JPS6221058A - Transporting system of specimen - Google Patents

Transporting system of specimen

Info

Publication number
JPS6221058A
JPS6221058A JP60160477A JP16047785A JPS6221058A JP S6221058 A JPS6221058 A JP S6221058A JP 60160477 A JP60160477 A JP 60160477A JP 16047785 A JP16047785 A JP 16047785A JP S6221058 A JPS6221058 A JP S6221058A
Authority
JP
Japan
Prior art keywords
skew angle
speed
target
inspected
skew
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60160477A
Other languages
Japanese (ja)
Inventor
Shigetoshi Hyodo
繁俊 兵藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP60160477A priority Critical patent/JPS6221058A/en
Publication of JPS6221058A publication Critical patent/JPS6221058A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To enable efficient flaw detection, by setting a skew angle according to the specified equation depending on preset target feed pitch and specimen diameter, and correcting and controlling the skew angle in such a way that a transporting speed becomes the target-transporting speed defined by the preset target feed pitch and target peripheral speed. CONSTITUTION:A controller 7 performs arithmetic operation of a skew angle by the specified formula on the basis of an outside diameter numerical data of the specimen from a computer 11 and drives a skew angle adjusting motor 13 in such a way that it assumes the skew angle. next, the number of revolutions of a motor 8 is so adjusted that a peripheral speed of the specimen transported by a skew roller 1 set to the skew angle becomes the specified peripheral speed. Then, the transporting speed is calculated by a speed calculator 10 on a detecting signal from a photoelectric tube 14 and data of speed detecting encoder 9 of the motor 8 and the result is introduced into a controller 7 as an input. On the other hand, as the controller 7 drives again a motor 13 by obtaining a ratio of target-transporting speed and actually measured one, readjustment of the skew angle is unnecessitated and highly efficient flaw detection becomes available.

Description

【発明の詳細な説明】 (産業上の利用分野] 本発明は、例えば超音波探傷する際に被検査材を高精度
にスパイラル搬送する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method of spirally conveying a material to be inspected with high precision during, for example, ultrasonic flaw detection.

(従来の技術) 断面円形状の被検査材をスパイラル搬送する方法は、セ
ンサーを固定しながら全周をスキャニングする非破壊検
査設備等で広く採用されている@このようなスパイラル
搬送にあっては、前記センサーの寸法と被検査材の送り
ピッチとの関係は極めて重要であり、送りピッチを精度
良く設定する必要がある。すなわち、送りピッチがセン
サー寸法より大きな場合に扛未検査部分が生じ、また、
逆の場合には検査部分が重複し検査能率が低下するから
である。
(Prior art) A method of spirally transporting a material to be inspected with a circular cross section is widely used in non-destructive testing equipment that scans the entire circumference while fixing a sensor. The relationship between the dimensions of the sensor and the feed pitch of the inspected material is extremely important, and the feed pitch must be set with high precision. In other words, if the feed pitch is larger than the sensor size, uninspected areas will occur, and
This is because, in the opposite case, the inspection portions will overlap and the inspection efficiency will decrease.

ところで、従来の送りピッチの設定は、球状四−ラ(以
下「スキューローラ」と云う)のスキュー角度(被検査
材軸心とスキューローラの回転軸のなす角度〕を下記第
0式に基づいて演算することにより行なわれていた。
By the way, the conventional setting of the feed pitch is based on the skew angle (angle between the axis of the inspected material and the rotating shaft of the skew roller) of the spherical four-wheeler (hereinafter referred to as "skew roller") based on the following formula 0. This was done by calculation.

P=πD@−θ     (■〕    ・・・■P二
目標送りピッチ(−/被検支材1回転)但し、D=被被
検材材外径(m) θニスキュー角度(el (発明が解決しようとする問題点) しかしながら、前記第0式を用いた設定では。
P=πD@-θ (■]...■P2 target feed pitch (-/1 rotation of the test piece) However, D=External diameter of the test piece (m) θ Niskew angle (el Problems to be Solved) However, in the setting using the 0th equation.

