probe can be determined. The bottom of the apparatus is finished to a smooth surface such that the bottom surface of the pedestal 1 and the bottom surfaces of the transmission probe 3 and the reception probe 4 are flush with each other. As shown in FIGS. It is configured to be in close contact with the surface of the material 50.

【0014】探傷するに当たっては、まず被探傷材50
の探傷面J−Jに本装置の基準線7を合わせ、本装置の
中心軸X−Xが探傷面Jに対して直角になるように配置
する。次いで、発信探触子3のマーカー8を基準線7に
合わせた後、発信探触子3を徐々に探傷面J−Jから離
す方向に移動させ、同時に受信探触子4を式(2)に従
って、L=2×(T・tanθ−Y1 )の関係を保つように
移動させて探傷する。この際、超音波の入射角θを45
度とすれば、(2)式は、L= 2×(T− Y 1 )とな
る。本装置を使用すれば、本装置を平面上で自由に移動
させることができるので、板状の材料の拡散接合面の内
部欠陥を精度良く探傷することが可能となる。板状の場
合は表面形状が単純なので、1台の装置ではば広く使用
することができる。
In performing the flaw detection, first, the material 50 to be flaw-detected is inspected.
The reference line 7 of the present apparatus is aligned with the flaw detection surface JJ of
Arranged so that the central axis XX is perpendicular to the inspection surface J
I do. Next, the marker 8 of the transmitting probe 3 is set to the reference line 7.
After the alignment, the transmitting probe 3 is gradually separated from the flaw detection surface JJ.
And simultaneously move the receiving probe 4 according to the equation (2).
Therefore, L = 2 × (T · tan θ−Y1 To keep the relationship
Move and inspect. At this time, the incident angle θ of the ultrasonic wave is set to 45.
In terms of degrees, equation (2) is L = 2 × (T−Y 1 ) And
You. With this device, you can move this device freely on a flat surface
The diffusion bonding surface of the plate-like material.
Partial defects can be detected with high accuracy. Platy place
In general, the surface shape is simple, so one device can be used widely
can do.

【0015】つぎに、本発明の装置の他の例として、管
材の内部欠陥を探傷するための装置について説明する。
測定の原理は上記の平板の場合と同様である。ただ、管
材の場合は台座の底面と探触子の底面を管材の外径面の
曲率に合わせておき、管材の表面と本装置の底面とを密
着させておく必要がある。このため管材の内部欠陥を探
傷するための装置は、管材の外径毎に台座の底面及び探
触子の底面を変えたものを準備する必要がある。基本的
にはこのようにすれば管材の内部欠陥を探傷することが
可能であるが、本発明では鋼管の探傷を容易にするた
め、さらに台座に支持用のローラーと磁石を取り付けて
鋼管に対して常に吸引力を働かせて、鋼管に装置を密着
させたまま周方向の移動を可能にした。また、エンコー
ダーを取り付けて周方向の移動距離を測れるようにし
て、周方向の内部欠陥位置を知ることができるようにし
た。さらに、探触子の信号線とエンコーダーのリード線
に形状記憶合金を使用して、管材の裏面の探傷も容易に
できるようにした。以下に図を使用して詳細に説明す
る。
Next, as another example of the apparatus of the present invention, an apparatus for detecting flaws inside a pipe will be described.
The principle of measurement is the same as that of the above-mentioned flat plate. However, in the case of a tube, the bottom surface of the pedestal and the bottom surface of the probe need to be adjusted to the curvature of the outer diameter surface of the tube material, and the surface of the tube material and the bottom surface of the present apparatus need to be in close contact. For this reason, it is necessary to prepare a device for flaw detection of an internal defect in a tube material in which the bottom surface of the base and the bottom surface of the probe are changed for each outer diameter of the tube material. Basically, in this way, it is possible to detect flaws inside the pipe material.However, in the present invention, in order to facilitate flaw detection of the steel pipe, a supporting roller and a magnet are further attached to the pedestal so that the steel pipe can be detected. In this way, the suction force is always applied to allow the device to move in the circumferential direction while keeping the device in close contact with the steel pipe. In addition, an encoder is attached so that the moving distance in the circumferential direction can be measured, so that the position of the internal defect in the circumferential direction can be known. Furthermore, the use of a shape memory alloy for the signal line of the probe and the lead wire of the encoder makes it easy to detect flaws on the back surface of the tube. This will be described in detail with reference to the drawings.

