JPH02168109A - Measuring apparatus of bend of pipe end of pipe body - Google Patents

Measuring apparatus of bend of pipe end of pipe body

Info

Publication number
JPH02168109A
JPH02168109A JP32219288A JP32219288A JPH02168109A JP H02168109 A JPH02168109 A JP H02168109A JP 32219288 A JP32219288 A JP 32219288A JP 32219288 A JP32219288 A JP 32219288A JP H02168109 A JPH02168109 A JP H02168109A
Authority
JP
Japan
Prior art keywords
tube
pipe body
pipe
value
bend
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32219288A
Other languages
Japanese (ja)
Inventor
Kazuo Yamazaki
山崎 一男
Tetsuya Iwade
岩出 哲也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP32219288A priority Critical patent/JPH02168109A/en
Publication of JPH02168109A publication Critical patent/JPH02168109A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To enable efficient measurement of the amount of bend of the end part of a pipe by measuring the amount of displacement of the bend of a pipe end at two spots of the pipe end part of a pipe body rotated by a mechanism rotating the pipe body, by computing the amount of bend in the circumferential direction in TIR value and by judging whether the TIR value is within a reference value or not. CONSTITUTION:A pipe body supported by a pipe body supporting mechanism 22 is rotated one time by a pipe body rotating mechanism. Meanwhile, two touch rollers 26 being in contact with the outer surface of the pipe end part of the pipe body 21 are moved vertically against the actuating force of actuating devices 27 by the bend of the pipe body 21 respectively, and each image sensor 29 detects the amount of displacement of the pipe body 21 from the movement of a scale 28 in linkage to the roller 26. Next, a TIR value is computed from a measured value in an arithmetic means, and it is judged in a pipe body bend judging means whether or not the computed TIR value is within a reference value set beforehand. In this way, the appropriateness of the amount of the bend of the pipe end part of the pipe body is judged automatically in a short time.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は鋼管の管端部の曲がり量を測定する管体の管
端部がりn1定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a tube end bend n1 determining device for measuring the amount of bend at the end of a steel pipe.

〔従来の技術〕[Conventional technology]

個々のバイブを接続す゛ることによって長い供給ライン
を要求される油井管として使用される鋼管はその製造工
程に於いて、または最終製品に於いて高い真直度が要求
される。特に鋼管の管端部については、ネジ切り加工後
カップリングと称する接続部品を取り付ける関係上、真
直であることが絶対条件となる。万一、管端が曲がって
いる場合、ネジ要素が規格公差を満足できなくなり、ネ
ジ切り作業能率の低減・歩留の低減を引き起こし、また
、客先でネジ切り作業を行なう材料についてはクレーム
を引き起こすこととなる。
Steel pipes used as oil country tubular goods, which require long supply lines by connecting individual vibrators, require high straightness in the manufacturing process or in the final product. In particular, it is an absolute requirement for the end of a steel pipe to be straight, since a connecting part called a coupling is attached to the end after thread cutting. In the unlikely event that the pipe end is bent, the threaded element will no longer be able to meet the standard tolerances, resulting in a reduction in thread cutting efficiency and yield.In addition, the customer may be required to complain about the material that is threaded at the customer's site. It will cause.

こうした背景からAPI規格ではサドルゲージによる曲
がりn1定方法を規定している。
Against this background, the API standard stipulates a method for determining bend n1 using a saddle gauge.

第5図は従来のサドルゲージによる管体の曲がり測定方
法を示す説明図である。この測定方法は鋼管(1)の外
面に間隔を置いた二又脚(2a)を有する支持体(2)
によってダイヤルゲージ(3)を接触させた状態で、鋼
管(1)を一回転させ、鋼管(1)の円周方向の曲がり
fa (T I R値)をダイヤルゲージによって4P
1定するものである。しかし、この方法では鋼管(1)
の外面に支持体(2)の二又脚(2a)を位置決めして
ダイヤルゲージ(3)により回転する鋼管(1)の曲が
り量を測定するため、測定作業が複雑であり、慣れるま
でに時間を要し、かつ作業員により測定誤差が生じ、測
定精度が悪いという問題点があった。また、短時間にて
能率良く連続して作業することも難しく、オンラインで
の全数検査は不可能である。
FIG. 5 is an explanatory diagram showing a method for measuring the bending of a tube body using a conventional saddle gauge. This measurement method consists of a support (2) having fork legs (2a) spaced apart on the outer surface of the steel pipe (1).
Rotate the steel pipe (1) once with the dial gauge (3) in contact with the dial gauge, and measure the bend fa (T I R value) of the steel pipe (1) in the circumferential direction using the dial gauge.
1. However, with this method, the steel pipe (1)
Since the bifurcated leg (2a) of the support (2) is positioned on the outer surface of the support body (2) and the amount of bending of the rotating steel pipe (1) is measured using the dial gauge (3), the measurement work is complicated and takes time to get used to. However, there was a problem in that the measurement accuracy was poor due to measurement errors caused by the operator. Furthermore, it is difficult to work efficiently and continuously in a short period of time, and 100% inspection online is impossible.

