JPH04274754A - Ultrasonic flaw detector for turbine rotor blade base - Google Patents

Ultrasonic flaw detector for turbine rotor blade base

Info

Publication number
JPH04274754A
JPH04274754A JP3036293A JP3629391A JPH04274754A JP H04274754 A JPH04274754 A JP H04274754A JP 3036293 A JP3036293 A JP 3036293A JP 3629391 A JP3629391 A JP 3629391A JP H04274754 A JPH04274754 A JP H04274754A
Authority
JP
Japan
Prior art keywords
ultrasonic
probe
hook
incident
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3036293A
Other languages
Japanese (ja)
Inventor
Tetsuya Kisanuki
木佐貫 哲 也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3036293A priority Critical patent/JPH04274754A/en
Publication of JPH04274754A publication Critical patent/JPH04274754A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2693Rotor or turbine parts

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To constantly make ultrasonic waves incident constantly on a portion of a hook where defects are most likely to occur and scan to detect defects irrespective of a fluctuation in incident positions of the ultrasonic waves to the hook of a turbine rotor which occurs due to a drop of planarity due to adhesion or corrosion of an oxidation scale on a side of a disk. CONSTITUTION:An electron scanning type ultrasonic flaw detector 20 comprises an array ultrasonic probe 11 with a plurality of very small oscillators 12 linearly arranged and a gradient angle probe 4 which are placed symmetrically with respect to a radial direction of a disk 5 on the same side 6 of the disk 5 of a turbine rotor and made into contact with each other. The array ultrasonic probe 11 is used to make ultrasonic waves incident in a sector form on a hook of a blade base and scan them, and ultrasonic waves S reflected from a detect 3 in a direction of a lateral cross section of the hook 2 are received by the array ultrasonic wave probe 11. A signal controller senses magnitude of peak values of ultrasonic signals which are incident in a sector form to be reflected by the hook 2 and received by the gradient angle probe 4, compares the peak values, and automatically controls the signals to incident angles wherein ultrasonic waves incident in a sector form are freely adjusted within a predetermined angle range constantly in the vicinity of the hook.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は蒸気タービンロータの鞍
型の羽根植込部フック部の横断面方向の欠陥を適確に検
出する超音波探傷装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic flaw detection device for accurately detecting defects in the cross-sectional direction of a hook portion of a saddle-shaped blade implantation portion of a steam turbine rotor.

【0002】0002

【従来の技術】従来、蒸気タービンロータの鞍型の羽根
植込部に発生する欠陥を検知するため、超音波探触子を
その円板側面に当接し、羽根植込部を探傷する方法およ
び装置が用いられている(例えば、電子走査型超音波探
傷装置、超音波探傷試験III 、P133,1989
,(社)日本非破壊協会参照)。
[Prior Art] Conventionally, in order to detect defects that occur in the saddle-shaped blade implantation part of a steam turbine rotor, an ultrasonic probe is brought into contact with the side surface of the disc to detect flaws in the blade implantation part. equipment is used (for example, electronic scanning ultrasonic flaw detection equipment, Ultrasonic Flaw Detection Test III, P133, 1989
, Japan Nondestructive Association).

【0003】すなわち、図7(a),(b)に示すよう
に、超音波探触子を用いたこの種探傷法では斜角探触子
4を蒸気タービンロータの円板5の側面6に当接し、こ
こから超音波を斜めに入射し、欠陥3から反射した超音
波Sを斜角探触子4で受信し、そこで電気信号に変換さ
れた超音波信号の波形を超音波探傷器8の表示器(CR
T)9上で観察し、欠陥の有無を識別するようになって
いる。
That is, as shown in FIGS. 7(a) and 7(b), in this type of flaw detection method using an ultrasonic probe, an angle probe 4 is placed on a side surface 6 of a disc 5 of a steam turbine rotor. The ultrasonic wave S reflected from the defect 3 is received by the angle probe 4, and the waveform of the ultrasonic signal converted into an electric signal is detected by the ultrasonic flaw detector 8. indicator (CR
T) 9 to identify the presence or absence of defects.