下記第1表に示す如く実際には誤差が大きい為、被検査
材をスパイラル搬送せしめながら例えばチョーク等を用
いて連続マーキングを行ない、このし マーク跡ピッチt−実測しなから繰返スキュー角度を調
整し直さなければならなかった。
As shown in Table 1 below, in reality, the error is large, so while the material to be inspected is conveyed in a spiral manner, continuous marking is performed using, for example, chalk, and the skew angle is repeatedly determined by actually measuring the mark pitch t. I had to readjust.

第1表 −すなわち、目標送りピッチと成すべく前記第0式に基
づいて設定したスキュー角度でスパイラル搬送した場合
の実際の送りピッチが、前記目標送シビツチと精度良く
一致しないのは、第3図に示す如く、スキュー角度(の
を付与し念スキューローラ1bをαなる角度に配置する
ことにより、被検査材2とスキューロー21bの接触点
χがスキュー口1−21の中心線を上からズレることに
起因しているのである。
Table 1 - In other words, the actual feed pitch when spiral conveying is carried out at the skew angle set based on the above formula 0 to achieve the target feed pitch does not accurately match the target feed pitch as shown in Figure 3. As shown in the figure, by giving a skew angle ( ) and arranging the skew roller 1b at an angle α, the contact point χ between the inspected material 2 and the skew row 21b is shifted from the center line of the skew opening 1-21 from above. This is due to this.

本発明は上記問題点に鑑みて成されたものであり、可及
的目標送)ピッチとなるようにスキュー角度の設定が行
なえ、従ってスキュー角度の再調整の必要がなく能率の
良い探傷が行なえる被検査材の搬送方法を提供せんとす
るものである。
The present invention has been made in view of the above problems, and allows the skew angle to be set to achieve the target feed pitch as possible.Therefore, there is no need to readjust the skew angle, and efficient flaw detection can be performed. The purpose of this invention is to provide a method for transporting materials to be inspected.

C問題点を解決する念めの手段) 本発明は、非破壊検査装はの上下流に所要間隔を存して
配設石れたスキューローラによって被検査材をスパイラ
ル搬送する方法において、被検査材の目標送υピッチ及
び目標周速度を予め定めておき前記スキューローラのス
キュー角度を、予め定めた目標送りピッチと被検査材の
外径に応じて下記式に基づき設定した後、該スキュー角
度設定後の搬送速度が前記予め定められた目標送りピッ
チと目標周速度とによって定まる目標搬送速度となるよ
うに前記スキュー角度を補正制御することを要旨とする
被検査材の搬送方法である。
Precautionary Measures to Solve Problem C) The present invention provides a method in which a non-destructive inspection device spirally conveys a material to be inspected using skew rollers arranged upstream and downstream at a required interval. The target feed pitch and target peripheral speed of the material are determined in advance, and the skew angle of the skew roller is set based on the following formula according to the predetermined target feed pitch and the outer diameter of the material to be inspected, and then the skew angle is determined. This is a method for transporting a material to be inspected, the gist of which is to correct and control the skew angle so that the set transport speed becomes a target transport speed determined by the predetermined target feed pitch and target circumferential speed.

但し、θニスキュー角度(’I P:目標送りピッチ(−/彼検査材1回転]D:被検査
材の外径C日〕 φニス中ニーローラの直径(賜) Sニスキューローラ中心間距離(11111人:補正係
数 本発明方法では、まず被検査材の目標送りピッチと目標
周速度を予め設定しておく。ここで目標送りピッチは、
センサーの寸法を基準としラップ率等を考慮して設定す
る。また目標周速度は、検査装置の応答性を考慮して設
定する。つづいて、前記目標送りピッチと、被検査材の
外径に応じてスキュー角度を設定する。
However, θ Ni-skew angle (I P: Target feed pitch (-/1 rotation of the material to be inspected) D: Outer diameter of the material to be inspected C) φ Diameter of the knee roller during varnishing (G) Distance between centers of the S-Ni-skew roller ( 11111 people: Correction coefficient In the method of the present invention, first, the target feed pitch and target circumferential speed of the material to be inspected are set in advance.Here, the target feed pitch is:
Set based on the dimensions of the sensor and taking into account the wrap rate, etc. Further, the target circumferential speed is set in consideration of the responsiveness of the inspection device. Subsequently, a skew angle is set according to the target feed pitch and the outer diameter of the material to be inspected.