かかる問題点を解決するために、第6図に示す例えば特
開昭80−238706号公報に記載の管体の曲がり測
定装置がある。このH1定装置は測定すべき管体(1)
をその軸線を中心に回転させながら、管体(1)の肉厚
部分を挾むように延在する二つの腕部(4)、 (4)
の一方に取り付けた二つの検出器(5)。
In order to solve this problem, there is a tube bending measuring device shown in FIG. 6, for example, as described in Japanese Patent Application Laid-Open No. 80-238706. This H1 constant device is the pipe body (1) to be measured.
The two arms (4), (4) extend so as to sandwich the thick part of the tube body (1) while rotating around its axis.
Two detectors (5) attached to one side of the.

(5)が管体(1)の曲がりを光ビームの受光位置ズレ
と受光量の大小として検出し、検出器(5)の信号によ
りその肉厚と曲がり量を演算器(6)の演算により求め
るものである。
(5) detects the bending of the tube (1) as a deviation in the receiving position of the light beam and the magnitude of the received light amount, and the thickness and amount of bending are calculated by the calculator (6) based on the signal from the detector (5). It is something to seek.

また、第7図に示す例えば特開昭61−1[154f)
9号公報に記載の管体の曲がり測定装置がある。このΔ
Pj定装置は測定すべき管体(1)がコンベア上を管長
手方向に搬送されている間に被測定物である管体(1)
の走行方向に沿って配設された複数個のライセンサ−カ
メラ(8)〜(15)により管体(1)の中心位置を二
方向より測定し、端部がりを演算により求めるものであ
る。
In addition, for example, JP-A-61-1 [154f] shown in FIG.
There is an apparatus for measuring the bending of a tube described in Japanese Patent No. 9. This Δ
The Pj determination device measures the length of the pipe body (1) to be measured while the pipe body (1) to be measured is being conveyed in the longitudinal direction of the pipe on a conveyor.
The center position of the tube body (1) is measured from two directions using a plurality of licenser cameras (8) to (15) arranged along the running direction of the tube body (1), and the end edge radius is determined by calculation.

更に、第8図(a) 、 (b)に示す。例えば実開昭
82−7006号公報に記載の管体の曲がり測定装置が
ある。この測定装置は搬送用傾斜スキッド(16)の中
間部に設けられた水平キッド(17)上を回転する被測
定材(1)の端部が曲がり許容基準値に設定されたゲー
ジ板(18)と接触するか、間隙Aがあって接触しない
かで、曲がりを検出し、接触したときの接触信号により
被測定材(1)の端部における曲がり二を測定するもの
である。
Furthermore, it is shown in FIGS. 8(a) and 8(b). For example, there is a tube bending measuring device described in Japanese Utility Model Application Publication No. 82-7006. This measuring device consists of a gauge plate (18) which rotates on a horizontal skid (17) provided in the middle of an inclined skid (16) for conveyance, and the end of the material to be measured (1) is bent and set to an acceptable reference value. The bending is detected based on whether the end portion of the material to be measured (1) comes into contact or there is no contact due to a gap A, and the bending at the end of the material to be measured (1) is measured based on the contact signal when contact occurs.

