JPH0257973A - Angle beam flaw detecting head for pipe and angle beam flaw detecting apparatus using said head - Google Patents

Angle beam flaw detecting head for pipe and angle beam flaw detecting apparatus using said head

Info

Publication number
JPH0257973A
JPH0257973A JP63209210A JP20921088A JPH0257973A JP H0257973 A JPH0257973 A JP H0257973A JP 63209210 A JP63209210 A JP 63209210A JP 20921088 A JP20921088 A JP 20921088A JP H0257973 A JPH0257973 A JP H0257973A
Authority
JP
Japan
Prior art keywords
angle
probe
pipe
flaw detection
probes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63209210A
Other languages
Japanese (ja)
Other versions
JPH0664027B2 (en
Inventor
Hiroaki Kondo
近藤 廣章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP63209210A priority Critical patent/JPH0664027B2/en
Publication of JPH0257973A publication Critical patent/JPH0257973A/en
Publication of JPH0664027B2 publication Critical patent/JPH0664027B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To detect flaws by mounting a plurality of vertical probes and slant angle probes on an arc shaped side plates having a concentric circle with a pipe under test in an array pattern, and setting slant angle probe heads at specified positions regardless of the outer diameter and the thickness of the pipe under test. CONSTITUTION:A slant angle probe 12 comprises a vertical probe 14 having a rectangular contact surface and a sound wedge 15 having a radial angle width. The width of the probe 12 in the circumferential direction of the pipe is several mm or less. A plurality of the slant angle probes 12 are arranged in a pipe circumference shape in an array pattern. Therefore, the width of the wedge in the pipe circumference direction is machined in a radial angle shape. The probes are attached to side plates 16a and 16b in an arc shape that is concentric with a pipe under test 10. Abrasion resisting shoes 17a and 17b are attached before and after the probe group in order to hold the gap between the wedges 15 and the surface of the pipe 10 and to prevent the abrasion of the wedges 15. Therefore, flaw detection of pipe material can be performed readily, and the following to welded parts is not required, while the adjustment in changing the thickness of the pipes is not required, too.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、管用斜角探傷ヘッド及びそれを用いた管用斜
角探傷装置に係り、特に電縫鋼管の溶接部における管軸
方向の欠陥を検出する際に用いるのに好適な、溶接部追
従が不要で、管厚変更時の調整も不要な、管用斜角探傷
ヘッド及びそれを用いた管用斜角探傷装置に関するもの
である。
The present invention relates to an angle angle flaw detection head for pipes and an angle angle flaw detection device for pipes using the same, and is particularly suitable for detecting defects in the pipe axial direction at welded parts of ERW steel pipes, and has a weld tracking method. The present invention relates to an oblique flaw detection head for pipes and an oblique flaw detection device for pipes using the same, which eliminates the need for adjustment when changing pipe thickness.

【従来の技術】[Conventional technology]

