JPS614911A - Method and device for dimensional measurement of nuclear fuel pellet - Google Patents

Method and device for dimensional measurement of nuclear fuel pellet

Info

Publication number
JPS614911A
JPS614911A JP59127170A JP12717084A JPS614911A JP S614911 A JPS614911 A JP S614911A JP 59127170 A JP59127170 A JP 59127170A JP 12717084 A JP12717084 A JP 12717084A JP S614911 A JPS614911 A JP S614911A
Authority
JP
Japan
Prior art keywords
pellet
measured
dimensions
measuring device
nuclear fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59127170A
Other languages
Japanese (ja)
Inventor
Yoshinori Shinohara
芳紀 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Nuclear Fuel Co Ltd
Original Assignee
Mitsubishi Nuclear Fuel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Nuclear Fuel Co Ltd filed Critical Mitsubishi Nuclear Fuel Co Ltd
Priority to JP59127170A priority Critical patent/JPS614911A/en
Publication of JPS614911A publication Critical patent/JPS614911A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To enable an accurate measurement of an optional point by finding a vonvertion coefficient corresponding the size measured with rotating in peripheral direction a cylindrical pellet of the standard nuclear fuel with the known size and by correcting the similar measuring value to the pellet of the material to be measured. CONSTITUTION:A pellet P which is to be the standard or the material to be measured is placed on a base plate 14 and when phototubes 18, 19 detect it, a capstan roller 13 pushes the pellet P to free rollers 12a, 12b and the phototubes 18, 19 reconfirm the pellet P. The probe of digital dial gages 16, 17 is brought into contact with the outer peripheral face and the upper face and together with the rotation of the roller 13 at a fixed speed the pellet P is rotated as well. While the gage 16 is moved from the upper part to the lower part, then, the diameter and squareness of the outer peripheral face, the height and squareness of the upper face are measured, and the conversion coefficient is found by a microcomputer and also the measured value of the pellet P to be measured is corrected.

Description

【発明の詳細な説明】 〔産業上の利用分野〕      ′ 本発明は、円柱状の核燃料ペレットの直径や高さ等の寸
法を測定する方法及びその装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] ' The present invention relates to a method and apparatus for measuring dimensions such as the diameter and height of cylindrical nuclear fuel pellets.

〔従来技術とその問題点〕[Prior art and its problems]

核燃料ペレット(以下ペレットと略す)は円柱状をなす
もので、その直径や高さ等の寸法は、精密測定が要求さ
れ、特にその直径に対しては、1ミクロンオーダの高精
度な測定が要求される。ところが、従来、上記寸法は、
サンプルペレットのひとつずつに対して直読式のマグネ
スケールを用いて測定していた。このため、ブロックゲ
ージ等の平面度や直角度の不良等によるペレットの位置
決め精度の不良、また、測定子の原点位置不要や測定子
先端部の形状不良等による測定器自体の不良が避けられ
ず、これらlこよる誤差の発生を最少限に押えるために
自動測定を行なう際には多大な労力と時間を費やさなけ
ればならないと共に、測定器等の機械部分の仕上げ精度
を極力高める必要があり、しかも、達成精度は数ミクロ
ンから数十ミクロンしか現実には期待できなかった。ま
た、ペレットの全周に亘る寸法の測定が精度保証上実施
困難であるという不具合があった。
Nuclear fuel pellets (hereinafter abbreviated as pellets) are cylindrical, and their diameter, height, and other dimensions require precise measurement.In particular, the diameter requires highly accurate measurement on the order of 1 micron. be done. However, conventionally, the above dimensions are
Each sample pellet was measured using a direct-reading Magnescale. For this reason, defects in pellet positioning accuracy due to defects in the flatness or perpendicularity of the block gauge, etc., and defects in the measuring device itself due to unnecessary origin position of the probe or defective shape of the tip of the probe are unavoidable. In order to minimize the occurrence of these errors, it is necessary to spend a great deal of effort and time when performing automatic measurements, and it is also necessary to improve the finishing accuracy of mechanical parts such as measuring instruments as much as possible. Furthermore, the actual accuracy could only be expected to be from a few microns to several tens of microns. In addition, there was a problem in that it was difficult to measure dimensions over the entire circumference of the pellet in order to ensure accuracy.