【0004】上記した探傷方法は羽根植込部1の長手方
向に生じた欠陥の超音波探傷装置の例であるが、図8に
示す超音波探傷装置は、羽根植込部のフック部2の横断
面方向の欠陥3を図7(a),(b)と同様に斜角探触
子4から超音波を入射し、円板5の円周方向に走査して
屈折角θで反射した超音波Sを斜角探触子4で受信し、
超音波探傷器8によって欠陥3を検出することができる
ようになっている。
The above-mentioned flaw detection method is an example of an ultrasonic flaw detection apparatus for detecting defects occurring in the longitudinal direction of the blade implanted part 1, but the ultrasonic flaw detection apparatus shown in FIG. Ultrasonic waves are incident on the defect 3 in the cross-sectional direction from the angle probe 4 in the same way as in FIGS. Receiving the sound wave S with the angle probe 4,
The defect 3 can be detected by the ultrasonic flaw detector 8.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の超音波探傷装置では供用中の蒸気タービンロ
ータの羽根植込部1においては、経年的な材料強度の低
下ともあわせて、図8(a)に示すように、羽根植込部
1のフック部2に横断面方向の欠陥3が発生する可能性
がある。このため、羽根植込部1の超音波探傷において
は、図8(a)に示すようにフック部2に超音波Sが入
射するように、斜角探触子4の円板側面6での当接位置
および超音波の屈折角θを予め求めておき、超音波探傷
を行う。また、羽根植込部1のフック部2の全周を探傷
するために斜角探触子4を図8(b)に示すように円板
側面6上で円周方向に移動して走査するが、円板側面6
は蒸気タービンの使用中に高温高圧の蒸気にさらされる
ため、この面がスケールの付着、わずかな浸食等により
平坦でなくなっている場合がある。このため、超音波の
屈折角θが固定されている斜角探触子4では、円板側面
6上への当接位置により、図9に示すように超音波のフ
ック部への入射方向が適した入射方向Aから適さない入
射方向Bへと変動し、欠陥の発生する可能性がある部位
であるフック部に超音波が到達しないという到達位置の
変動現象が生じる。そのため安定した高い精度で欠陥を
検出することが困難となっている。
[Problems to be Solved by the Invention] However, with such conventional ultrasonic flaw detection equipment, in the blade implanted portion 1 of the steam turbine rotor currently in service, the material strength decreases over time, and the As shown in a), a defect 3 in the cross-sectional direction may occur in the hook portion 2 of the blade implanted portion 1. For this reason, in ultrasonic flaw detection of the blade implanted part 1, the angle probe 4 is placed on the disc side surface 6 so that the ultrasonic wave S is incident on the hook part 2 as shown in FIG. 8(a). The contact position and the ultrasonic refraction angle θ are determined in advance, and ultrasonic flaw detection is performed. In addition, in order to detect flaws around the entire circumference of the hook portion 2 of the blade implantation portion 1, the angle probe 4 is moved and scanned in the circumferential direction on the disk side surface 6 as shown in FIG. 8(b). However, the disk side 6
is exposed to high-temperature, high-pressure steam during use of a steam turbine, so this surface may become uneven due to scale buildup, slight erosion, etc. Therefore, in the angle probe 4 in which the refraction angle θ of the ultrasonic wave is fixed, the direction of incidence of the ultrasonic wave on the hook portion is determined by the contact position on the disk side surface 6 as shown in FIG. A phenomenon occurs in which the arrival position changes from a suitable incident direction A to an unsuitable incident direction B, and the ultrasonic wave does not reach the hook portion where a defect may occur. This makes it difficult to detect defects with stable and high accuracy.

【0006】このような超音波の到達位置の変動による
欠陥の検出精度の低下を補うため、図10に示すように
アレイ超音波探触子11を用い、アレイ超音波探触子1
1の各振動子12の位相を制御し、超音波ラインLの屈
折角θを連続的に切換えて、角度範囲λ内において扇形
の入射を行うことにより、羽根植込部1を広い範囲にわ
たってほぼ同時に探傷するものがある。しかしながら、
この探傷方法は、多数の屈折角θの超音波ラインLを処
理することになり、探傷に要する時間が長くなる傾向に
ある。
In order to compensate for the decrease in defect detection accuracy due to variations in the arrival position of ultrasonic waves, an array ultrasonic probe 11 is used as shown in FIG.
By controlling the phase of each transducer 12 of the ultrasonic wave line L, continuously changing the refraction angle θ of the ultrasonic line L, and performing fan-shaped incidence within the angular range λ, the blade implanted part 1 can be almost spread over a wide range. There is something to be detected at the same time. however,
This flaw detection method involves processing ultrasonic lines L having a large number of refraction angles θ, and the time required for flaw detection tends to be long.