一般に、電縫鋼管の溶接部における管軸方向の欠陥を検
出するため、斜角探傷法が用いられている。この方法は
、被検査材(以下、「被検管」という)の検査面に対し
斜めに超音波を入射させ、被検管の欠陥で反射した反射
波から当該横管の内外表面欠陥及び内部欠陥を検出する
ものである。 又、上記電縫鋼管の溶接部全長にわたって欠陥を検出す
るため、超音波探触子を電縫鋼管の溶接部に対し平行に
走査して、該溶接部に対して超音波ビームを直角に伝播
させる方法が用いられている。 しかるに、上記斜角探傷法においては、超音波ビームが
入射した点から欠陥部までの距離の変動、即ち探触子−
欠陥距離の変動に伴ない、欠陥からのエコー高さが、第
8図に示すように大きく変化することが知られている。 このことは、例えば特開昭55−140148号の第2
図や特公昭57−8420号の第1図に開示されている
。 このため、基準エコー高さを定めるのが難しく、探触子
−欠陥距離が変動すると正確な探傷が困難になると言う
問題があり、この問題を緩和するため、次のような方法
が採用されていた。 即ち、第9図は従来例の構成説明図であり、第10図<
A)、(B)及び(C)はそれぞれ第9図のA−A′断
面図、B−B’断面図、及びC−C′断面図であるが、
これらの図に示すように、電縫鋼管のような被検管10
の溶接部11の片側にそれぞれ例えば3個ずつの斜角探
触子18a〜18C118d〜18fを配置し、これら
の探触子から被検管10に入射する超音波ビームが溶接
部11の中心において外面(第10図(A)参照)、中
央(第10図(B)参照)、及び内面(第10図(C)
参照)に伝播するようにしていた。 更に、例えば特公昭57−8420号に開示されて、い
るように、溶接部の捩れ量と被検管の長さを予めプリセ
ットしておき、その後現在位置の長さを逐次検出して、
探触子の溶接部からのずれ量を算出して溶接部の追従を
行ったり、又は、例えば特開昭59−43354号に開
示されているように、探触子に被検管の周方向に沿って
複数個の送受信コイルを取付け、これら送受信コイルの
受診信号レベルを順次時系列的に判断し、溶接部と探触
子の相対位置を一定の関係に保持して、溶接部の追従を
行うようにしていた。 しかしながら、上記従来例においては、第1に、探触子
と欠陥の距離が変化すると上述の如くエコー高さが大き
く変化するため、溶接部の追従を行わなければならない
という問題があった。 又、第2に、被検管の外径や管厚によりビークエコーの
出現位置が異なるという問題があった。 即ち、ビークエコーの出現位置しは、下式(1)のよう
に表わされ、被検管の外径りや管厚tの値によって変動
する。このため、管厚tに応じて、探触子と溶接部の距
離を調整しなければならなかった。 L、=N−に−t−tanθr  ・・・・・・(1)
ここで、Nは、スキップ数Sによる係数(N=S10.
5)、Kは、屈折角θrと t/Dで決まる補正係数で
ある。 又、第3に、探傷装置本体の感度をビークエコーで設定
するために、感度調整作業を行わなければならないとい
う問題もあった。
In general, an angle angle flaw detection method is used to detect defects in the pipe axis direction in a welded portion of an electric resistance welded steel pipe. In this method, ultrasonic waves are applied obliquely to the inspection surface of the material to be inspected (hereinafter referred to as the "test tube"), and the reflected waves reflected by defects in the test tube are used to detect defects on the inner and outer surfaces of the horizontal tube. It detects defects. In addition, in order to detect defects over the entire length of the welded portion of the ERW steel pipe, an ultrasonic probe is scanned parallel to the welded portion of the ERW steel pipe, and the ultrasonic beam is propagated at right angles to the welded portion. A method is used to However, in the above-mentioned angle angle flaw detection method, variations in the distance from the point where the ultrasonic beam is incident to the defective part, that is, the probe
It is known that the echo height from the defect changes greatly as shown in FIG. 8 as the defect distance changes. This can be seen, for example, in JP-A-55-140148 No. 2.
This is disclosed in Figure 1 of Japanese Patent Publication No. 57-8420. For this reason, it is difficult to determine the reference echo height, and accurate flaw detection becomes difficult when the probe-defect distance changes.To alleviate this problem, the following methods have been adopted. Ta. That is, FIG. 9 is an explanatory diagram of the configuration of the conventional example, and FIG.
A), (B), and (C) are respectively the AA' sectional view, the BB' sectional view, and the CC' sectional view of FIG.
As shown in these figures, a test tube 10 such as an electric resistance welded steel pipe is
For example, three oblique probes 18a to 18C118d to 18f are arranged on one side of the welded part 11, and the ultrasonic beams incident on the test tube 10 from these probes are directed at the center of the welded part 11. The outer surface (see Fig. 10 (A)), the center (see Fig. 10 (B)), and the inner surface (see Fig. 10 (C)
(see). Furthermore, as disclosed in Japanese Patent Publication No. 57-8420, for example, the amount of twist of the welded part and the length of the tube to be tested are preset, and then the length of the current position is sequentially detected.
The amount of deviation of the probe from the welded part can be calculated to track the welded part, or, as disclosed in JP-A No. 59-43354, the probe can be moved in the circumferential direction of the tube to be tested. Install multiple transmitter/receiver coils along the line, judge the reception signal levels of these transmitter/receiver coils sequentially over time, maintain the relative position of the weld and the probe in a constant relationship, and track the weld. I was trying to do it. However, in the above conventional example, firstly, as the distance between the probe and the defect changes, the echo height changes greatly as described above, so there is a problem that the welded part must be followed. Second, there is a problem that the appearance position of the beak echo differs depending on the outer diameter and thickness of the tube to be examined. That is, the appearance position of the beak echo is expressed by the following equation (1), and varies depending on the outer diameter of the tube to be examined and the value of the tube thickness t. Therefore, the distance between the probe and the welded portion had to be adjusted depending on the tube thickness t. L,=N-to-t-tanθr...(1)
Here, N is a coefficient depending on the number of skips S (N=S10.
5), K is a correction coefficient determined by the refraction angle θr and t/D. Thirdly, there is a problem in that sensitivity adjustment work must be performed in order to set the sensitivity of the main body of the flaw detection apparatus using the beak echo.