〔発明の目的〕[Purpose of the invention]

本発明は、上記事情に鑑みてなされたもので、ペレット
の寸法を任意の点において精密測定することができ、特
にその直径を極めて高い精度で測定することができるペ
レットの寸法測定方法及びその装置を提供することを目
的とする。
The present invention has been made in view of the above-mentioned circumstances, and is a method and apparatus for measuring the dimensions of pellets, which can precisely measure the dimensions of pellets at any point, and in particular can measure the diameter with extremely high precision. The purpose is to provide

〔発明の構成〕[Structure of the invention]

上記目的を達成するために、本発明の方法は、寸法が既
知の基準ペレットを周方向に回転させながらその寸法を
測定し、その測定値と既知の寸法とを対応させる変換係
数を求め、次に、被測定物となる核燃料ペレットを周方
向に回転させながらその寸法を測定し、その測定値を上
記変換係数によって補正するようにしたもので、また、
装置を。
In order to achieve the above object, the method of the present invention measures the dimensions of a reference pellet whose dimensions are known while rotating it in the circumferential direction, determines a conversion coefficient that makes the measured value correspond to the known dimension, and then In this method, the dimensions of a nuclear fuel pellet as an object to be measured are measured while being rotated in the circumferential direction, and the measured value is corrected by the above-mentioned conversion coefficient.
equipment.

ペレットを周方向に回転させるペレット回転手段と、こ
のペレット回転手段により回転せしめられるペレットの
寸法を測定する測定器と、上記回転手段及び測定器を制
御すると共に測定器で得られた寸法の測定値を補正する
コンピュータとで構成したものである。
A pellet rotating means for rotating the pellet in the circumferential direction; a measuring device for measuring the dimensions of the pellet rotated by the pellet rotating means; and a measuring device for controlling the rotating means and the measuring device and measuring the dimensions obtained by the measuring device. This system consists of a computer that corrects the

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の装置の一実施例を図面に基づいて説明す
る。
Hereinafter, one embodiment of the apparatus of the present invention will be described based on the drawings.

第5図ないし第7図は1本発明に係る寸法測定装置1を
一構成要素とするペレットPの寸法密度測定装置Aを示
すもので、ペレッ+−pの重量を測定する自動計測天秤
等の重量測定器2と上記寸法測定装置1が、搬入コンベ
ア3の終端に設けられたサンプリングケー(台4と、搬
出コンベア5の始端に設けられた搬出ケース台6との間
に配設さn、かつ、上記サンプリングケース台4と重量
測定器2、重量測定器2と寸法測定装置1、及び寸法測
定装置1走搬出ケ一ス台6との間に、超硬フィンガーを
備えたマイクロロボット7.8.9がそれぞれ設けられ
る一方、上記各機器類には、それらを総括的に制御する
と共に測定した寸法と重量からペレットPの密度を算定
する図示しないマイクロコンピュータが付設され′C成
る。そして。
5 to 7 show a dimensional density measuring device A for pellets P, which includes the dimensional measuring device 1 according to the present invention as one component, and is a device for measuring the size and density of pellets P, such as an automatic measuring balance for measuring the weight of pellets +-p. The weight measuring device 2 and the above-mentioned dimension measuring device 1 are installed between a sampling case 4 provided at the terminal end of the carrying-in conveyor 3 and a carrying-out case stand 6 provided at the starting end of the carrying-out conveyor 5, A microrobot 7 equipped with carbide fingers is disposed between the sampling case stand 4 and the weight measuring device 2, the weight measuring device 2 and the dimension measuring device 1, and the dimension measuring device 1 running and unloading case stand 6. Each of the above-mentioned devices is equipped with a microcomputer (not shown) that controls them overall and calculates the density of the pellet P from the measured dimensions and weight.

複数のペレットPが収納されているサンプリングケース
10が搬入コンベア3によりサンプリングケース台4上
に搬入さnてくると、マイクロロボット7が作動して、
そのサンプリングケース10内のベレッ)Pがひとつず
つつ彼み上げられて重量測定器2へ移載され、その重量
が測定されると共に、重量測定が終了するき今度はマイ
クロロボット8が作動してそのペレットPは寸法測定装
置1に移載され、後述の機構でその寸法が測定されるよ
うになっており、この寸法測定装f1と上記重量測定器
2で測定された寸法と重1:の測定値が上記マイクロコ
ンピュータに入力されてペレットPの密度が演算される
仕組みになっている。また。
When the sampling case 10 containing a plurality of pellets P is carried onto the sampling case stand 4 by the carry-in conveyor 3, the microrobot 7 is activated.
The berets P in the sampling case 10 are lifted up one by one and transferred to the weight measuring device 2, and their weight is measured.When the weight measurement is completed, the micro robot 8 is activated. The pellet P is transferred to the dimension measuring device 1, and its dimensions are measured by a mechanism described later. The measured values are input to the microcomputer and the density of the pellet P is calculated. Also.