【0016】(実施例2)図12及び図13は本発明の
鋼管用の磁気探傷装置である。図12は平面図、図13
は側面図である。図12において台座1の中央部に発信
探触子3及び受信探触子4が搭載されており、台座1に
はさらに支持用ローラー12とエンコーダーローラー2
0及び付帯装置が搭載されている。発信探触子3及び受
信探触子4近傍の探触子のスライド機構は、基本的には
平板用の装置の場合と同様なので、ここでは詳しい説明
は省略する。
(Embodiment 2) FIGS. 12 and 13 show a magnetic flaw detector for steel pipes according to the present invention. FIG. 12 is a plan view, FIG.
Is a side view. In FIG. 12, a transmitting probe 3 and a receiving probe 4 are mounted in the center of a pedestal 1, and the pedestal 1 further includes a support roller 12 and an encoder roller 2.
0 and ancillary equipment. The slide mechanisms of the probes in the vicinity of the transmitting probe 3 and the receiving probe 4 are basically the same as those of the device for a flat plate, and a detailed description thereof will be omitted.

【0017】管材用の探傷装置では探触子面が管材の外
径の曲率と一致していることが必要であり、本装置では
図13に示すように発信探触子3及び受信探触子4の底
面は台座1の底面と一体となって管材の外径面と同じ曲
率に加工してある。そして台座1には装置全体を管材の
周方向に沿って回転移動させるための駆動ローラー12
が4個取り付けられている。被探傷鋼管の円周方向に沿
った台座の移動は手動でも良いし、駆動装置を使用して
も良い。
In the flaw detector for pipes, it is necessary that the probe surface coincides with the curvature of the outer diameter of the pipe. In this apparatus, as shown in FIG. 13, the transmitting probe 3 and the receiving probe are used. The bottom surface of the tube 4 is formed integrally with the bottom surface of the base 1 so as to have the same curvature as the outer diameter surface of the tube. The pedestal 1 has a driving roller 12 for rotating the entire apparatus along the circumferential direction of the tube.
Are attached. The movement of the pedestal along the circumferential direction of the steel pipe to be inspected may be performed manually or by using a driving device.

【0018】さらに台座1には磁石13が埋め込まれて
おり、鋼管の探傷を行う場合に装置を常に鋼管に引きつ
けておく働きをしている。このため鋼管が垂直に立って
いたり、水平に位置している場合の背面の探傷も容易に
行うことができる。磁石13は永久磁石でも電磁石でも
良い。電磁石の場合には脱着の際には電流を切れば吸着
から解放することができる。また、台座1にはエンコー
ダーローラー20が取り付けられており、装置が周方向
に沿って移動したときに、探触子の移動量が把握できる
ようになっている。21はエンコーダーである。これに
より管材の円周方向に沿った内部欠陥の存在位置を知る
ことができる。
Further, a magnet 13 is embedded in the pedestal 1 and functions to always attract the apparatus to the steel pipe when performing flaw detection on the steel pipe. For this reason, when the steel pipe stands vertically or is positioned horizontally, flaw detection on the back surface can be easily performed. The magnet 13 may be a permanent magnet or an electromagnet. In the case of an electromagnet, it can be released from adsorption by turning off the current at the time of desorption. An encoder roller 20 is attached to the pedestal 1 so that the amount of movement of the probe can be grasped when the apparatus moves in the circumferential direction. 21 is an encoder. This makes it possible to know the location of the internal defect along the circumferential direction of the tube.

【0019】本発明の探傷装置では探触子の信号線とエ
ンコーダーの信号線14に形状記憶合金を使用した。形
状記憶合金にはTi49−Ni51(at%)系合金を使
用した。この形状記憶合金に形状記憶熱処理を施して管
材の外径よりも一廻り大きな曲率を記憶させた。形状記
憶合金の作動温度は手で触れたときに所定の形状となる
ように32〜38℃に設定した。このように信号線に形
状記憶合金を使用することにより、装置装着時には任意
形状になっている信号線が、装着完了後に手で触ること
により鋼管の外径に沿った形状になるので、信号線が管
材の背面でからまることもなく、円滑な測定が可能とな
る。
In the flaw detector of the present invention, a shape memory alloy is used for the signal line of the probe and the signal line 14 of the encoder. As the shape memory alloy, a Ti49-Ni51 (at%) based alloy was used. This shape memory alloy was subjected to shape memory heat treatment to memorize a curvature that was slightly larger than the outer diameter of the tube material. The operating temperature of the shape memory alloy was set at 32 to 38 [deg.] C. so that the alloy had a predetermined shape when touched by hand. By using a shape memory alloy for the signal line in this way, the signal line, which has an arbitrary shape when the device is mounted, becomes a shape along the outer diameter of the steel pipe by being touched by hand after the mounting is completed. Can be measured smoothly without being entangled on the back of the tube.