【発明が達成しようとする課題】[Problem to be achieved by the invention]

本発明は、上述のような問題に鑑みてなされたものであ
り、上記第1乃至第3の問題点が全て解消され、特に電
縫鋼管のような被検管の溶接部における管軸方向の欠陥
を検出するのに好適な管用斜角探傷ヘッド及びそれを用
いた管用斜角探傷装置、を提供することを課題とする。
The present invention has been made in view of the above-mentioned problems, and solves all of the above-mentioned problems 1 to 3. In particular, the present invention solves the problem of An object of the present invention is to provide an oblique flaw detection head for pipes suitable for detecting defects and an angle flaw detection device for pipes using the same.

【課題を達成するための手段】[Means to achieve the task]

本発明は、管用斜角探傷ヘッドにおいて、矩形状の接触
面をもつ垂直探触子と放射角状の幅をもつ音響くさびと
からなる斜角探触子を、被検管と同芯円の円弧形状の側
板に複数個アレイ状に装着し、該斜角探触子群の前後に
耐摩耗性のシューを設けるごとにより、前記課題を解決
したものである。 又、本発明は、管用斜角探傷装置において、上記管用斜
角探傷ヘッドを用い、該ヘッド内の各斜角探触子を同時
励振して被検管を探傷することにより、前記課題を解決
したものである。 更に、本発明は、管用斜角探傷装置において、上記管用
斜角探傷ヘッドを用い、該ヘッド内の全ての斜角探触子
を受信可能な状態に保持して、各斜角探触子を1個づつ
順次励振しながら被検管を探傷することにより、前記課
題を解決したものである。
The present invention provides an angle angle flaw detection head for pipes in which an angle probe consisting of a vertical probe with a rectangular contact surface and an acoustic wedge with a radial angular width is placed in a concentric circle with the tube to be inspected. The above problem is solved by mounting a plurality of probes in an array on an arc-shaped side plate and providing wear-resistant shoes before and after each of the bevel probe groups. Further, the present invention solves the above problem by using the above-mentioned angle angle flaw detection head for pipes in an angle angle flaw detection apparatus for pipes, and simultaneously exciting the angle probes in the head to test the test tube. This is what I did. Furthermore, the present invention provides an angle angle flaw detection device for pipes, which uses the angle angle flaw detection head for pipes, holds all the angle probes in the head in a receivable state, and detects each angle probe. This problem has been solved by testing the test tubes while sequentially exciting them one by one.

【作用】[Effect]

本発明の管用斜角探傷ヘッドにおいては、第1図及び第
2図(A)又は(B)に示す如く、矩形状の接触面を持
つ垂直探触子14と、放射角状の幅を持つ音響くさび1
5とからなる、管周方向の幅が例えば数■以下の斜角探
触子12が、管周状に複数個アレイ状に配置されている
。ここで斜角探触子12の数n (図ではn=6)は、
被検管10における最大の1スキップ距離S以上をカバ
ーできるように決定することができる。 前記探触子を管周に沿ってアレイ状に配置するため、音
響くさび15の管周方向幅は、例えばβ°の放射角状に
加工されると共に、探触子が被検管10と同芯円の円弧
形状の側板16a、16bに取り付けられている。 更に、音響くさび15と被検管10の表面とのギャップ
保持及び音響くさび15の摩耗防止のために、探触子群
の前後に耐摩耗性のシュー17a、17bが取り付けら
れている。 従って、管状材に対する探傷を容易に行うことができ、
後述するように、溶接部追従が不要となり、管厚変更時
の調整も不要となる。
As shown in FIGS. 1 and 2 (A) or (B), the angle pipe inspection head of the present invention includes a vertical probe 14 having a rectangular contact surface and a radial angular width. acoustic wedge 1
A plurality of bevel probes 12 having a circumferential width of, for example, several square meters or less are arranged in an array around the tube. Here, the number n of the angle probes 12 (n=6 in the figure) is:
It can be determined to cover the maximum one-skip distance S or more in the test tube 10. In order to arrange the probes in an array along the circumference of the tube, the width of the acoustic wedge 15 in the tube circumferential direction is processed to have a radial angle of, for example, β°, and the probes are arranged in the same direction as the tube 10 to be tested. It is attached to the arc-shaped side plates 16a and 16b of the core circle. Furthermore, wear-resistant shoes 17a and 17b are attached to the front and rear of the probe group in order to maintain a gap between the acoustic wedge 15 and the surface of the test tube 10 and to prevent wear of the acoustic wedge 15. Therefore, flaw detection can be easily performed on tubular materials.
As will be described later, there is no need to follow the weld, and there is no need to make adjustments when changing the pipe thickness.