重量と寸法の測定が終了したペレッl−Pは、次いでマ
イクロロボット9により搬出ケース台6上め搬出ケース
11に順次収納され、所定数に達したところで搬出ケー
ス11ごと搬出コンベア5によって次工程へ送給される
ように構成されている。
The pellets I-P whose weight and dimensions have been measured are then sequentially stored in the carry-out case 11 on top of the carry-out case table 6 by the micro robot 9, and when a predetermined number is reached, the pellets L-P are transferred to the next process along with the carry-out case 11 by the carry-out conveyor 5. configured to be delivered.

一方、第1図ないし第4図は、本発明に係る上記寸法測
定装置1の一実施例を示すもので、ステンレス鋼により
形成された一対のフリーローラ12a、12bが所定間
隔をあけて細線を互いに平行にして回転自在に配設され
、才た、この一対のフリーローラ12a、12bの近傍
には、接触抵抗が大で弾性変形のないポリウレタン等の
材料で外周面が形成され、駆動装置により、上記一対の
フリーローラ12a、12bの中間点を通る水平軌道m
に沿って移動せしめられる七共に所定の周方向に一定速
度(2〜4 rpm)で回転せしめられるキャプスタン
ローラ13が、’1(BitJをフリーローラ12a、
12bの軸線に平行にして配設される一方、これらフリ
ーローラ12a、12bとキャプスタンローラ13とで
囲まれる空間の下方には、超硬金属で形成された円板状
のベースプレート14が固定して水平に設けられている
。そして、上記マイクロロボット8によって上記it測
定器2から移載されてきたペレットPは、その軸線を上
下方向に向けたまオ上記ベースプレート14上に載置さ
れ、キャプスタンローラ13jこよって、フリーローラ
12a、12bに押し付けられると共に所定方向に一定
速度で回転せしめられるようになっており、上記フリー
ローラ12a、12b、キャプスタンローラ13等がペ
レット回転手段15を構成している。
On the other hand, FIGS. 1 to 4 show an embodiment of the dimension measuring device 1 according to the present invention, in which a pair of free rollers 12a and 12b made of stainless steel measure a thin wire at a predetermined interval. In the vicinity of the pair of free rollers 12a and 12b, which are rotatably arranged parallel to each other, an outer circumferential surface is formed of a material such as polyurethane, which has a large contact resistance and does not undergo elastic deformation, and is rotated by a drive device. , a horizontal trajectory m passing through the midpoint of the pair of free rollers 12a, 12b.
The capstan roller 13, which is rotated at a constant speed (2 to 4 rpm) in a predetermined circumferential direction,
A disk-shaped base plate 14 made of cemented carbide is fixed below the space surrounded by the free rollers 12a, 12b and the capstan roller 13. It is placed horizontally. Then, the pellet P transferred from the IT measuring device 2 by the micro robot 8 is placed on the base plate 14 with its axis facing up and down, and is moved by the capstan roller 13j and the free roller 12a. , 12b and rotated at a constant speed in a predetermined direction, and the free rollers 12a, 12b, capstan roller 13, etc. constitute pellet rotating means 15.

さらに、上記ペレット回転手段15の側傍には、該ペレ
ット回転手段15(こよって回転せしめられるペレット
Pの直径を測定するデジタルダイヤルゲージ(測定器)
16が、一方のフリーローラ12aとペレットPの中心
線上に位置して設けられ、かつ、その上方には、上記ペ
レットPの高さを測定するデジタルダイヤルゲージ(測
定器)17が設けられている。これらデジタルダイヤル
ゲージ16% 17は、いずれもペレッ)Pの端面直角
度を測定する機能も具備し、超硬金属製の例えば3朋径
の可動測定子を備えたもので、その測定子移動速度は4
0am/分、測定精度は1ミクロンないし5ミクロン程
度のものでよく、また、一方の直径測定用のデジタルダ
イヤルゲージ16は、その支持腕16aが第4図に示す
ように、上下方向に移動せしめられるようになっており
、これによりペレットPの所定高さにおける直径が全周
に亘って自在に測定できるようになっている。そして、
上記デジタルダイヤルゲージ16,17は寸法密度測定
装置Aの上記マイクロコンピュータにより、上記ペレッ
ト回転手段15と共にその作動が制御されると共に、そ
の測定値は該マイクロコンピュータにより後述の方法で
補正されるように構成されている。
Furthermore, a digital dial gauge (measuring instrument) for measuring the diameter of the pellet P rotated by the pellet rotating means 15 is provided near the pellet rotating means 15.
16 is provided to be located on the center line between one free roller 12a and the pellet P, and above it is provided a digital dial gauge (measuring device) 17 for measuring the height of the pellet P. . These digital dial gauges 16% and 17 are all equipped with a function to measure the perpendicularity of the end face of Pellet P, and are equipped with a movable measuring point made of cemented carbide, for example, 3 mm in diameter, and the moving speed of the measuring point is 4
0 am/min, the measurement accuracy may be about 1 micron to 5 microns, and one digital dial gauge 16 for diameter measurement has its support arm 16a moved in the vertical direction as shown in FIG. This allows the diameter of the pellet P at a predetermined height to be freely measured over the entire circumference. and,
The operations of the digital dial gauges 16 and 17 are controlled together with the pellet rotating means 15 by the microcomputer of the dimensional density measuring device A, and the measured values are corrected by the microcomputer in a manner described later. It is configured.