【0020】これら信号線から得られた電気信号をマイ
クロコンピュータシステムに導き、探傷結果を平面図や
断面図として画像化してディスプレイ表示したり、プリ
ント表示することも可能である。また、探傷走査を自動
化したり1本の管材に複数台の装置を取り付けて、長い
管材の探傷を同時に行うことも可能である。
It is also possible to guide the electric signals obtained from these signal lines to a microcomputer system, and image the flaw detection results as a plan view or a cross-sectional view and display them on a display or print them. Further, it is also possible to automate the flaw detection scanning or to attach a plurality of devices to one tube material to simultaneously perform flaw detection of a long tube material.

【0021】本装置を使用すれば、例えばボイラーチュ
ーブのように外径約30mm前後の細い鋼管が、面間隔
十数ミリの狭い間隔で林立しているような場合でも、鋼
管の全外周方向にわたって内部欠陥を探傷することが可
能となる。
By using the present apparatus, even when a thin steel pipe having an outer diameter of about 30 mm, such as a boiler tube, stands at a narrow interval of about 10 mm, the entire length of the steel pipe extends in the outer circumferential direction. It becomes possible to detect internal defects.

【0022】[0022]

【発明の効果】本発明の方法によれば、超音波の伝播路
の長さが最短にできるので、反射波の減衰やノイズが少
なく、鮮明なエコーが得られるので、拡散接合面に存在
する微少な内部欠陥も感度よく検知することができる。
また本発明による鋼管の探傷装置によれば細い鋼管が密
集しているような狭い空間の検査も容易になるので、た
とえばボイラーの火炎チューブの検査が能率良くできる
ようになる。最近の超音波素子技術の向上に伴い、発信
素子や受信素子はますます小型化・高性能化しており、
これらの技術を活用すれば細い管材の探傷も可能とな
る。したがって本発明の応用範囲はますます広がり、省
力化・能率向上に寄与するところが大きい。
According to the method of the present invention, the length of the propagation path of the ultrasonic wave can be minimized, so that there is little attenuation and noise of the reflected wave, and a clear echo can be obtained. Even minute internal defects can be detected with high sensitivity.
Further, according to the flaw detector for steel pipes according to the present invention, it is easy to test a narrow space where thin steel pipes are densely packed, so that, for example, a fire tube of a boiler can be efficiently tested. With the recent improvement of ultrasonic element technology, transmitting elements and receiving elements are becoming smaller and more sophisticated,
By utilizing these technologies, it is possible to detect flaws in thin tubes. Therefore, the application range of the present invention is further expanded, and greatly contributes to labor saving and efficiency improvement.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 従来の溶融接合における検査方法を示す図で
ある。
FIG. 1 is a view showing an inspection method in a conventional fusion bonding.

【図2】 拡散接合面に従来の検査法法を適用した図で
ある。
FIG. 2 is a diagram in which a conventional inspection method is applied to a diffusion bonding surface.

【図3】 改良された拡散接合面の検査方法を示す図で
ある。
FIG. 3 is a diagram illustrating an improved inspection method of a diffusion bonding surface.

【図4】 本発明の検査方法を説明する図である。FIG. 4 is a diagram illustrating an inspection method according to the present invention.

【図5】 本発明の検査方法の例を説明する図である。FIG. 5 is a diagram illustrating an example of an inspection method according to the present invention.

【図6】 測定精度の確認試験の概要を示す図である。FIG. 6 is a diagram showing an outline of a measurement accuracy confirmation test.

【図7】 欠陥の大きさと反射エコー高さの関係を示す
図である。
FIG. 7 is a diagram showing the relationship between the size of a defect and the height of a reflected echo.

【図8】 本発明における反射エコーの例を示す図であ
る。
FIG. 8 is a diagram showing an example of a reflected echo in the present invention.

【図9】 本発明の装置の一例を示す平面図である。FIG. 9 is a plan view showing an example of the device of the present invention.

【図10】 図9の装置の正面図である。FIG. 10 is a front view of the device of FIG. 9;

【図11】 図9の装置の側面図である。FIG. 11 is a side view of the device of FIG. 9;

【図12】 本発明の装置の他の一例を示す平面図であ
る。
FIG. 12 is a plan view showing another example of the device of the present invention.