本発明方法にνいてスキュー角度の設定全前記第2式に
よって行なうのは以下に述べる理由に基づく。
In the method of the present invention, the skew angle is all set using the above-mentioned second equation for the reason described below.

丁なわも、送りピッチを決定する式は、P:πDetu
θ×(f(φ、n、s>)によって表わされ、本発明者
の1み究によればf〔φ、D、5)c(血α となる。ここで、αはスキューローラの中心間を結ぶ線
と、一方のスキューローラと被検査材の中心間を結ぶ線
との成子角である。
The formula for determining the feed pitch for a fine rope is P: πDetu
It is expressed by θ×(f(φ, n, s>), and according to the inventor's first investigation, it is f[φ, D, 5)c(blood α.Here, α is the skew roller's This is the Nariko angle between the line connecting the centers and the line connecting the centers of one skew roller and the material to be inspected.

すなわち、第3図に示す如く、α=06となるようにス
キューローラ1&を配置した場合、スパイラル送りはで
きない為f(φ、D、S)ζ0となり。
That is, as shown in FIG. 3, if the skew rollers 1& are arranged so that α=06, spiral feeding is not possible, so f(φ, D, S) ζ0.

また、α=90@となるようにスキューローラ10を配
置した場合、ス中ニー角は有効に作用してf(φ、D、
S)#tとなることから、・この中間位置ではf(φ+
 D + S )<daαに近似することを見い出した
・ 従って、用1図(ロ)に示すように各距離は求められ、
故に血αは下記第0式で表わされる。
In addition, when the skew roller 10 is arranged so that α=90@, the knee angle in the knee effectively acts and f(φ, D,
S) #t, so at this intermediate position f(φ+
We found that D + S ) < daα. Therefore, each distance can be found as shown in Figure 1 (b),
Therefore, blood α is expressed by the following equation 0.

―α=(φ/2+D/2 )L−(S/2)雪/(φ/
2+D/2 )=W−ア)/〔φ+D)   ・・・■
よって、実際の被検歪材1回転当りの送りピッで求めら
れ、この第0式から前記第0式を得るのである。しかし
、前記第0式によって得られる送りピッチには、送り速
度や被検査材とスキューローラの滑りが考慮されていな
い為、第0式には、これらを考1ばして補正係数Aを乗
じて、スキュー角度を得るのである。ここでAはローラ
材質や被検査材の表面性状により決まるものであり、例
えば樹脂ローラを使用し、冷間力Ωエシームレス鋼管を
搬送する場合は09〜1.2となる。
-α=(φ/2+D/2)L-(S/2)Snow/(φ/
2+D/2)=W-A)/[φ+D)...■
Therefore, it is determined by the actual feed pitch per rotation of the strained material to be tested, and the 0th equation is obtained from this 0th equation. However, the feed pitch obtained by the above formula 0 does not take into account the feed speed or the slippage between the inspected material and the skew roller, so the formula 0 takes these into consideration and multiplies it by a correction coefficient A. Then, the skew angle is obtained. Here, A is determined by the roller material and the surface properties of the material to be inspected, and is, for example, 09 to 1.2 when a resin roller is used and cold force Ω is used to convey seamless steel pipes.

次に前記第0式によってスキュー角度を設定しt段、目
標周速度で被検査材をスパイラル送りして、この時の搬
送速度(W軸方向への移動適度ンを実測する。
Next, the skew angle is set according to the above-mentioned formula 0, and the material to be inspected is spirally fed in t stages at the target circumferential speed, and the conveying speed (movement rate in the W-axis direction) at this time is actually measured.

一方、予めだめ九目標送りピッチpと、目標周速度Vと
によって定まる目標搬送速度VX 1に下記式により計
算しておく。
On the other hand, the target conveyance speed VX1, which is determined by the target feed pitch p and the target circumferential speed V, is calculated in advance using the following formula.

vx =ユXP   ・・・■ πD 但し、D:被検査材外伍 そして、前記実測した搬送速度vyと目標搬送速度V工
の比PLを求め、前述した第0式にチ辷を乗じることに
より補正する。
vx = Yu to correct.