【0007】本発明の目的は、蒸気タービンロータの羽
根植込部の、とくに超音波受信記号の大きさが最大とな
る超音波探触子の屈折角が弁別できるように、羽根植込
部のフック部の位置を特定しうる弁別回路を設け、その
近傍を探傷するように屈折角を自動的に制御できるよう
にして欠陥の検出精度を向上することにある。
An object of the present invention is to improve the angle of refraction of the ultrasonic probe at the vane implantation part of a steam turbine rotor, and in particular, to distinguish the angle of refraction of the ultrasonic probe at which the magnitude of the ultrasonic reception symbol is maximum. The object of the present invention is to improve defect detection accuracy by providing a discrimination circuit capable of specifying the position of the hook portion and automatically controlling the refraction angle so as to detect flaws in the vicinity thereof.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
、本発明に係る超音波探傷装置は、複数の微小振動子を
直線的に配列したアレイ超音波探触子と斜角探触子とを
タービンロータの円板の同一側面の円板半径の方向に対
称となるように配置、当接し、アレイ超音波探触子によ
って、超音波を羽根植込部のフック部に扇状に入射し、
フック部の横断面方向の欠陥から反射する超音波をアレ
イ超音波探触子で受信する電子走査型超音波探傷器と、
扇状に入射されフック部によって反射されて斜角探触子
に受信された超音波信号群のピーク値の大きさを検知し
、かつ、それらのピーク値を比較して、扇型に入射され
る超音波群を常にフック部の近傍に扇状の特定角度範囲
に調節自在とした入射角度に自動的に制御する信号制御
器とを備えたものである。
[Means for Solving the Problems] In order to achieve the above object, an ultrasonic flaw detection device according to the present invention includes an array ultrasonic probe in which a plurality of micro vibrators are linearly arranged, and an angle probe. are arranged and abutted symmetrically in the direction of the disk radius on the same side of the disk of the turbine rotor, and the array ultrasonic probe injects ultrasonic waves into the hook part of the blade implantation part in a fan shape,
an electronic scanning ultrasonic flaw detector that uses an array ultrasonic probe to receive ultrasonic waves reflected from defects in the cross-sectional direction of the hook portion;
Detects the magnitude of the peak value of a group of ultrasonic signals incident in a fan shape, reflected by the hook part, and received by the angle probe, and compares the peak values to make the ultrasound signals incident in a fan shape. A signal controller is provided near the hook portion to automatically control the incident angle of the ultrasonic waves to a fan-shaped specific angle range that can be freely adjusted.

【0009】[0009]

【作用】本発明によれば蒸気タービンロータの円板側面
に配置、当接したアレイ超音波探触子および電子走査型
超音波探傷器によって羽根植込部に超音波を扇形に入射
して走査し、フック部の横断面方向に発生する可能性の
ある欠陥からの反射波の有無を検知しつつ、アレイ超音
波探触されると円板の同一側面に配置した斜角探触子に
おいてフック部のから反射される超音波を受け、超音波
受信信号の大きさが最大となるアレイ超音波探触子の入
射角を識別し、それを、基準として、超音波が常にフッ
ク部に入射するようアレイ超音波探触子からの超音波の
屈折角を自動的に制御する。
[Operation] According to the present invention, ultrasonic waves are incident on the vane implantation part in a fan shape and scanned by an array ultrasonic probe placed in contact with the side surface of the disc of the steam turbine rotor and an electronic scanning ultrasonic flaw detector. While detecting the presence or absence of reflected waves from defects that may occur in the cross-sectional direction of the hook part, when the array ultrasonic probe is performed, the hook is detected by the angle probe placed on the same side of the disk. Identify the incident angle of the array ultrasonic probe at which the magnitude of the ultrasonic reception signal is maximum upon receiving the ultrasonic waves reflected from the hook part, and use this as a reference to ensure that the ultrasonic waves always enter the hook part. so that the refraction angle of the ultrasound waves from the array ultrasound probe is automatically controlled.

【0010】0010

【実施例】以下、本発明の超音波探傷装置の一実施例を
図1ないし図5を参照して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the ultrasonic flaw detection apparatus of the present invention will be described below with reference to FIGS. 1 to 5.

【0011】図1(a)は本発明に係る超音波探傷装置
のブロック図を、また、図1(b)は超音波探傷の対象
となる羽根植込部1の部分断面図を示す。図1(a)に
おいて電子走査型超音波探傷器20の設定データメモリ
21には、羽根植込部1の形状に従ってフック部2の方
向に超音波ラインLを扇形状に入射するためアレイ超音
波探触子11を構成する短冊状の複数の微小振動子12
を発振させるタイミング等のデータが予め設定、記憶さ
れている。また、電子走査型超音波探傷器20のマルチ
チャンネルパルサ22は中央演算装置(CPU)23を
介して、設定データメモリ21に予め記憶させた設定デ
ータに基づき、かつ、発振制御器24のトリガタイミン
グ信号の指示によって、高圧パルスの送信タイミングを
制御する。
FIG. 1(a) is a block diagram of an ultrasonic flaw detection apparatus according to the present invention, and FIG. 1(b) is a partial cross-sectional view of a blade implanted portion 1 to be subjected to ultrasonic flaw detection. In FIG. 1(a), the setting data memory 21 of the electronic scanning ultrasonic flaw detector 20 contains an array ultrasonic wave for injecting the ultrasonic line L in a fan shape in the direction of the hook portion 2 according to the shape of the blade implanted portion 1. A plurality of strip-shaped micro-oscillators 12 forming the probe 11
Data such as the timing of oscillation is set and stored in advance. In addition, the multi-channel pulser 22 of the electronic scanning ultrasonic flaw detector 20 uses the central processing unit (CPU) 23 to control the trigger timing of the oscillation controller 24 based on the setting data stored in the setting data memory 21 in advance. The transmission timing of high-voltage pulses is controlled according to the signal instructions.