【図13】 図12の装置の側面図である。FIG. 13 is a side view of the apparatus of FIG.

【符号の説明】[Explanation of symbols]

1・・・・・台座、2・・・・・P/S探触子、3,31,32・・
・・・発信探触子、4,41,42・・・・・受信探触子、5・・
・・・発信素子、6・・・・・受信素子、7・・・・・基準線、8,
9・・・・・マーカー、10・・・・・腕、11・・・・・溝、12・・・
・・支持ローラー、13・・・・・磁石、14・・・・・信号線、2
0・・・・・エンコーダーローラー、21・・・・・エンコーダ
ー、22・・・・・スケール、50・・・・・被探傷材、51・・・・
・鋼管、
1 ... pedestal, 2 ... P / S probe, 3, 31, 32 ...
... Transmitting probe, 4,41,42 ... Receiving probe, 5 ...
... Sending element, 6 ... Receiving element, 7 ... Reference line, 8,
9 Marker, 10 Arm, 11 Groove, 12
..Support roller, 13... Magnet, 14... Signal line, 2
0 ····· Encoder roller, 21 ····· Encoder, 22 ····· Scale, 50 ····· Flaw detection material, 51 ····
・ Steel pipe,

───────────────────────────────────────────────────── フロントページの続き (72)発明者 今本 敏彦 東京都千代田区丸の内二丁目5番1号 三 菱重工業株式会社内 (72)発明者 藤田 正昭 東京都千代田区丸の内二丁目5番1号 三 菱重工業株式会社内 Fターム(参考) 2G047 AA06 AB01 AB07 BA02 BA03 BB02 EA10 GA05 GA06 GA13 GA19 GB03 GG19  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toshihiko Imamoto 2-5-1 Marunouchi, Chiyoda-ku, Tokyo Sanshi Heavy Industries Co., Ltd. (72) Inventor Masaaki Fujita 2-5-1 Marunouchi, Chiyoda-ku, Tokyo F term (reference) in Mitsuishi Heavy Industries, Ltd. 2G047 AA06 AB01 AB07 BA02 BA03 BB02 EA10 GA05 GA06 GA13 GA19 GB03 GG19