【実施例1 以下、図面を参照して、本発明の実施例を詳細に説明す
る。 本発明に係る鋼管用斜角探傷ヘッドの実施例は、第1図
及び第2図(A)、(B)に示すような構成になってい
る。 即ち、矩形状の接触面をもつ垂直探触子14と放射角状
の幅(例えば数11m以下)を有する音響くさび15で
斜角探触子12が構成され、該垂直探触子14は音響く
さび15に小ねじ等(図示せず)によって取付けられて
いる。 又、垂直探触子14の接触面と音響くさび15の取り付
は面との間には油等による薄膜(図示せず)が存在し、
垂直探触子14と音響くさび15を音響的に結合させて
いる。一方、各斜角探触子12の間は、それぞれ音響分
割板(図示せず)で区画されている。 前記音響くさび15は、上述の如く放射角状の幅を有し
、具体的には、被検管(電縫鋼管)10の管周方向の幅
がβ°の放射角状となっている。 又、音響くさび15へ入射する入射波の音速と被検管1
0で屈折する屈折波の音速をそれぞれCi、Crとする
とき、該入射波の入射角θiと屈折波の屈折角θrとの
関係は所謂スネルの法則に従い、下式(2)が成立する
。 Cr/sinθr=Ci/sinθi −(2)従って
、所望の上記屈折角θrを得るため、入射角が上記入射
角θとなるように音響くさび15の形状が形成されてい
る。 ところで、音響くさび15は上述の如く放射状の幅を有
しているが、該幅の放射角β゛は被検管10の外径と垂
直探触子14の幅によって決定される。音響くさび15
の管周方向の幅を上述の如く放射角β゛に加工すること
により、該音響くさび15を被検管10の管周上に第1
図の如くアレイ状に配置することが容易になっている。 更に、第2図(A)、(B)により良く示されているよ
うに、垂直探触子14と音響くさび15からなる上記斜
角探触子12は、被検管10と同芯円の円弧形状を有す
る側板16a、16bによって小ねじ等(図示せず)を
介して保持されている。この側板16a、16bは、上
記斜角探触子12を被検管10の管周上で容易にアレイ
状に保持するために用いられている。 又、上記斜角探触子群の前後には、耐摩耗性を有するシ
ュー17a 、’17bが小ねじ等(図示せず)を介し
て取り付けられている。該シュー17a、17bは、音
響くさび15の摩耗を防止すると共に、音響くさび15
と被検管10の表面との間にギャップを保持するために
用いられている。 なお、第1図及び第2図において、上記斜角探触子12
の数は6個となっているが、本発明はこの数に限定され
るものでなく、この数は、既に説明し7たように、被検
管10の寸法範囲(最大スキップ距離)によって決定さ
れる。 一方、前記のような鋼管用斜角探傷ヘッドを用いた本発
明の鋼管用斜角探傷装置は、次のような構成になってい
る。即ち、第1図及び第2図を用いて詳述した鋼管用斜
角探傷ヘッドが、第1図に示す如く、溶接部11に対し
左右1組ずつ対向して設置されて鋼管用斜角探傷装置が
構成されている。 上記鋼管用斜角探傷ヘッドにおける斜角探触子12の励
振方法により、鋼管用斜角探傷装置は全チャンネル同時
励振方式のものと個別チャンネル順次励振方式のものに
大別される。 全チャンネル同時励振方式の鋼管用斜角探傷装置は、鋼
管用斜角探傷ヘッドにおける各斜角探触子12の全チャ
ンネル1〜nを同時に励振させ、各斜角探傷ヘッド毎に
左右交互に励振させて被検管10の溶接部11を探傷す
るようになっている。 このため、各斜角探傷ヘッド毎に1組のパルサーレシー
バとゲートユニットを有する構成となっており、鋼管用
斜角探傷装置として規模の縮小(小型化等)が図れるよ
うになっている。 又、個別チャンネル順次励振方式の鋼管用斜角探傷装置
は、鋼管用斜角探傷ヘッドにおける全ての斜角探触子1
2を受信可能な状態に保持しながら、各斜角探触子を例
えばN011からNo、nへ1個ずつ順次励振させて、
被検管10の溶接部11を探傷するようになっている。 このため、各斜角探触子毎に1組のパルサーレシーバと
ゲートユニットが必要であり、上記全チャンネル同時励
振方式の場合に比し、装置の規模が大(大型化等)とな
る、しかし被検管の溶接部における欠陥の存在位置を欠
陥エコーのビーム路程から幾何学的に解明できる利点が
ある。 第3図は、上記個別チャンネル順次励振方式の鋼管用斜
角探傷装置における順次励振のタイミングを示す図であ
る。この図において、斜角探触子の送信は、各斜角探触
子(No、1〜NO,n斜角探触子)によって順次1個
づつ行われ、被検管の欠陥からの反射エコーの受信は全
ての斜角探触子によって行われる。 第4図に示すように、本発明の鋼管用斜角探傷ヘッドを
使用し、外径406.4mw+、管厚9.52 uに加
工された外面N5ノツチ(ノツチ深さ0゜48酊)の被
検管を探傷したところ、第5図乃至第7図で示すような
結果が得られた。 第5図は、本発明の鋼管用斜角探傷ヘッドを用いて調査
した各探触子毎の距離振幅特性を示す図であり、図中、
(A)〜(C)は各斜角探触子(具体的には、NO12
〜N014の各斜角探触子)毎の距離振幅特性を示して
いる。従来例と同様の第5図(A)〜(C)においては
、スキップ点でピークエコー高さを示し、斜角探触子と
欠陥の距離が変化するとエコー高さが大きく変化するこ
とがわかる。 一方、第6図は、本発明の鋼管用斜角探傷ヘッドにおけ
る各斜角探触子を全チャンネル同時励振方式とした場合
の距離振幅特性を示したもので、探触子距離変化に伴う
エコー高さ変化が極めて小さいことがわかる。 又、第7図は、本発明の鋼管用斜角探傷ヘッドにおける
各斜角探触子を個別順次励振方式とした場合の距離振幅
特性の概念を示しているが、各探触子毎の出力の包絡線
を辿ることになるので、全チャンネル同時励振方式の場
合と同様に、斜角探触子と欠陥の距離が変化してもエコ
ー高さの変化は極めて小さくなっていることがわかる。 なお、前記実施例においては、本発明が鋼管の探傷に適
用されていたが、本発明の適用対象は、これに限定され
ず、管状材一般の探傷にも同様に適用できることは明ら
かである。 【発明の効果】 以上詳しく説明したような本発明によれば、探触子と欠
陥の距離が変化してもエコー高さは!!僅かしか変化せ
ず、前記従来例のような溶接部の追従を行う必要性がな
くなる。又、エコー高さのピークが無いので、被検管の
外径や管厚に関係なく、常に一定位置に斜角探触子ヘッ
ドをセットすればよく、前記従来例の如く管厚変更時に
探傷器本体の感度調整を行う必要性等もなくなる等の優
れた効果を有する。
[Embodiment 1] Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. An embodiment of the oblique flaw detection head for steel pipes according to the present invention has a structure as shown in FIGS. 1 and 2 (A) and (B). That is, the bevel probe 12 is composed of a vertical probe 14 having a rectangular contact surface and an acoustic wedge 15 having a radial angular width (for example, several tens of meters or less). It is attached to the wedge 15 with machine screws or the like (not shown). Furthermore, there is a thin film (not shown) of oil or the like between the contact surface of the vertical probe 14 and the mounting surface of the acoustic wedge 15.
The vertical probe 14 and the acoustic wedge 15 are acoustically coupled. On the other hand, the space between each of the oblique probes 12 is divided by an acoustic dividing plate (not shown). The acoustic wedge 15 has a radial angular width as described above, and specifically, the acoustic wedge 15 has a radial angular width of β° in the circumferential direction of the tube to be inspected (ERW steel pipe) 10 . Also, the sound velocity of the incident wave entering the acoustic wedge 15 and the test tube 1