[発明が解決しようとする課題] 上記のような第6図に示す従来の管体の曲がりAP1定
方法では、測定すべき管体(1)の肉厚部分を二つの腕
部(4)、(4)で挾み一方の腕(4)に検出器(5)
を設けた構成であるため、設備が複雑で規模が大きくな
り、しかも測定範囲がごく管端近傍にかぎられること等
の間居点が生じる。また、第7図に示す従来の管体の曲
がり測定装置では測定すべき管体(1)がコンベア上に
真直ぐ!を置されているとはいえず、第8図に示す従来
の管体的がり測定装置では被測定材(1)の端部がゲー
ジ板(18)に接触したか否かで彼i’91定材(1)
に所定量の曲がりがあることを測定するだけであるから
曲がり量を正確に測定することは依然困難であるという
問題点が残った。更に、第6図及び第8図に示す従来の
管体の曲がりAllll法ではいずれも一円周断面にお
ける曲がり変位量を測定し、第7図に示す従来の管体の
曲がり測定方法では二方向の長手方向中心軸に対する変
位量を;Ill]定しており、回転する管体外面の変位
量を測定し、鋼管の管端部がりに対して一般に客先が求
めるAPI規格によるTIR値を求める方法と異なるた
め、上述した第6図乃至第8図に示す王者ともAPI規
格で定めるTIR値の判定に利用することはできないと
いう問題があった。
[Problems to be Solved by the Invention] In the conventional pipe body bending AP1 determination method shown in FIG. (4) and the detector (5) on one arm (4)
Because of this configuration, the equipment is complicated and large in size, and there are disadvantages such as the measurement range being limited to the vicinity of the pipe end. In addition, in the conventional tube bending measuring device shown in FIG. 7, the tube (1) to be measured is straight on the conveyor! However, in the conventional tubular target measuring device shown in Fig. 8, it is determined whether the end of the material to be measured (1) has touched the gauge plate (18) or not. Fixed material (1)
The problem remains that it is still difficult to accurately measure the amount of curvature because the method only measures that there is a predetermined amount of curvature. Furthermore, in the conventional tube bending All method shown in FIGS. 6 and 8, the amount of bending displacement in one circumferential section is measured, and in the conventional tube bending measurement method shown in FIG. The amount of displacement with respect to the longitudinal center axis of the steel pipe is determined; the amount of displacement of the outer surface of the rotating pipe is measured, and the TIR value according to the API standard generally required by customers for the pipe end edge of the steel pipe is determined. Since the methods are different from each other, there is a problem in that the methods shown in FIGS. 6 to 8 described above cannot be used to determine the TIR value specified by the API standard.

この発明はかかる問題点を解決するためになされたもの
で、鋼管等の管体における管端部の曲がり量を精度高く
、オンラインで能率的に測定し、それらのデータをもと
にTIR値の演算判定ができる管体の管端部がり測定装
置を得ることを目的とする。
This invention was made to solve this problem, and it measures the amount of bending at the end of a pipe body such as a steel pipe efficiently with high precision online, and calculates the TIR value based on the data. The object of the present invention is to obtain a tube end warp measuring device that can perform calculation judgment.

[課題を解決するための手段] この発明に係る管体の管端部がり測定装置は、flll
J定されるべき管体を回転させる管体回転機構と、上記
管体の管端部分を支持する管体支持機構と′、管体回転
機構によって回転させられている管体の管端部の長手方
向における二ケ所で管端部がりによる変位量をそれぞれ
測定する二つの変位EIIJ定器と、二つの変位量測定
器からTIR値を演算する演算手段と、演算手段が演算
したTIR値が予め設定された基準上限値以内にあるか
否かを判断する管体的がり判定手段とを備えるように構
成したものである。
[Means for Solving the Problems] The tube end edge bending measuring device of the tube body according to the present invention has the following features:
a tube rotation mechanism that rotates the tube to be determined; a tube support mechanism that supports the tube end of the tube; and a tube end that is rotated by the tube rotation mechanism; Two displacement EIIJ instruments each measure the amount of displacement due to pipe end bending at two locations in the longitudinal direction, a calculation means for calculating the TIR value from the two displacement measurement devices, and a TIR value calculated by the calculation means in advance. The apparatus is configured to include a tube object target determination means for determining whether or not the target value is within a set reference upper limit value.