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 発信素子と受信素子を分離した二探触子
法であって、超音波を材料内部の探傷面に対して所定の
角度で直接照射し、反射した超音波を材料内で1回反射
させて捕捉し、発信素子と探傷面との距離及び発信素子
と受信素子との距離を適宜変えながら探傷することを特
徴とする超音波探傷方法。
1. A two-probe method in which a transmitting element and a receiving element are separated from each other, wherein ultrasonic waves are directly applied to a flaw detection surface inside a material at a predetermined angle, and reflected ultrasonic waves are applied to the material within the material. An ultrasonic flaw detection method, wherein the flaw detection is performed while changing the distance between the transmitting element and the flaw detection surface and the distance between the transmitting element and the receiving element as appropriate.
【請求項2】 被探傷材料の厚さをT、探傷面と発信素
子との距離をY1 、発信素子と受信素子との距離をL、
超音波の入射角をθとしたときに、 L= 2×(T・tanθ−Y1) なる関係に維持しながら探傷することを特徴とする請求
項1に記載の超音波探傷方法。
2. The thickness of the material to be inspected is T, the distance between the inspection surface and the transmitting element is Y 1 , the distance between the transmitting element and the receiving element is L,
The incident angle of the ultrasonic wave is taken as θ, L = 2 × (T · tanθ-Y 1) comprising ultrasonic testing method according to claim 1, characterized in that the flaw while maintaining the relationship.
【請求項3】 発信素子と受信素子を分離した二探触子
法であって、超音波を材料内部に向けて所定の角度で照
射し超音波を材料内面で1回反射させた後材料内部の探
傷面に当てて反射させて反射した超音波を直接捕捉し、
発信素子と探傷面との間の距離及び発信素子と受信素子
との間の距離を適宜変えながら探傷することを特徴とす
る超音波探傷方法。
3. A two-probe method in which a transmitting element and a receiving element are separated from each other, wherein ultrasonic waves are irradiated at a predetermined angle toward the inside of the material, and the ultrasonic waves are reflected once on the inner surface of the material. Directly capture the reflected ultrasonic waves by hitting the flaw detection surface and reflecting,
An ultrasonic flaw detection method, wherein flaw detection is performed while appropriately changing the distance between the transmitting element and the flaw detection surface and the distance between the transmitting element and the receiving element.
【請求項4】 被探傷材料表面と探傷面とが90度の角
度をなしていることを特徴とする請求項1から請求項3
のいずれかに記載の超音波探傷方法。
4. The apparatus according to claim 1, wherein the surface of the material to be inspected and the surface to be inspected form an angle of 90 degrees.
The ultrasonic inspection method according to any one of the above.
【請求項5】 超音波を被探傷材料表面に対して45度
の角度で照射することを特徴とする請求項1から請求項
4のいずれかに記載の超音波探傷方法。
5. The ultrasonic flaw detection method according to claim 1, wherein the ultrasonic wave is applied to the surface of the flaw detection material at an angle of 45 degrees.
【請求項6】 一つの台座上に発信素子と受信素子を分
離して有する超音波探傷装置であって、該発信素子は試
料表面から内部の試料探傷面に向けて所定の角度で超音
波を発射するように構成し、該受信素子は試料表面から
反射してくる超音波を捕捉するよう構成し、該発信素子
と該受信素子は試料表面上を探傷面に対して直角方向に
移動可能とし、かつ該発信素子と該受信素子の間隔を任
意に変更可能に構成したことを特徴とする超音波探傷装
置。
6. An ultrasonic flaw detector having a transmitting element and a receiving element separated on one pedestal, wherein the transmitting element transmits ultrasonic waves at a predetermined angle from a sample surface to an internal sample flaw detecting surface. The receiving element is configured to emit, and the receiving element is configured to capture ultrasonic waves reflected from the sample surface, and the transmitting element and the receiving element are movable on the sample surface in a direction perpendicular to the flaw detection surface. An ultrasonic flaw detector wherein an interval between the transmitting element and the receiving element can be arbitrarily changed.
【請求項7】 請求項6に記載の超音波探傷装置におい
て、該台座底面と発信素子の底面及び受信素子の底面
が、被探傷管材の外径と同一の曲率半径を有しているこ
とを特徴とする管材用超音波探傷装置。
7. The ultrasonic flaw detector according to claim 6, wherein the pedestal bottom surface, the bottom surface of the transmitting element, and the bottom surface of the receiving element have the same radius of curvature as the outer diameter of the tube to be detected. Characteristic ultrasonic flaw detector for tubing.
【請求項8】 請求項7に記載の管材用超音波探傷装置
において、さらに台座に支持ローラーを具備して管材表
面の周方向に沿って移動可能としたことを特徴とする管
材用超音波探傷装置。
8. The ultrasonic flaw detector for a pipe according to claim 7, further comprising a support roller provided on the pedestal so as to be movable along the circumferential direction of the surface of the pipe. apparatus.
【請求項9】 請求項7又は請求項8に記載の管材用超
音波探傷装置において、さらに台座に磁石を具備して被
探傷材料に対して吸引力が働くように構成したことを特
徴とする鋼管用超音波探傷装置。
9. The ultrasonic flaw detector for a tube according to claim 7, wherein a magnet is further provided on the pedestal so that a suction force acts on the material to be flaw-detected. Ultrasonic flaw detector for steel pipes.
【請求項10】 請求項7から請求項9に記載の管材用
超音波探傷装置において、さらに台座にエンコーダーを
具備して管材の周方向の移動距離を把握できるように構
成したことを特徴とする管材用超音波探傷装置。
10. The ultrasonic flaw detector for a pipe according to claim 7, further comprising an encoder on a pedestal so that a moving distance of the pipe in a circumferential direction can be grasped. Ultrasonic flaw detector for tubing.
【請求項11】 請求項6から請求項10に記載の超音
波探傷装置において、発信素子の信号線、受信素子の信
号線あるいはエンコーダーの信号線のうち少なくとも一
つの信号線が形状記憶合金で構成されていることを特徴
とする超音波探傷装置。
11. The ultrasonic flaw detector according to claim 6, wherein at least one of the signal line of the transmitting element, the signal line of the receiving element, and the signal line of the encoder is formed of a shape memory alloy. An ultrasonic flaw detector characterized by being performed.
JP31300799A 1999-08-11 1999-11-02 Ultrasonic flaw detection method and apparatus Ceased JP3281878B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP31300799A JP3281878B2 (en) 1999-11-02 1999-11-02 Ultrasonic flaw detection method and apparatus
US09/634,323 US6380516B1 (en) 1999-08-11 2000-08-07 Connecting clamp, connecting apparatus and connecting method
CNB001285785A CN1222390C (en) 1999-08-11 2000-08-11 Joint clamp, joint device and joint method
MXPA00007851A MXPA00007851A (en) 1999-08-11 2000-08-11 Connecting clamp, connecting apparatus and connecting method.
HK01103552A HK1032929A1 (en) 1999-08-11 2001-05-23 Engaging clamp, engaging device device and engaging method.
US09/933,665 US6550334B2 (en) 1999-08-11 2001-08-22 Ultrasonic detecting apparatus
US09/933,664 US6423943B1 (en) 1999-08-11 2001-08-22 Connecting clamp, connecting apparatus and connecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31300799A JP3281878B2 (en) 1999-11-02 1999-11-02 Ultrasonic flaw detection method and apparatus