【0012】ここで、超音波探傷を行う際には、複数の
微小振動子を直線的に配列したアレイ超音波探触子11
と斜角探触子4とを台車60に装架し、蒸気タービンロ
ータの円板5の同一側面6にその半径方向に対称となる
ように当接配置する。そして、その際、台車60に設け
た車輪60aを円板5のリム部6aに当接してその半径
方向の位置決めをするとともに円板5の軸方向と円周方
向の基準点を決めてから円板5の円周方向に台車60を
リム部6aに沿って移動させつつ超音波を扇形に入射し
て走査を行う。
[0012] When performing ultrasonic flaw detection, an array ultrasonic probe 11 in which a plurality of micro vibrators are linearly arranged is used.
and the angle probe 4 are mounted on a truck 60, and are placed in contact with the same side surface 6 of the disc 5 of the steam turbine rotor so as to be symmetrical in the radial direction. At that time, the wheels 60a provided on the cart 60 are brought into contact with the rim portion 6a of the disc 5 to position it in the radial direction, and the reference points in the axial and circumferential directions of the disc 5 are determined, and then While moving the cart 60 along the rim portion 6a in the circumferential direction of the plate 5, scanning is performed by injecting ultrasonic waves in a fan shape.

【0013】羽根植込部1のフック部2に横断面方向の
欠陥3が存在すると、欠陥3から反射された超音波Sは
アレイ超音波探触子11に受信され、その受信信号はレ
シーバA25において増幅、検波される。レシーバA2
5において増幅、検波された受信信号はCRT信号発生
器26に送られ、ここで、図2で示すようなアレイ超音
波探触子11の振動子12の前面のアクリルシュー35
内における伝播距離B1〜Bi〜Bnが補正され、図3
に示すように、表示器27の走査線位置に欠陥信号36
が波形として表示される。この電子走査型超音波探傷器
20による超音波ラインLの扇形状の入射および超音波
の受信は周知の技術であるが、本発明の実施例では、こ
の際、図4に示すように、フック部2の欠陥3の発生し
易い部位に対して、限定した扇形走査を行うようにする
When a defect 3 in the cross-sectional direction exists in the hook portion 2 of the blade implanted portion 1, the ultrasonic wave S reflected from the defect 3 is received by the array ultrasonic probe 11, and the received signal is sent to the receiver A25. The signal is amplified and detected. Receiver A2
The received signal amplified and detected in 5 is sent to the CRT signal generator 26, where it is sent to the acrylic shoe 35 in front of the transducer 12 of the array ultrasonic probe 11 as shown in FIG.
The propagation distances B1 to Bi to Bn within are corrected, and
As shown in FIG.
is displayed as a waveform. Although the fan-shaped incidence of the ultrasonic line L and the reception of ultrasonic waves by the electronic scanning ultrasonic flaw detector 20 are well-known techniques, in the embodiment of the present invention, as shown in FIG. A limited fan-shaped scan is performed on a portion of the portion 2 where the defect 3 is likely to occur.

【0014】すなわち、図1(a)、(b)に示すよう
に、まず、フック部2に超音波Sが常に到達しているか
否かを確認する。到達位置の変動が生じていた場合の補
正は、アレイ超音波探触子11と円板5の同一側面6上
で、アレイ超音波探触子11と円板5の半径方向に対称
の位置で、フック部2の形状に従って反射された超音波
が受信できる位置に配置された斜角探触子4とその信号
制御器30によって行う。
That is, as shown in FIGS. 1(a) and 1(b), first, it is checked whether the ultrasonic waves S always reach the hook portion 2 or not. If there is a variation in the arrival position, correction is to be performed on the same side surface 6 of the array ultrasonic probe 11 and the disk 5, and at a position that is symmetrical in the radial direction of the array ultrasonic probe 11 and the disk 5. This is carried out using the bevel probe 4 and its signal controller 30, which are placed at a position where the ultrasound waves reflected according to the shape of the hook portion 2 can be received.

【0015】フック部2に欠陥3が存在しない場合には
、アレイ超音波探触子11からフック部2へ入射され、
フック部2において反射された超音波S′は屈折方向を
確認するために斜角探触子4に受信される。斜角探触子
4で受信されたアレイ超音波探触子11の扇形走査によ
る複数の超音波信号S′は、電子走査型超音波探傷器2
0の中央演算装置23からの信号を信号制御器30のタ
イミング制御器31が受け、かつ、アレイ超音波探触子
11からの超音波の入射のタイミングに同期して、レシ
ーバB32で受信される。レシーバB32に受信された
超音波受信信号はピーク検出器33において受信信号の
ピーク値の大きさを検知されピーク比較器34へ送られ
る。
When there is no defect 3 in the hook part 2, the ultrasonic wave is incident on the hook part 2 from the array ultrasonic probe 11,
The ultrasonic wave S' reflected at the hook portion 2 is received by the oblique probe 4 in order to confirm the direction of refraction. A plurality of ultrasonic signals S' generated by the fan-shaped scan of the array ultrasonic probe 11 received by the angle probe 4 are transmitted to the electronic scanning ultrasonic flaw detector 2.
The timing controller 31 of the signal controller 30 receives the signal from the central processing unit 23 of 0, and the signal is received by the receiver B 32 in synchronization with the timing of incidence of the ultrasound from the array ultrasound probe 11. . The ultrasonic reception signal received by the receiver B 32 is sent to the peak comparator 34 after the magnitude of the peak value of the reception signal is detected by the peak detector 33 .