When the sound speeds of refracted waves refracted at zero are Ci and Cr, respectively, the relationship between the incident angle θi of the incident wave and the refraction angle θr of the refracted wave follows the so-called Snell's law, and the following formula (2) holds true. Cr/sin θr=Ci/sin θi −(2) Therefore, in order to obtain the desired refraction angle θr, the shape of the acoustic wedge 15 is formed so that the incident angle is the above incident angle θ. Incidentally, the acoustic wedge 15 has a radial width as described above, and the radiation angle β' of the width is determined by the outer diameter of the test tube 10 and the width of the vertical probe 14. acoustic wedge 15
By processing the circumferential width of the acoustic wedge 15 into the radiation angle β' as described above, the acoustic wedge 15 is placed on the circumference of the tube 10 to be tested.
It is easy to arrange them in an array as shown in the figure. Furthermore, as shown better in FIGS. 2(A) and 2(B), the above-mentioned oblique probe 12 consisting of a vertical probe 14 and an acoustic wedge 15 is arranged in a concentric circle with the test tube 10. It is held by side plates 16a and 16b having arcuate shapes via machine screws or the like (not shown). The side plates 16a and 16b are used to easily hold the bevel probes 12 in an array on the circumference of the test tube 10. In addition, wear-resistant shoes 17a and 17b are attached to the front and rear of the bevel probe group via machine screws or the like (not shown). The shoes 17a, 17b prevent the acoustic wedge 15 from being worn out, and also prevent the acoustic wedge 15 from being worn out.
It is used to maintain a gap between the test tube 10 and the surface of the test tube 10. In addition, in FIGS. 1 and 2, the above-mentioned angle probe 12
Although the number is six, the present invention is not limited to this number, and this number is determined by the dimensional range (maximum skip distance) of the test tube 10, as already explained in section 7. be done. On the other hand, the angle flaw detection apparatus for steel pipes of the present invention using the above-described angle flaw detection head for steel pipes has the following configuration. That is, as shown in FIG. 1, the angle flaw detection heads for steel pipes described in detail with reference to FIGS. The device is configured. Depending on the method of excitation of the angle probe 12 in the above-mentioned angle inspection head for steel pipes, angle angle flaw detection apparatuses for steel pipes are roughly divided into those that use simultaneous excitation of all channels and those that use sequential excitation of individual channels. An angle flaw detection device for steel pipes with simultaneous excitation of all channels simultaneously excites all channels 1 to n of each angle probe 12 in an angle flaw detection head for steel pipes, and excite alternately left and right for each angle flaw detection head. The welded portion 11 of the tube to be inspected 10 is inspected for flaws. For this reason, each angle flaw detection head is configured to have one set of a pulser receiver and a gate unit, and the scale of the angle flaw detection apparatus for steel pipes can be reduced (downsized, etc.). In addition, the angle flaw detection device for steel pipes using the individual channel sequential excitation method has all the angle probes 1 in the angle flaw detection head for steel pipes.
2 in a receivable state, sequentially excite each of the angle probes one by one, for example from N011 to No.
The welded portion 11 of the test tube 10 is tested for flaws. Therefore, one set of pulsar receiver and gate unit is required for each angle probe, and the scale of the equipment becomes larger (larger, etc.) than in the case of the simultaneous excitation method for all channels. This method has the advantage that the position of a defect in a welded portion of a tube to be inspected can be determined geometrically from the beam path of the defect echo. FIG. 3 is a diagram showing the timing of sequential excitation in the steel pipe angle flaw detection apparatus using the individual channel sequential excitation method. In this figure, the transmission of the bevel probes is performed one by one by each bevel probe (No. 1 to No. n bevel probe), and the reflected echo from the defect in the test tube is transmitted. is received by all angle probes. As shown in Fig. 4, using the oblique flaw detection head for steel pipes of the present invention, an N5 notch (notch depth 0°48 mm) on the outer surface machined to an outer diameter of 406.4 mw+ and a pipe thickness of 9.52 μm was detected. When the test tube was inspected for flaws, the results shown in FIGS. 5 to 7 were obtained. FIG. 5 is a diagram showing the distance-amplitude characteristics of each probe investigated using the oblique flaw detection head for steel pipes of the present invention.