[作 用] この発明においては、管体支持機構に管体の管端部分を
支持させ、二つの変位maJJ定器を管体の管端部に所
定間隔を置いて設定し、管体支持機構とこれに近接する
測定器との距離を二つの変位量測定器相互の距離と同じ
に設定し、管体支持機構に管端部分が支持されている管
体を管体回転機構によって一回転させ、その間に管体の
管端部外面に接触している二つの変位量測定器によって
管体の管端部2ケ所における径方向の変位量をそれぞれ
一定の間隔をもって複数回IJ1定し、演算手段では各
変位量測定器によって測定された測定値からTIR値を
演算し、管体的がり判定手段で演算手段が演算したTI
R値が予め設定された基準上限値以内にあるか否かを判
断して、管体の管端部における曲げ量の合否判定を行う
ものである。
[Function] In this invention, the tube support mechanism supports the tube end portion of the tube body, two displacement maJJ constants are set at a predetermined interval at the tube end portion of the tube body, and the tube support mechanism supports the tube end portion of the tube body. Set the distance between this and the measuring device close to it to be the same as the distance between the two displacement measuring devices, and rotate the tube whose end portion is supported by the tube support mechanism once by the tube rotation mechanism. The amount of radial displacement at the two ends of the tube body is determined multiple times at regular intervals by two displacement measuring devices that are in contact with the outer surface of the tube end portion of the tube body in the meantime, and the calculating means Then, the TIR value is calculated from the measurement value measured by each displacement measuring device, and the TI calculated by the calculation means is calculated by the tube target determination means.
It is determined whether or not the R value is within a preset reference upper limit value to determine whether or not the amount of bending at the end of the tube is acceptable.

[実施例] 第1図はこの発明の一実施例の概略を示す構成図、第2
図は同実施例のブロック図、第3図は二つの変位量測定
器の1llJ定値の演算処理をそれぞれ説明する模式図
、第4図はこの発明の一実施例による測定結果を示すグ
ラフである。第1図において、(21)は例えば外径7
3.0mm肉厚7.01mmの特殊ネジ切り素管である
測定すべき管体で、図示省略の管体回転機構によって回
転させられる。(22)は管体(21)の管端部分を支
持する管体支持機構、(23)は管体支持機構(21)
のフリーローラー (24)は測定器支持台で、管体(
21)の管端側に所定間隔を置いて2台設置されている
。(25)は測定器支持台(24)を上下動させるスク
リュージヤツキ、(2B)はn1定器支持台(24)の
先端部に設けられた上下動可能なタッチローラで、フリ
ーローラ(23)による管体軸心レベルより少し高く設
定されている。(27)はilJ定器支持台(24)に
設けられ、タッチローラ(2B)を常時上方に付勢して
いる付勢装置、(28)はタッチローラ(2B)の上下
動と連動するスケール、(29)は測定器支持台(24
)に設けられ、スケール(2B)の変位量を検出する変
位量測定器であるイメージセンサである。
[Embodiment] Fig. 1 is a block diagram showing an outline of an embodiment of the present invention.
The figure is a block diagram of the same embodiment, FIG. 3 is a schematic diagram explaining the calculation process of the 1llJ constant value of the two displacement measuring devices, and FIG. 4 is a graph showing the measurement results according to one embodiment of the present invention. . In FIG. 1, (21) is, for example, an outer diameter of 7
The tube to be measured is a specially threaded blank tube with a wall thickness of 3.0 mm and a wall thickness of 7.01 mm, and is rotated by a tube rotation mechanism (not shown). (22) is a tube support mechanism that supports the tube end portion of the tube (21), and (23) is a tube support mechanism (21).
The free roller (24) is the measuring instrument support stand, and the tube body (
21) are installed at a predetermined interval on the pipe end side. (25) is a screw jack that moves the measuring instrument support stand (24) up and down, (2B) is a touch roller that can move up and down, which is installed at the tip of the n1 instrument support stand (24), and a free roller (23 ) is set slightly higher than the pipe axis center level. (27) is a biasing device that is installed on the ilJ stationary support base (24) and always biases the touch roller (2B) upward, and (28) is a scale that is linked to the vertical movement of the touch roller (2B). , (29) is the measuring instrument support stand (24
) is an image sensor that is a displacement measuring device that detects the displacement of the scale (2B).

第2図において、(aO)は各イメージセンサ(29)
の検出した測定値である変位量をデジタルの電気信号に
変換するA/D変換器、(31)はA/D変換器(30
)のデジタルの測定値からTIR値を演算処理する演算
手段、(32)は演算手段(3I)の演算値を記憶する
メモリ、(33)は演算手段(31)が演算したTIR
値が、基準上限値以内にあるか否かによって管体(21
)の曲がりの合否を判定する管体的がり判定手段、(3
4)は管体的がり判定手段(33)の判定信号から管体
(21)の曲がりの合否及び曲がり量であるTIR値を
表示する管体的がり表示手段である。
In Figure 2, (aO) represents each image sensor (29)
(31) is an A/D converter (30) that converts the amount of displacement, which is a measured value detected by
), (32) is a memory that stores the calculated value of the calculation means (3I), and (33) is the TIR calculated by the calculation means (31).
The pipe body (21
) tube target determination means for determining whether or not bending of (3
4) is a tube target display means for displaying the TIR value, which is the pass/fail of bending of the tube body (21) and the amount of bending, from the judgment signal of the tube body target determination means (33).