Publications (2)

Publication Number Publication Date
JP2001133444A true JP2001133444A (en) 2001-05-18
JP3281878B2 JP3281878B2 (en) 2002-05-13

Family

ID=18036119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31300799A Ceased JP3281878B2 (en) 1999-08-11 1999-11-02 Ultrasonic flaw detection method and apparatus

Country Status (1)

Country Link
JP (1) JP3281878B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7600442B2 (en) 2004-11-16 2009-10-13 H&B System Co., Ltd. Ultrasonic probing method and apparatus therefor utilizing resonance phenomenon
JP2011163814A (en) * 2010-02-05 2011-08-25 Mitsubishi Heavy Ind Ltd Ultrasonic flaw detection testing method
CN114192582A (en) * 2021-12-06 2022-03-18 江苏锦航机械制造有限公司 Roller cleaning device with crack repairing structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10060883B2 (en) 2015-10-01 2018-08-28 General Electric Company Pipeline crack detection

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7600442B2 (en) 2004-11-16 2009-10-13 H&B System Co., Ltd. Ultrasonic probing method and apparatus therefor utilizing resonance phenomenon
JP2011163814A (en) * 2010-02-05 2011-08-25 Mitsubishi Heavy Ind Ltd Ultrasonic flaw detection testing method
CN114192582A (en) * 2021-12-06 2022-03-18 江苏锦航机械制造有限公司 Roller cleaning device with crack repairing structure

Also Published As

Publication number Publication date
JP3281878B2 (en) 2002-05-13

Similar Documents

Publication Publication Date Title
US8037763B2 (en) Rail section weld inspection scanner
US4523468A (en) Phased array inspection of cylindrical objects
JP2727298B2 (en) Method for detecting corrosion fatigue cracks in boiler tubes with membrane
JPS61283864A (en) Ultrasonic measurement method and detector for defect in metallic medium
CA2593894C (en) A method for configuring an array of transducers in an ultrasonic test apparatus
CN108562647B (en) PA-TOFD combined ultrasonic detection device and method for polyethylene pipeline hot-melt butt joint
JP5800667B2 (en) Ultrasonic inspection method, ultrasonic flaw detection method and ultrasonic inspection apparatus
KR20140033404A (en) Three-dimensional matrix phased array spot weld inspection system
KR101921685B1 (en) Apparatus for inspecting defect and mehtod for inspecting defect using the same
JP5840910B2 (en) Ultrasonic flaw detection method
JP3281878B2 (en) Ultrasonic flaw detection method and apparatus
JP2007322350A (en) Ultrasonic flaw detector and method
JP2011529170A (en) Improved ultrasonic non-destructive inspection using coupling check
JPH07244028A (en) Apparatus and method for ultrasonically detecting flaw on spherical body to be detected
JP4175762B2 (en) Ultrasonic flaw detector
JP2007205959A (en) Probe unit for ultrasonic flaw detector, and method of estimating crack depth by ultrasonic flaw detection method
JP3066748U (en) Ultrasonic sensor and flaw detection equipment
KR100441757B1 (en) multi-scanning ultrasonic inspector for weld zone
JPH1164300A (en) Ultrasonic probe and ultrasonic flaw detecting apparatus
JP2539019B2 (en) Ultrasonic flaw detection
JPS61118658A (en) Two-probe ultrasonic flaw detection method and apparatus
JPH0278949A (en) Ultrasonic flaw detecting device
JP2006126068A (en) Method and device for inspecting laser welded joint
JPH09318605A (en) Method for testing welded part by ultrasonic surface sh wave
Alers et al. Quantitative measurement of material degradation with scanning EMATs

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020129

RVOP Cancellation by post-grant opposition