【0016】ピーク比較器34によってピーク値が得ら
れた超音波信号が、図4に示す扇形走査の超音波ライン
l1 ,l2 ,l3 のうち中央の超音波ラインl2
 によるものかをここで判定し、最大ピーク値が中央の
超音波ライン12 となるように電子走査型超音波探傷
器20の中央演算装置23に指示する。
The ultrasonic signal whose peak value has been obtained by the peak comparator 34 is transmitted to the central ultrasonic line l2 among the ultrasonic lines l1, l2, l3 of the fan-shaped scan shown in FIG.
The central processing unit 23 of the electronic scanning ultrasonic flaw detector 20 is instructed to make the maximum peak value the central ultrasonic line 12.

【0017】次に、図1(a)に示す信号制御器30の
作用について、図4に示すようにアレイ超音波探触子1
1を用いて、屈折角θ1、θ2、θ3をもつ3本の超音
波ラインl1 ,l2 ,l3 によって扇形走査を行
う場合を、図5のブロック図を用いて説明する。
Next, regarding the operation of the signal controller 30 shown in FIG. 1(a), as shown in FIG.
1 to perform fan-shaped scanning using three ultrasonic lines l1, l2, l3 having refraction angles θ1, θ2, and θ3 will be described using the block diagram of FIG.

【0018】図5に示すように、まず、図1に示す信号
発生器30のピーク検出器33で超音波ラインl1 、
l2 、l3 の超音波のピーク値の大きさP1、P2
、P3をそれぞれ図5(a)に示すように検知し、図5
(b)に示すようにピーク比較器34でこれらピーク値
の大きさP1、P2、P3を比較する。もし、P2>P
1、P3ならば、屈折角θ1 ,θ2 ,θ3 の超音
波ラインにて超音波を入射し、また、P1>P2、P3
ならば、l1−1 、l2−1 、l3−1 の超音波
ラインにて、もしくは、P3 >P1 、P2 ならば
l3+1 、l2+1 、l1+1 の超音波ラインで
扇形操作を行うよう電子走査形超音波探傷器20の中央
演算装置23に指示する。これにより、中央演算装置2
3は、信号制御器30のピーク比較器34の指示を受け
て、扇形走査を構成する超音波ラインl1 ,l2 …
lx を制御することができる。
As shown in FIG. 5, first, the peak detector 33 of the signal generator 30 shown in FIG.
The magnitudes of the peak values of ultrasonic waves P1 and P2 of l2 and l3
, P3 are detected as shown in Fig. 5(a), respectively.
As shown in (b), the peak comparator 34 compares the magnitudes P1, P2, and P3 of these peak values. If P2>P
1, P3, the ultrasonic waves are incident on the ultrasonic lines with refraction angles θ1, θ2, θ3, and P1>P2, P3
If so, use electronic scanning ultrasound to perform fan-shaped operation on the ultrasound lines l1-1, l2-1, l3-1, or if P3 > P1, P2, use the ultrasound lines l3+1, l2+1, l1+1. An instruction is given to the central processing unit 23 of the flaw detector 20. As a result, the central processing unit 2
3, ultrasonic lines l1, l2, .
lx can be controlled.

【0019】したがって、本実施例によれば、超音波の
屈折角θの変動による蒸気タービンロータ羽根植込部1
のフック部2への超音波の入射方向の変動を抑え、かつ
、適確に超音波をフック部2の所望位置に入射できる効
果が得られる。
Therefore, according to this embodiment, the steam turbine rotor blade embedded portion 1 due to the change in the refraction angle θ of the ultrasonic wave
It is possible to suppress fluctuations in the direction of incidence of ultrasonic waves on the hook part 2, and to make the ultrasonic waves accurately enter the desired position of the hook part 2.

【0020】次に、本発明の超音波探傷装置の他の実施
例を説明する。
Next, another embodiment of the ultrasonic flaw detection apparatus of the present invention will be described.

【0021】図6に示すように、この実施例による超音
波探傷装置は、設定データメモリ21、マルチチャンネ
ルパルサ54,55、中央演算装置23、発振制御器2
4、レシーバ57,58、CRT信号発生器26、チャ
ンネル切換器56および表示器27からなる電子走査型
超音波探傷装置20ならびにタイミング制御器31、ピ
ーク検出器33およびピーク比較器34よりなる信号制
御器30を備えている。
As shown in FIG. 6, the ultrasonic flaw detection apparatus according to this embodiment includes a setting data memory 21, multi-channel pulsers 54 and 55, a central processing unit 23, and an oscillation controller 2.
4. Electronic scanning ultrasonic flaw detection device 20 consisting of receivers 57, 58, CRT signal generator 26, channel switch 56 and display 27; signal control consisting of timing controller 31, peak detector 33 and peak comparator 34; A container 30 is provided.