次に上記実施例の動作を第1図乃至第4図を参照しなが
ら説明する。
Next, the operation of the above embodiment will be explained with reference to FIGS. 1 to 4.

API規格で規定されるTIR値を演算判定するために
、2台の測定支持台(24) 、 (24)はこれらの
間隔が304.11龍となるように、また、管体支持機
構(22)とこれに近接する測定器支持台(24)とは
これらの間隔が304.8鰭となるように配設される。
In order to calculate and determine the TIR value specified in the API standard, the two measurement supports (24) and (24) are installed so that the distance between them is 304.11 mm, and the tube support mechanism (22 ) and the measuring instrument support stand (24) adjacent thereto are arranged such that the distance between them is 304.8 fins.

また、最も管端側に位置する測定器支持台(24)の測
定点となるタッチローラ(26)の位置が管体(1)の
管端より127〜152+nの範囲に設定される。この
管体(1)は外径73.0mm、肉厚7 、01 mm
の特殊ネジ切り素管で、管体支持機構(2)によって支
持されている。
Further, the position of the touch roller (26), which is the measurement point of the measuring device support (24) located closest to the tube end, is set within the range of 127 to 152+n from the tube end of the tube body (1). This tube body (1) has an outer diameter of 73.0 mm and a wall thickness of 7.01 mm.
This is a special threaded blank tube and is supported by a tube body support mechanism (2).

次に、各スクリュージヤツキ(25)によって管体(1
)の外径寸法に応じて各測定器支持台(24)の高さ設
定を行う。しかる後に図示しない管体回転機構によって
、管体支持機構(22)に支持されている管体(21)
をam/sinの周速で1回転させる。その間に管体(
21)の管端部外面に接触している二つのタッチローラ
(2B)、(2B)がそれぞれ管体(21)の曲がりに
よって付勢装置(27)の付勢力に抗して上下動し、各
タッチローラ(26)と連動するスケール(28)の動
きを変位量測定器である各イメージセンサ(29)が測
定精度0 、01 mmで管体(21)が一回転する間
に125個の管体(21)の変位量を測定値として検出
する。かかる測定値のデータサンプリング方法としてこ
の実施例では時間分割方式を採用しており、管体(21
)の1回転の時間を125等分した測定時t  、t 
 、t  、ta・・・・・・における管体(21)の
管端に近い部分の変位量a、a、a2゜l a ・・・・・・と管端に遠い部分の変位量す、b、。
Next, the tube body (1
) The height of each measuring instrument support stand (24) is set according to the outer diameter dimension of the measuring instrument support stand (24). Thereafter, the tube (21) is supported by the tube support mechanism (22) by a tube rotation mechanism (not shown).
is rotated once at a circumferential speed of am/sin. In between, the pipe body (
Two touch rollers (2B), (2B) in contact with the outer surface of the tube end of the tube body (21) move up and down against the biasing force of the biasing device (27) due to the bending of the tube body (21), respectively. Each image sensor (29), which is a displacement measuring device, measures the movement of the scale (28) in conjunction with each touch roller (26) with a measurement accuracy of 0.01 mm.During one revolution of the tube body (21), 125 The amount of displacement of the tube body (21) is detected as a measurement value. In this embodiment, a time division method is adopted as a data sampling method for such measurement values, and the pipe body (21
) when measuring time t, t divided into 125 equal parts.
, t, ta..., the amount of displacement a, a, a2゜l a... of the portion of the tube body (21) close to the tube end, and the amount of displacement of the portion far from the tube end, b.

b2.b3・・・・・・を二つのイメージセンサ(29
)(29)がそれぞれシj定し、その測定値を各々A/
D変換器(30)を介して演算手段(31)に入力する
。演算手段(31)ではまず第3図に示すようにこれら
の測定値から、次式によってその偏差値を演算する。
b2. b3...... with two image sensors (29
) (29) respectively, and the measured values are respectively A/
The signal is inputted to the calculation means (31) via the D converter (30). As shown in FIG. 3, the calculation means (31) first calculates the deviation value from these measured values using the following equation.