(作用] 本発明方法にあっては、可及的高稽度に目標送りピッチ
となるようスキュー角度の設定が行なえ、スキュー角度
の再調整の必要が1(、能率良く探傷が行える。
(Function) In the method of the present invention, the skew angle can be set to achieve the target feed pitch as efficiently as possible, and flaw detection can be performed efficiently without the need to readjust the skew angle.

(実施例) 以下本発明方法を第2図に示す一実施例に基づいて説明
する。なお、第2図中第3図と同一番号は同一部分ある
いは相当部分を示す。
(Example) The method of the present invention will be explained below based on an example shown in FIG. Note that the same numbers in FIG. 2 as in FIG. 3 indicate the same or equivalent parts.

1面にお−て、3は所定間隔を存してスキューローラ1
を配設してなる搬送テーブルであり、該搬送テーブル3
の中央部には例えば超音波探傷水槽4が設置されていて
前記スキューローラ1にょタスパイラル搬送されてくる
被検査材を全面に亘って検査している。
On one surface, 3 is a skew roller 1 at a predetermined interval.
This is a transport table in which the transport table 3 is arranged with
For example, an ultrasonic flaw detection water tank 4 is installed in the center of the skew roller 1 to inspect the entire surface of the material to be inspected that is spirally conveyed by the skew roller 1.

ところで、スキューローラ1は、スキュー角度調整用モ
ータ13によシスキュー角度が設定され。
By the way, the skew angle of the skew roller 1 is set by the skew angle adjustment motor 13.

設定されたスキュー角は、スキュー角度検出用エンコー
ダ5で検出されて、スキュー角度演算器6を介してコン
トローラ7にデータが入力されている・一方、スキュー
ローラ1の回動用モータ8 VCは速度検出用エンコー
ダ9が取付けられており、速度演算器10を介して前記
コントローラ7にデータが入力石れでいる。
The set skew angle is detected by the skew angle detection encoder 5, and the data is input to the controller 7 via the skew angle calculator 6. On the other hand, the rotation motor 8 VC of the skew roller 1 is detected by the speed detection encoder 5. An encoder 9 is attached, and data is input to the controller 7 via a speed calculator 10.

以上の如く構成δれた被検査材の搬送設備を用い九場合
の本発明方法を以下に説明する0先ス、上位コンピュー
タより段取替指令および被検査材に関する情報がコンピ
ュータI+に入力されると、探傷部12は図示しないO
AL機構によって感度設定を行なう。−万、コントロー
ラ7はコンピュータ11からの被検査材の外径寸法デー
タに基づいて前記第0式によりスキュー角度の演算を行
ない、該スキュー角度となるようにスキュー角度調整用
モーター3を駆動する。
The method of the present invention in nine cases will be described below using the conveyance equipment for the inspected material configured as above. 0 First, setup change commands and information regarding the inspected material are input from the host computer to the computer I+. , the flaw detection part 12 is O
Sensitivity is set by the AL mechanism. - 10,000, the controller 7 calculates the skew angle based on the above-mentioned formula 0 based on the outer diameter dimension data of the material to be inspected from the computer 11, and drives the skew angle adjustment motor 3 so as to obtain the skew angle.

次に第0式により求められ九スキュー角度に設定ぢれ念
スキュー四−21により搬送される被検査材の周速度が
、前記予め定められた周速度となるようにモータ8の回
転数を調整する。
Next, the rotational speed of the motor 8 is adjusted so that the circumferential speed of the inspected material conveyed by the skew angle 4-21 determined by the 0th equation and set to 9 skew angles becomes the predetermined circumferential speed. do.

以上の如くスキュー角度および周速度を設定した後被検
査材の搬送を開始する。
After setting the skew angle and circumferential speed as described above, conveyance of the inspected material is started.

つづいて、被検査材の実速度を計測すべく所定間隔を存
して配設置れ九光電管14からの検出信号及びモータ8
の速度検出用エンコーダ9のデータによ〕速度演算器1
0で搬送速度を計算して、コントロー27に入力する。
Next, in order to measure the actual speed of the material to be inspected, detection signals from the nine photoelectric tubes 14 and the motor 8, which are arranged at predetermined intervals, are sent.
Based on the data of the speed detection encoder 9] speed calculator 1
Calculate the conveyance speed with 0 and input it to the controller 27.