【0022】このように構成した超音波探傷装置では、
羽根植込部1のフック部2に超音波Sが入射するようア
レイ超音波探触子50、51は予め円板5の側面6上に
設置される。しかし、円板側面6上でアレイ超音波探触
子50、51を走査し、探傷を行うと超音波の入射方向
がずれてくる場合がある。これを先の実施例と同様に補
正し、常にフック部2の方向に超音波を伝播させるため
、本実施例では片方のアレイ超音波探触子50にマルチ
チャンネルパルサーB55より加えられたパルス群によ
つて超音波を発生させ、これを伝播して、フック部2に
よって反射した超音波をアレイ超音波探触子51を介し
てレシーバ57で受信する。そして、受信信号を信号制
御器30のタイミング制御器31によって同期させて、
ピーク検出器33によって超音波ラインのピーク値をそ
れぞれ検出後、先の実施例と同様に、これらのピーク値
を比較する。そして最大ピーク値が扇状の超音波の入射
の中央の超音波ラインに存在するかを弁別するピーク比
較器33にてピーク値を処理し、その結果を中央演算装
置23に伝送する。中央演算装置23はピーク比較器3
3の処理結果から、アレイ超音波探触子50、51から
伝播される扇状の超音波の入射方向をフック部2に当る
ように調整する。
[0022] In the ultrasonic flaw detection device configured as described above,
The array ultrasonic probes 50 and 51 are installed in advance on the side surface 6 of the disk 5 so that the ultrasonic waves S are incident on the hook portion 2 of the blade implanted portion 1. However, when performing flaw detection by scanning the array ultrasonic probes 50 and 51 on the side surface 6 of the disk, the incident direction of the ultrasonic waves may shift. In order to correct this in the same way as in the previous embodiment and to always propagate the ultrasonic waves in the direction of the hook portion 2, in this embodiment, a group of pulses is applied to one of the array ultrasonic probes 50 from the multichannel pulser B55. generates an ultrasonic wave, propagates it, and receives the ultrasonic wave reflected by the hook portion 2 by the receiver 57 via the array ultrasonic probe 51. Then, the received signals are synchronized by the timing controller 31 of the signal controller 30,
After each peak value of the ultrasonic line is detected by the peak detector 33, these peak values are compared as in the previous embodiment. Then, the peak value is processed by a peak comparator 33 that discriminates whether the maximum peak value exists in the central ultrasonic line of the incident fan-shaped ultrasonic wave, and the result is transmitted to the central processing unit 23. The central processing unit 23 is a peak comparator 3
Based on the processing result of step 3, the direction of incidence of the fan-shaped ultrasound propagated from the array ultrasound probes 50 and 51 is adjusted so that it hits the hook portion 2.

【0023】本実施例によれば、2個のアレイ超音波探
触子50,51を用いて、蒸気タービンロータの羽根植
込部1の横断方向に発生する欠陥3を探傷する場合にお
いても、最も欠陥が発生しやすいフック部2に常に超音
波を入射させつつ、適確に探傷ができるという効果があ
る。
According to this embodiment, even when the two array ultrasonic probes 50 and 51 are used to detect defects 3 occurring in the transverse direction of the blade implantation portion 1 of the steam turbine rotor, This has the effect that flaw detection can be performed accurately while always injecting ultrasonic waves into the hook portion 2 where defects are most likely to occur.

【0024】[0024]

【発明の効果】本発明の超音波探傷装置は、上記のよう
に構成されているので、タービンロータの羽根植込部の
横断面方向に発生する欠陥の検出において、タービンロ
ータの円板側面上の酸化スケールの付着浸食等によりそ
の平担度の劣化により生じるフック部への超音波の入射
位置の変動があっても、超音波の屈折角の変動を自動的
に制御できる。そのため、常に欠陥が最も発生し易い羽
根植込部のフック部に適確に超音波を入射させて走査し
、その欠陥の検出を適確かつ迅速にできるとする効果が
ある。
[Effects of the Invention] Since the ultrasonic flaw detection device of the present invention is configured as described above, it is possible to detect defects occurring in the cross-sectional direction of the blade-embedded portion of the turbine rotor by detecting defects on the side surface of the disk of the turbine rotor. Even if there is a change in the incident position of the ultrasonic wave on the hook portion due to deterioration of its flatness due to adhesion and erosion of oxide scale, the change in the refraction angle of the ultrasonic wave can be automatically controlled. Therefore, the ultrasonic wave is always applied to and scanned the hook part of the blade implantation part where defects are most likely to occur, and the defect can be detected accurately and quickly.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の超音波探傷装置の一実施例を示すブロ
ック図。
FIG. 1 is a block diagram showing an embodiment of an ultrasonic flaw detection apparatus of the present invention.