(A) to (C) are each angle probe (specifically, NO12
-N014) shows the distance amplitude characteristics for each of the oblique angle probes). In Figures 5 (A) to (C), which are similar to the conventional example, the peak echo height is shown at the skip point, and it can be seen that the echo height changes greatly as the distance between the bevel probe and the defect changes. . On the other hand, Figure 6 shows the distance amplitude characteristics when all channels of the angle probes in the steel pipe angle flaw detection head of the present invention are simultaneously excited. It can be seen that the height change is extremely small. Furthermore, Fig. 7 shows the concept of the distance amplitude characteristic when each angle probe in the angle probe head for steel pipes of the present invention is individually and sequentially excited. It can be seen that even if the distance between the angle probe and the defect changes, the change in echo height is extremely small, as in the case of the all-channel simultaneous excitation method. In the above embodiments, the present invention was applied to flaw detection of steel pipes, but it is clear that the present invention is not limited to this and can be similarly applied to flaw detection of tubular materials in general. [Effects of the Invention] According to the present invention as described in detail above, the echo height remains constant even if the distance between the probe and the defect changes. ! There is only a slight change, and there is no need to follow the weld as in the conventional example. In addition, since there is no peak in echo height, the bevel probe head can always be set at a fixed position regardless of the outer diameter or thickness of the tube to be inspected. This has excellent effects such as eliminating the need to adjust the sensitivity of the device itself.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る管用斜角探傷ヘッド及びそれを
用いた管用斜角探傷装置の構成を示す断面図、 第2図(A)は、第1図の矢視A方向から見た平面図、 第2図(B)は、第1図矢視B方向から見た平面図、 第3図は、個別チャンネル順次励振方式の鋼管用斜角探
傷装置における順次励振のタイミングを示す線図、 第4図は、本発明の実施例の作用を説明するための断面
図、 第5図(A)、(B)、(C)は、本発明の鋼管用斜角
探傷ヘッドを用いて調査した、各探触子毎の距離振幅特
性の例を示す線図、 第6図は、斜角探触子を全チャンネル同時励振方式とし
た場合の距離振幅特性の例を示す線図、第7図は、斜角
探触子を個別順次励振方式とした場合の距離振幅特性の
概念を示す線図、第8図は、従来の斜角探傷法における
距離振幅特性の例を示す線図、 第9図は、従来の鋼管用斜角探傷装置の一例の構成を示
す平面図、 第10図(A)、(B)、(C)は、それぞれ第9図の
A−A′線、B−B”線、c−c′線に沿う断面図であ
る。 0・・・被検管、 2・・・斜角探触子、 4・・・垂直探触子、 5a、16b・・・側板、 7a、17b・・・シュー 11・・・溶接部、 13・・・超音波ビーム、 15・・・音響くさび、
FIG. 1 is a sectional view showing the configuration of an angle pipe flaw detection head and an angle pipe flaw detection apparatus using the same according to the present invention, and FIG. 2(A) is a view taken from the direction of arrow A in FIG. 2(B) is a plan view as seen from the direction of arrow B in FIG. 1. FIG. 3 is a diagram showing the timing of sequential excitation in an angle flaw detection device for steel pipes using an individual channel sequential excitation method. , FIG. 4 is a cross-sectional view for explaining the operation of the embodiment of the present invention, and FIG. Figure 6 is a diagram showing an example of the distance amplitude characteristic for each probe. Figure 8 is a diagram showing the concept of distance-amplitude characteristics when the angle probe uses the individual sequential excitation method. Figure 8 is a diagram showing an example of distance-amplitude characteristics in the conventional angle-angle flaw detection method. FIG. 9 is a plan view showing the configuration of an example of a conventional angle flaw detection device for steel pipes, and FIGS. 10 (A), (B), and (C) are lines A-A' and B- It is a sectional view taken along line B'' and line c-c'. 0... Test tube, 2... Oblique probe, 4... Vertical probe, 5a, 16b... Side plate. , 7a, 17b... Shoe 11... Welding part, 13... Ultrasonic beam, 15... Acoustic wedge,