ここで、A1は管端に近い部分の偏差値を示し、B1は
管端に遠い部分の偏差値を示す。
Here, A1 indicates a deviation value of a portion close to the tube end, and B1 indicates a deviation value of a portion far from the tube end.

更に、これらの演算値より各Δ−j定時ti (i−1
25)におけるTIR値を次式によって演算処理する。
Furthermore, from these calculated values, each Δ-j fixed time ti (i-1
The TIR value in 25) is calculated using the following equation.

X   −A   −2XCXB      (i  
−1〜125)そのX1値を、メモリ(32)に記憶さ
せる。
X -A -2XCXB (i
-1 to 125) The X1 value is stored in the memory (32).

ここで、上記式のCは補正係数であり、本発明ではC−
1とした、また上記式の数字2はAPI規格に基づ(T
IR値を求める場合における、A の値におけるB1の
値を補正する換算係数である。
Here, C in the above formula is a correction coefficient, and in the present invention, C-
1, and the number 2 in the above formula is based on the API standard (T
This is a conversion coefficient for correcting the value of B1 in the value of A when calculating the IR value.

その結果、管体(21)が一回転した時点にて各測定時
における値X 、X ・・・X  の125個の計算値
がメモリ(32)に記憶される。
As a result, 125 calculated values of the values X 1 , X 2 , . . .

一回転の計測が終了した時点において、メモリ(32)
に記憶された125個の計算値より最大値X wax及
び最小値X winを求め、次式により、実際のTIR
値を演算する。
When the measurement of one revolution is completed, the memory (32)
The maximum value X wax and minimum value X win are determined from the 125 calculated values stored in the 125 calculation values, and the actual TIR
Compute values.

TIR値−X+gax −Xmin 管体曲がり判定手段(33)では演算手段(31)によ
って演算された一回転した場合のTIR値が予めAPI
規格によって設定されたTIR値の基準・上限値以内に
あるか否かを判断し、管体(1)の曲がりの合否を判定
する。管体的がり表示手段(34)では、管体的がり判
定手段(33)の判定結果及びTIR値を表示する。ま
た、図示しないプリンタによって判定結果及びTIR値
をプリントアウトすることもできる。
TIR value –
It is determined whether the TIR value is within the reference/upper limit value set by the standard, and whether or not the tube body (1) is bent is determined. The tube target display means (34) displays the determination result of the tube target determination means (33) and the TIR value. Further, the determination result and TIR value can also be printed out using a printer (not shown).

第4図のグラフはこの発明の管体の管端部がりMj定装
置によって測定されたTIR値を示し、測定・演算によ
る誤差はレンジにて0.2m+sの範囲にあり、TIR
の判定を行なうには十分な誤差範囲にあることがわかる
。また、δ−1定されるTIR値の精度は補正係数Cを
変更することによって良くすることができる。更に、1
剣定サイクルタイムはウオーキングビームによる搬送時
間を含め、10秒以内であり、前後設備とオンラインに
て十分稼動できるものである。
The graph in FIG. 4 shows the TIR value measured by the tube end edge Mj determination device of the present invention, and the error due to measurement and calculation is in the range of 0.2 m+s in the range.
It can be seen that the error range is sufficient to make a judgment. Furthermore, the accuracy of the TIR value determined by δ-1 can be improved by changing the correction coefficient C. Furthermore, 1
The cycle time is less than 10 seconds, including the transport time by the walking beam, and can be operated online with front and rear equipment.

なお、この実施例のイメージセンサ(29)による変位
量のサンプリング方法は、管体(21)が1回転するサ
ンプリングタイムを決め、時間分割によってn個の変位
量データをサンプリングするものであるが、管体回転角
度検出機構を設け、均等角度分割によってサンプリング
する方法をとってもこの発明を実施しえることはいうま
でもない。また、サンプリング数は、管体の外径によっ
て異なるが、いずれのサンプリング方法をとっても最低
10個以上、50〜150個程度が適当である。また、
演算手段の演算能力が許せば、サンプリング数nが多い
程、正確となることはいうまでもない。
The displacement amount sampling method using the image sensor (29) of this embodiment is to determine the sampling time for one rotation of the tube body (21), and sample n pieces of displacement amount data by time division. It goes without saying that the present invention can also be carried out by providing a tube rotation angle detection mechanism and sampling by dividing into equal angles. Further, the number of samples to be sampled varies depending on the outer diameter of the tube body, but whatever sampling method is used, a minimum of 10 or more samples, and approximately 50 to 150 samples is appropriate. Also,
It goes without saying that the larger the number of samplings n, the more accurate the calculation will be, provided that the calculation capacity of the calculation means permits.