【図2】アレイ超音波探触子のアクリルシュー内のビー
ム距離補正の説明図。
FIG. 2 is an explanatory diagram of beam distance correction within the acrylic shoe of the array ultrasound probe.

【図3】本発明の超音波探傷装置の一実施例による欠陥
の表示器への表示例を示す線図。
FIG. 3 is a diagram showing an example of how defects are displayed on a display by an embodiment of the ultrasonic flaw detection device of the present invention.

【図4】本発明の超音波探傷装置の一実施例による超音
波ラインの変動補正作用の説明図。
FIG. 4 is an explanatory diagram of the ultrasonic line fluctuation correction effect according to an embodiment of the ultrasonic flaw detection apparatus of the present invention.

【図5】本発明の超音波探傷装置の一実施例における超
音波ラインの変動補正作用を説明するブロック図。
FIG. 5 is a block diagram illustrating an ultrasonic line variation correction function in an embodiment of the ultrasonic flaw detection apparatus of the present invention.

【図6】本発明の超音波探傷装置の他の実施例を示すブ
ロック図。
FIG. 6 is a block diagram showing another embodiment of the ultrasonic flaw detection device of the present invention.

【図7】従来の超音波探傷方法の説明図。FIG. 7 is an explanatory diagram of a conventional ultrasonic flaw detection method.

【図8】従来の技術による超音波入射方向の変動の説明
図。
FIG. 8 is an explanatory diagram of fluctuations in the direction of incidence of ultrasonic waves according to a conventional technique.

【図9】斜角探傷子を使用した従来技術の説明図。FIG. 9 is an explanatory diagram of a conventional technique using an oblique flaw detector.

【図10】アレイ超音波探触子を使用した従来技術の説
明図。
FIG. 10 is an explanatory diagram of a conventional technique using an array ultrasound probe.

【符号の説明】[Explanation of symbols]

1  羽根植込部 2  フック部 3  欠陥 4  斜角探触子 5  円板 6  円板側面 8  超音波探傷器 9  表示器 11  アレイ超音波探触子 12  振動子 20  電子走査型超音波探傷器 22  マルチチヤンネルパルサ 23  中央演算装置 24  発振制御器 25  レシーバA 26  CRT信号発生器 27  表示器 30  信号制御器 31  タイミング制御器 32  レシーバB 33  ピーク検出器 34  ピーク比較器 50  アレイ超音波探触子A 51  アレイ超音波探触子B 54  マルチチャンネルパルサA 55  マルチチャンネルパルサB 56  チャンネル切替器 57  レシーバI 58  レシーバII 1. Feather implantation part 2 Hook part 3 Defects 4 Angle angle probe 5 Disk 6 Disc side 8 Ultrasonic flaw detector 9 Display 11 Array ultrasonic probe 12 Oscillator 20 Electronic scanning ultrasonic flaw detector 22 Multi-channel pulsar 23 Central processing unit 24 Oscillation controller 25 Receiver A 26 CRT signal generator 27 Display 30 Signal controller 31 Timing controller 32 Receiver B 33 Peak detector 34 Peak comparator 50 Array ultrasound probe A 51 Array ultrasound probe B 54 Multi-channel pulser A 55 Multi-channel pulser B 56 Channel switcher 57 Receiver I 58 Receiver II

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】多数の鞍型をした羽根植込部を円周方向に
設けたタービンロータにおいて、複数の微小振動子を直
線的に配列したアレイ超音波探触子と斜角探触子とをタ
ービンロータの円板の同一側面にその半径方向に対称と
なるように配置当接し、前記アレイ超音波探触子によっ
て超音波を羽根植込部のフック部に扇状に入射し、該フ
ック部の横断面方向の欠陥から反射する超音波をアレイ
超音波探触子で受信する電子走査型超音波探傷器と、扇
状に入射され前記フック部によって反射されて斜角探触
子で受信された超音波信号群のピーク値の大きさを検知
し、かつ該ピーク値を比較して、扇型に入射される超音
波群を常に前記フック部の近傍に扇状の所定角度範囲に
調節自在とした入射角度に自動的に制御する信号制御器
と、を備えたことを特徴とする超音波探傷装置。
Claim 1: In a turbine rotor having a plurality of saddle-shaped blade implants disposed in the circumferential direction, an array ultrasonic probe and an angle probe each having a plurality of micro-oscillators arranged in a linear manner are used. are arranged and abutted on the same side surface of the disk of the turbine rotor so as to be symmetrical in the radial direction, and the array ultrasonic probe injects ultrasonic waves into the hook part of the blade implantation part in a fan shape, and the hook part An electronic scanning ultrasonic flaw detector uses an array ultrasonic probe to receive ultrasonic waves reflected from defects in the cross-sectional direction of By detecting the magnitude of the peak value of the ultrasonic signal group and comparing the peak values, the ultrasonic group incident in a fan shape can always be adjusted to a predetermined fan-shaped angle range near the hook part. An ultrasonic flaw detection device comprising: a signal controller that automatically controls the incident angle.
JP3036293A 1991-03-01 1991-03-01 Ultrasonic flaw detector for turbine rotor blade base Pending JPH04274754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3036293A JPH04274754A (en) 1991-03-01 1991-03-01 Ultrasonic flaw detector for turbine rotor blade base