一方、コントローラ7は、前述の第0式により目標搬送
速度Vx を計算しており、前記実測搬送速度vy と
の比(五を求めこの値を第0式に乗じて再びスキュー角
度調整用モーター3を駆i11+−gせる。
On the other hand, the controller 7 calculates the target conveyance speed Vx using the above-mentioned formula 0, calculates the ratio (5) of the measured conveyance speed vy, multiplies this value by the formula 0, and returns the value to the skew angle adjusting motor 3. Drive i11+-g.

(発明の効果) 以上説明した如く、本発明方法はスキュー角度の変更に
起因するスキューローラと被検査材との接触点のズレを
カロ味したうえで被検査材の外径に応じたスキュー角度
の設定を行ない続いて搬送速度に応じて微調整するよう
にしたので、再調整することlく町及的目標送シピッテ
で被検査材を搬送することができ、従って探謳試験の作
業能率向上に大なる効果を発揮する。
(Effects of the Invention) As explained above, the method of the present invention takes into account the deviation of the contact point between the skew roller and the material to be inspected due to changes in the skew angle, and then adjusts the skew angle according to the outer diameter of the material to be inspected. Since the setting is made and then finely adjusted according to the conveyance speed, the material to be inspected can be conveyed at the target conveyance speed without readjusting, thus improving the work efficiency of the exploration test. It has a great effect on

ちなみに本発明方法によりスキュー角度を設定した場合
の送りピッチは、目標送りピッチの±5−以内の精度で
あった。
Incidentally, when the skew angle was set by the method of the present invention, the accuracy of the feed pitch was within ±5 of the target feed pitch.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の説明図て゛、(イ)は下面図、(
ロ)は側面図、第2図は本発明方法の実施例を示す説明
図、万3図は従来法の欠点を示す説明図で、(イ)は正
面図、(ロ)框平面図である。 1はスキューローラ、2は被検査材。 特許出願人  住友金属工業株式会社 第2図 (ロ)
Figure 1 is an explanatory diagram of the method of the present invention, (a) is a bottom view, (a) is a bottom view, (
b) is a side view, Fig. 2 is an explanatory diagram showing an embodiment of the method of the present invention, Fig. 3 is an explanatory diagram showing the drawbacks of the conventional method, (a) is a front view, and (b) is a plan view of the stile. . 1 is a skew roller, 2 is a material to be inspected. Patent applicant: Sumitomo Metal Industries, Ltd. Figure 2 (b)

Claims (1)

【特許請求の範囲】[Claims] (1)、非破壊検査装置の上下流に所要間隔を存して配
設された球状ローラによって被検査材をスパイラル搬送
する方法において、被検査材の目標送りピッチ及び目標
周速度を予め定めておき、前記球状ローラのスキュー角
度を、予め定めた目標送りピッチと被検査材の外径に応
じて下記式に基づき設定した後、該スキュー角度設定後
の搬送速度が前記予め定められた目標送りピッチと目標
周速度とによって定まる目標搬送速度となるように前記
スキュー角度を補正制御することを特徴とする被検査材
の搬送方法。 θ=A・tan^−^1{P(φ+D)/π・D√[(
φ+D)^2−S^2]}但し、θ:スキュー角度(°
) P:目標送りピッチ(mm/被検査材1回転)D:被検
査材の外径(mm) φ:球状ローラの直径(mm) S:球状ローラ中心間距離(mm) A:補正係数
(1) In a method of spirally conveying a material to be inspected using spherical rollers disposed upstream and downstream of a non-destructive testing device at a required interval, the target feed pitch and target circumferential speed of the material to be inspected are determined in advance. After setting the skew angle of the spherical roller according to the formula below according to a predetermined target feed pitch and the outer diameter of the inspected material, the conveying speed after setting the skew angle is set to the predetermined target feed. A method for conveying a material to be inspected, characterized in that the skew angle is corrected and controlled so as to reach a target conveyance speed determined by a pitch and a target circumferential speed. θ=A・tan^−^1;P(φ+D)/π・D√[(
φ+D)^2-S^2]} However, θ: Skew angle (°
) P: Target feed pitch (mm/one revolution of inspected material) D: Outer diameter of inspected material (mm) φ: Diameter of spherical roller (mm) S: Distance between centers of spherical roller (mm) A: Correction coefficient
JP60160477A 1985-07-19 1985-07-19 Transporting system of specimen Pending JPS6221058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60160477A JPS6221058A (en) 1985-07-19 1985-07-19 Transporting system of specimen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60160477A JPS6221058A (en) 1985-07-19 1985-07-19 Transporting system of specimen