Claims (3)

【特許請求の範囲】[Claims] (1)矩形状の接触面をもつ垂直探触子と放射角状の幅
をもつ音響くさびとからなる斜角探触子を、被検管と同
芯円の円弧形状の側板に複数個アレイ状に装着し、該斜
角探触子群の前後に耐摩耗性のシューを設けたことを特
徴とする管用斜角探傷ヘッド。
(1) Multiple oblique probes consisting of a vertical probe with a rectangular contact surface and an acoustic wedge with a radial width are arrayed on an arc-shaped side plate concentric with the test tube. 1. An oblique flaw detection head for pipes, characterized in that the bevel probe group is mounted in the same shape as the bevel probe group, and wear-resistant shoes are provided at the front and rear of the bevel probe group.
(2)請求項1に記載の管用斜角探傷ヘッドを具備し、
該ヘッド内の各斜角探触子を同時励振して被検管を探傷
することを特徴とする管用斜角探傷装置。
(2) comprising the angle tube flaw detection head according to claim 1;
An angle angle flaw detection device for a tube, characterized in that a tube to be inspected is tested for flaws by simultaneously exciting each angle probe in the head.
(3)請求項1に記載の管用斜角探傷ヘッドを具備し、
該ヘッド内の全ての斜角探触子を受信可能な状態に保持
して、各斜角探触子を1個づつ順次励振しながら被検管
を探傷することを特徴とする管用斜角探傷装置。
(3) comprising the angle pipe flaw detection head according to claim 1;
An angle angle flaw detection for pipes characterized by holding all the angle angle probes in the head in a receivable state and testing the test tube while sequentially exciting each angle probe one by one. Device.
JP63209210A 1988-08-23 1988-08-23 Angle beam inspection head for pipes and angle beam inspection device for pipes using the same Expired - Lifetime JPH0664027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63209210A JPH0664027B2 (en) 1988-08-23 1988-08-23 Angle beam inspection head for pipes and angle beam inspection device for pipes using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63209210A JPH0664027B2 (en) 1988-08-23 1988-08-23 Angle beam inspection head for pipes and angle beam inspection device for pipes using the same