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3036293A JPH04274754A (en) 1991-03-01 1991-03-01 Ultrasonic flaw detector for turbine rotor blade base

Publications (1)

Publication Number Publication Date
JPH04274754A true JPH04274754A (en) 1992-09-30

Family

ID=12465764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3036293A Pending JPH04274754A (en) 1991-03-01 1991-03-01 Ultrasonic flaw detector for turbine rotor blade base

Country Status (1)

Country Link
JP (1) JPH04274754A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100358085B1 (en) * 1999-10-26 2002-10-25 한국수력원자력 주식회사 Automatic Ultrasonic Inspection Method for Pin- fi nger Type Blade Root by Using Tubine Shroud Band Tracking Device
JP2007017164A (en) * 2005-07-05 2007-01-25 Hitachi Ltd Ultrasonic flaw detection method and ultrasonic flaw detection system
KR100959377B1 (en) * 2008-01-07 2010-05-24 두산중공업 주식회사 multi-inspection apparatus for inspection root parts in bucket
CN105806942A (en) * 2014-12-30 2016-07-27 中核武汉核电运行技术股份有限公司 Blade root ultrasonic automatic inspection device
CN112485333A (en) * 2020-11-19 2021-03-12 西安热工研究院有限公司 Distance control device for spindle phased array ultrasonic testing
CN113720918A (en) * 2021-07-16 2021-11-30 华北电力科学研究院有限责任公司 Method for measuring transverse wave sound velocity of material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100358085B1 (en) * 1999-10-26 2002-10-25 한국수력원자력 주식회사 Automatic Ultrasonic Inspection Method for Pin- fi nger Type Blade Root by Using Tubine Shroud Band Tracking Device
JP2007017164A (en) * 2005-07-05 2007-01-25 Hitachi Ltd Ultrasonic flaw detection method and ultrasonic flaw detection system
KR100959377B1 (en) * 2008-01-07 2010-05-24 두산중공업 주식회사 multi-inspection apparatus for inspection root parts in bucket
CN105806942A (en) * 2014-12-30 2016-07-27 中核武汉核电运行技术股份有限公司 Blade root ultrasonic automatic inspection device
CN112485333A (en) * 2020-11-19 2021-03-12 西安热工研究院有限公司 Distance control device for spindle phased array ultrasonic testing
CN113720918A (en) * 2021-07-16 2021-11-30 华北电力科学研究院有限责任公司 Method for measuring transverse wave sound velocity of material
CN113720918B (en) * 2021-07-16 2023-10-13 华北电力科学研究院有限责任公司 Method for measuring transverse wave sound velocity of material

Similar Documents

Publication Publication Date Title
JP5535044B2 (en) Circuit device for ultrasonic nondestructive testing of subjects
EP0012474B1 (en) Method and apparatus for ultrasonic tube inspection
JP2001510899A (en) Ultrasound imaging system
US11408861B2 (en) Transducer and transducer arrangement for ultrasonic probe systems, ultrasonic probe system and inspection method
US4893510A (en) Method of measuring distribution of crystal grains in metal sheet and apparatus therefor
JPH04274754A (en) Ultrasonic flaw detector for turbine rotor blade base
JP2006313115A (en) Ultrasonic flaw detecting method and ultrasonic flaw detector
JPH07244028A (en) Apparatus and method for ultrasonically detecting flaw on spherical body to be detected
JP2609647B2 (en) Ultrasonic flaw detector
JPS61160053A (en) Ultrasonic flaw detection test
JP2006313110A (en) Ultrasonic flaw detecting method and ultrasonic flaw detector
JPH01145565A (en) Ultrasonic flaw detector
JPS62194454A (en) Method for inspecting flaw of steel pipe welded part
JPS60170764A (en) Ultrasonic flaw detector for turbine disk
JP2943567B2 (en) Pipe shape inspection device
JPS58131560A (en) Method and apparatus for ultrasonic flaw detection
JP5750066B2 (en) Non-destructive inspection method using guided waves
JP2997485B2 (en) Ultrasonic inspection apparatus and probe setting method for ultrasonic inspection apparatus
JPH02150766A (en) Ultrasonic flaw detecting device
JPH0257973A (en) Angle beam flaw detecting head for pipe and angle beam flaw detecting apparatus using said head
JPH0278949A (en) Ultrasonic flaw detecting device
JPH05332996A (en) Detection of surface defect of steel pipe
RU2581082C1 (en) Method of determining beam pattern of piezoelectric transducer and device therefor
SU1486917A1 (en) Method of ultrasonic monitoring of quality of elongated articles
JPH11281629A (en) Apparatus and method for ultrasonic flaw detection