更に、この実施例では変位量測定器としてイメージセン
サ(29)を用いているが、リニアゲージセセンサ、差
動トランス方式によるものであってもよい。
Further, in this embodiment, an image sensor (29) is used as a displacement measuring device, but a linear gauge sensor or a differential transformer type may be used.

[発明の効果コ この発明は以上説明したとおり、管体支持機構に管端部
分が支持されている管体を管体回転機構によって一回転
させ、その間に管体の管端部外面に所定間隔を置いて接
触している二つの変位量測定器によって、管体の管端部
2ケ所における径方向の変位量をそれぞれ一定の間隔を
もって複数回JP1定し、演算手段では凸曲がり測定器
によって測定された測定値からTIR値を演算し、管体
的がり判定手段では演算手段が演算したTIR値が予め
設定された基準以内にあるか否かを判定して管体の管端
部における曲がり量の合否判定を短時間にかつ自動的に
行い、しかも演算されたTIR値の誤差が0.21以内
であるから、極めて精度良く判定できるので、管体製品
の品質向上が図れ、曲がり矯正送りとする材料の仕分け
を迅速・適確に行うことができるという工業上優れた効
果を有する。
[Effects of the Invention] As explained above, the present invention rotates the tube whose end portion is supported by the tube support mechanism once by the tube rotation mechanism, and during that time, the outer surface of the tube end of the tube is rotated at a predetermined interval. The displacement in the radial direction at the two ends of the tube body is determined multiple times at regular intervals using two displacement measuring devices that are placed in contact with each other, and the calculation means measures the displacement using a convex bend measuring device. The TIR value is calculated from the measured value, and the tube target determination means determines whether the TIR value calculated by the calculation means is within a preset standard and determines the amount of bending at the end of the tube. Pass/fail judgments are made automatically in a short period of time, and the error of the calculated TIR value is within 0.21, making it possible to make very accurate judgments, improving the quality of tubular products, and improving bend correction feeding It has an excellent industrial effect of being able to sort materials quickly and accurately.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の概略を示す構成。、第2
.、、よ。実施。、)ッ。”t 、fjgJ、第、□よ
ユ 艷1 図つの変位量測定器の測定値の演算処理をそ
れぞれ説明する模式図、第4図はこの発明の一実施例に
よる測定結果を示すグラフ。第5図は従来のサドルゲー
ジによる管体の曲がり測定方法を示す説明図、第6図は
従来の別の管体の曲がり測定装置を示す構成図、第7図
は従来のまた別の管体の曲がり測定装置を示す構成図、
348図(a) 、 (b)は従来の更に別の管体の曲
がり測定装置を示す構成図である。 21・・・管体、22・・・管体支持機構、29・・・
イメージセンサ(変位量測定器)、31・・・演算手段
、33・・・管体 第2図曲がり判定手段。
FIG. 1 shows a schematic configuration of an embodiment of the present invention. , second
.. ,,Yo. implementation. ,). "t, fjgJ, 1st, □yoyu 艷1" Figure 4 is a schematic diagram illustrating the arithmetic processing of the measured values of the two displacement measuring instruments, respectively, and FIG. 4 is a graph showing the measurement results according to an embodiment of the present invention. The figure is an explanatory diagram showing a conventional method for measuring the bending of a tube body using a saddle gauge, FIG. 6 is a configuration diagram showing another conventional tube bending measuring device, and FIG. 7 is another conventional tube bending measuring device. A configuration diagram showing a measuring device,
FIGS. 348(a) and 348(b) are configuration diagrams showing yet another conventional pipe body bending measuring device. 21... tube body, 22... tube body support mechanism, 29...
Image sensor (displacement measuring device), 31... Calculating means, 33... Pipe body Fig. 2 Bend determination means.