Publications (2)

Publication Number Publication Date
JPH0257973A true JPH0257973A (en) 1990-02-27
JPH0664027B2 JPH0664027B2 (en) 1994-08-22

Family

ID=16569177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63209210A Expired - Lifetime JPH0664027B2 (en) 1988-08-23 1988-08-23 Angle beam inspection head for pipes and angle beam inspection device for pipes using the same

Country Status (1)

Country Link
JP (1) JPH0664027B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008040407A1 (en) * 2006-09-29 2008-04-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Ultrasonic test arrangement
JP2011237208A (en) * 2010-05-07 2011-11-24 Hitachi-Ge Nuclear Energy Ltd Ultrasonic inspection device and ultrasonic inspection method
CN113406213A (en) * 2021-06-29 2021-09-17 西安热工研究院有限公司 Curved surface sound-transmitting wedge design method for circumferential ultrasonic detection of small-diameter pipe

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5667750A (en) * 1979-11-08 1981-06-08 Kawasaki Steel Corp Automatic ultrasonic flaw detecting method
JPS6230951A (en) * 1985-08-02 1987-02-09 Power Reactor & Nuclear Fuel Dev Corp Probe for ultrasonic flaw detector
JPS6338157A (en) * 1986-08-04 1988-02-18 Power Reactor & Nuclear Fuel Dev Corp Ultrasonic probe

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5667750A (en) * 1979-11-08 1981-06-08 Kawasaki Steel Corp Automatic ultrasonic flaw detecting method
JPS6230951A (en) * 1985-08-02 1987-02-09 Power Reactor & Nuclear Fuel Dev Corp Probe for ultrasonic flaw detector
JPS6338157A (en) * 1986-08-04 1988-02-18 Power Reactor & Nuclear Fuel Dev Corp Ultrasonic probe

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008040407A1 (en) * 2006-09-29 2008-04-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Ultrasonic test arrangement
JP2011237208A (en) * 2010-05-07 2011-11-24 Hitachi-Ge Nuclear Energy Ltd Ultrasonic inspection device and ultrasonic inspection method
CN113406213A (en) * 2021-06-29 2021-09-17 西安热工研究院有限公司 Curved surface sound-transmitting wedge design method for circumferential ultrasonic detection of small-diameter pipe

Also Published As

Publication number Publication date
JPH0664027B2 (en) 1994-08-22

Similar Documents

Publication Publication Date Title
US5007291A (en) Ultrasonic inspection apparatus with centering means for tubular members
JP4836019B2 (en) Ultrasonic probe, ultrasonic flaw detector, ultrasonic flaw detection method, and seamless tube manufacturing method
CN108562647B (en) PA-TOFD combined ultrasonic detection device and method for polyethylene pipeline hot-melt butt joint
JPS6391554A (en) Method and apparatus for ultrasonic flaw detection of welded part in steel pipe
US20100005846A1 (en) Ultrasonic testing method and manufacturing method of seamless pipe or tube
CA1108743A (en) Method and apparatus for automatic ultrasonic flaw detection
WO1999034204A1 (en) Method and apparatus for ultrasonic flaw detection of weld portion
US5113697A (en) Process and apparatus for detecting discontinuities on long workpieces
WO2020250379A1 (en) Ultrasound flaw detection method, ultrasound flaw detection device, manufacturing equipment line for steel material, manufacturing method for steel material, and quality assurance method for steel material
CN111380955A (en) Method for detecting defects of additive manufacturing part based on ultrasonic phased array
JP4564867B2 (en) Ultrasonic flaw detection method and apparatus
JPH0257973A (en) Angle beam flaw detecting head for pipe and angle beam flaw detecting apparatus using said head
JP3671819B2 (en) Ultrasonic flaw detector for welded steel pipe
JPH07244028A (en) Apparatus and method for ultrasonically detecting flaw on spherical body to be detected
WO2017030458A1 (en) Ultrasonic diagnostics of vertically-oriented defects in prismatic metal products
JP3761292B2 (en) Ultrasonic measurement method of welded part with wheel assembly
JPS61198056A (en) Ultrasonic flaw detecting method for steel pipe by array type probe
JP2003262621A (en) Ultrasonic inspection method
JP2019109107A (en) Ultrasonic flaw detection method, ultrasonic flaw detection device, manufacturing equipment row of steel material, manufacturing method of steel material, and quality assurance of steel material
JP2001056318A (en) Flaw detection method of pipe by ultrasonic waves and ultrasonic flaw detector
CN106323207A (en) Composite billet weld fusion depth detecting device and method
JPS61160053A (en) Ultrasonic flaw detection test
JPH08271485A (en) Method and device for detecting defect of drawn processed material
JPH04274754A (en) Ultrasonic flaw detector for turbine rotor blade base
JPS5933226B2 (en) Method and device for detecting diagonal cracks in seamless pipes using ultrasonic waves