Publications (1)

Publication Number Publication Date
JPS6221058A true JPS6221058A (en) 1987-01-29

Family

ID=15715798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60160477A Pending JPS6221058A (en) 1985-07-19 1985-07-19 Transporting system of specimen

Country Status (1)

Country Link
JP (1) JPS6221058A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6417462U (en) * 1987-07-20 1989-01-27
JPH0210262A (en) * 1988-06-29 1990-01-16 Nikki Maintenance Kk Rotation driving apparatus for around rod body
JPH0216057U (en) * 1988-07-18 1990-02-01
JPH0394156A (en) * 1989-09-01 1991-04-18 Nkk Corp Ultrasonic flaw detecting method
JP2015010912A (en) * 2013-06-28 2015-01-19 新日鐵住金株式会社 Measurement device and measurement method for inspected material
JP2019090682A (en) * 2017-11-14 2019-06-13 日本製鉄株式会社 Ultrasonic flaw detection method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6417462U (en) * 1987-07-20 1989-01-27
JPH0210262A (en) * 1988-06-29 1990-01-16 Nikki Maintenance Kk Rotation driving apparatus for around rod body
JPH0216057U (en) * 1988-07-18 1990-02-01
JPH0394156A (en) * 1989-09-01 1991-04-18 Nkk Corp Ultrasonic flaw detecting method
JP2015010912A (en) * 2013-06-28 2015-01-19 新日鐵住金株式会社 Measurement device and measurement method for inspected material
JP2019090682A (en) * 2017-11-14 2019-06-13 日本製鉄株式会社 Ultrasonic flaw detection method

Similar Documents

Publication Publication Date Title
US4099418A (en) System for determining tube eccentricity
JPS6221058A (en) Transporting system of specimen
JP2001033233A (en) Test method for tubular and bar-like object to be tested
JP7028080B2 (en) Ultrasonic flaw detection method for welded parts of pipes
JP4560796B2 (en) Ultrasonic flaw detector
JPH01320422A (en) Method and instrument for measuring pipe shape
JP3573054B2 (en) On-line measurement accuracy inspection method for width and length meters
KR100233726B1 (en) Transfer apparatus
JPH0462001B2 (en)
JPS6073309A (en) Measurement of surface roughness pattern of running sheet material
JP6090263B2 (en) Inspected material position adjustment mechanism in non-destructive inspection equipment for long materials
JPH04161848A (en) Automatic ultrasonic flaw detecting apparatus
JPS63121705A (en) Instrument for measuring outer diameter and center position of pipe
JPH02168109A (en) Measuring apparatus of bend of pipe end of pipe body
JP3360910B2 (en) Paper feed adjustment mechanism in paper processing equipment
JPS5946552A (en) Automatic ultrasonic flaw inspector
JPH0325745B2 (en)
JP2002286405A (en) Method of measuring film thickness of endless belt and film thickness measuring device
JPS60224060A (en) Method and device for correcting level fluctuation of probe rotation type flaw detector
JP2000009461A (en) Apparatus for measuring pipe wall thickness and pipe wall thickness measuring method using the same
JPS61175562A (en) Non-destructive inspecting device
JPS62266401A (en) Measurement of liner thickness of lined pipe
JPH0815231A (en) Eddy current flaw detecting testing device
JPS6342463A (en) Detection system for incidence angle variation of probe rotation type tube ultrasonic flaw detection device
JPH0325744B2 (en)