Claims (1)

【特許請求の範囲】[Claims] 測定されるべき管体を回転させる管体回転機構と、上記
管体の管端部分を支持する管体支持機構と、管体回転機
構によって回転させられている管体の管端部の長手方向
における二ケ所で管端曲がりによる変位量をそれぞれ測
定する二つの変位量測定器と、二つの変位量測定器から
TIR値を演算する演算手段と、演算手段が演算したT
IR値が予め設定された基準上限値以内にあるか否かを
判断する管体曲がり判定手段とを備えてなることを特徴
とする管体の管端曲がり測定装置。
A tube rotation mechanism that rotates the tube to be measured; a tube support mechanism that supports the tube end portion of the tube; and a longitudinal direction of the tube end of the tube rotated by the tube rotation mechanism. two displacement measuring devices that respectively measure the amount of displacement due to bending of the pipe end at two locations, a calculating means that calculates a TIR value from the two displacement measuring devices, and a TIR value calculated by the calculating means.
1. An apparatus for measuring the bending of a tube end of a tube, comprising a tube bending determining means for determining whether an IR value is within a preset reference upper limit value.
JP32219288A 1988-12-22 1988-12-22 Measuring apparatus of bend of pipe end of pipe body Pending JPH02168109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32219288A JPH02168109A (en) 1988-12-22 1988-12-22 Measuring apparatus of bend of pipe end of pipe body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32219288A JPH02168109A (en) 1988-12-22 1988-12-22 Measuring apparatus of bend of pipe end of pipe body

Publications (1)

Publication Number Publication Date
JPH02168109A true JPH02168109A (en) 1990-06-28

Family

ID=18140972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32219288A Pending JPH02168109A (en) 1988-12-22 1988-12-22 Measuring apparatus of bend of pipe end of pipe body

Country Status (1)

Country Link
JP (1) JPH02168109A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101586657B1 (en) * 2015-06-04 2016-01-19 (주)태진중공업 Seamless pipe expanding apparatus of ambient air vaporizer and seamless pipe expanding method using the same
CN110345884A (en) * 2019-06-20 2019-10-18 中北大学 Hole straightening equipment and method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61259113A (en) * 1985-05-13 1986-11-17 Sumitomo Metal Ind Ltd Method for measuring bend and out of roundness of tubular rod material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61259113A (en) * 1985-05-13 1986-11-17 Sumitomo Metal Ind Ltd Method for measuring bend and out of roundness of tubular rod material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101586657B1 (en) * 2015-06-04 2016-01-19 (주)태진중공업 Seamless pipe expanding apparatus of ambient air vaporizer and seamless pipe expanding method using the same
CN110345884A (en) * 2019-06-20 2019-10-18 中北大学 Hole straightening equipment and method

Similar Documents

Publication Publication Date Title
CN105758360B (en) A kind of steering bearing blowout patche raceway groove parameter measurement instrument and its measurement method
CN113446965B (en) Method for measuring straightness error of steel pipe end
JPH02168109A (en) Measuring apparatus of bend of pipe end of pipe body
JPS5911844B2 (en) Long material bend measuring device
CN206095196U (en) Turn to bearing blowout patche channel parameter measuring instrument
JPH0711412B2 (en) Pipe shape measuring device
JP2501237B2 (en) Device for measuring outer diameter and wall thickness of steel pipe ends
JPH073327B2 (en) Method and apparatus for automatic measurement of tubular products
JPH0758189B2 (en) Measuring method of bending of tube rod
JPS614911A (en) Method and device for dimensional measurement of nuclear fuel pellet
JPS6221058A (en) Transporting system of specimen
CN219474525U (en) Longitudinal circumferential seam misalignment measuring instrument
RU2790885C2 (en) Method for measurement of radius of curvature of long-length tube, and device for its implementation (options)
JPH01295108A (en) Method and device for measuring profile of roll
JPH0483101A (en) Apparatus for inspecting size of product
JP2539134B2 (en) Flatness measuring device
JPS60253910A (en) Measuring instrument of thickness and bend of pipe
JPS62148807A (en) Bend inspecting system for material body
JPS62150114A (en) Apparatus for inspecting bending and twist of object
JPH01232203A (en) Shape measuring instrument for tube body
JPH05157550A (en) Method and apparatus for measuring shape of steel plate
JP2004108870A (en) Unevenness measuring method and measuring apparatus of piping surface
CN114383701A (en) Weight deviation detection device and detection method for wire sample
JPS5939419A (en) Bend setting device of pipe and bar material
JPH0543254B2 (en)