またさらに、上記ペレット回転手段15の近傍には、ペ
レットPの載置位置に向けて光を発する発光用光電管1
8と、この発光用光電管xsj)らの光を受ける受光用
光電管19とが同一軸線上に設けられ、受光用光電管1
9は図示しない制御器を介して上記マイクロコンピュー
タに接続すれており、ペレッ)Pが上記ベースプレート
14上に位置したとき、また、上記フリー・−512a
、12bに押し付けられたとき、該ペレットPが自l動
的に検知されてその位置の確認がなされる構造になって
いる。
Further, in the vicinity of the pellet rotation means 15, a light emitting phototube 1 that emits light toward the placement position of the pellet P is provided.
8 and a light-receiving phototube 19 that receives light from the light-emitting phototube xsj) are provided on the same axis.
9 is connected to the microcomputer via a controller (not shown), and when Pellet P is positioned on the base plate 14, the free
, 12b, the pellet P is automatically detected and its position is confirmed.

なお、上記フリーローラ12a、12bは必要に応じて
随時交換できる構造とされている。
Note that the free rollers 12a and 12b are constructed so that they can be replaced as needed.

次に1本発明の方法について説明する。Next, one method of the present invention will be explained.

本発明の方法にあっては、先ず、あらかじめ高精度に測
定され、所定の点における寸法が分っている複数の基準
ペレッ)Pを用意し、そのひとつずつの寸法を上記構成
の寸法測定装置1で測定していく。そして、その測定結
果から検量線を引き、測定値き既知の寸法とを対応させ
る変換係数を求める。次に、被測定物となるペレットP
の寸法を順次寸法測定装置1で測定していき、その測定
値を上記変換係数によって補正して高精度な寸法を算出
する。
In the method of the present invention, first, a plurality of reference pellets (P) whose dimensions at predetermined points are known and which have been measured with high precision are prepared in advance, and the dimensions of each one are measured using the dimension measuring device having the above-mentioned configuration. Measure with 1. Then, a calibration curve is drawn from the measurement results, and a conversion coefficient is determined that correlates the measured values with known dimensions. Next, the pellet P to be measured is
The dimensions of the object are sequentially measured by the dimension measuring device 1, and the measured values are corrected using the conversion coefficients described above to calculate highly accurate dimensions.

ここで、上記基準ペレットPの寸法測定及び変換係数の
算出、被測定物となるペレットPの寸法測定及びその補
正は、寸法密度測定装置Aを統括的に制御すると共に測
定した寸法上重量から密度を算定する上記マイクロコン
ピュータによって全て自動的になされる。すなわち、基
準ペレットPもしくは被測定物となるペレットPがベー
スプレート14上に載置さnて光電管18.19により
検知されると、キャプスタンローラ13がこれをフリー
ローラ12a、12bに押し付ける。そして、光電管1
8.19がこのペレットPを再確認すると、各デジタル
ダイヤルゲージ16.17の測定子が静かにペレットP
の外周面及び上面にそれぞれ当てられる。次いで、キャ
プスタンローラ13が一定速度で第3図における矢印の
如く回転してペレットPが同速度で回転されると共に、
直径測定用のデジタルダイヤルゲージ16の測定子が第
4図に示すa点からd点まで移動していき、これにより
、ペレットPの所定の高さにおける直径及び外周面の直
角度が全周面に亘って測定され、また、高さ測定用のデ
ジタルダイヤルゲージ17によりペレットPの高さ及び
上面の直角度が測定される。そして、その測定値を基に
上部変換Uが求められたり、補正がなされ、さらに密度
計算も行なわれる。
Here, the dimension measurement of the reference pellet P and the calculation of the conversion coefficient, the dimension measurement of the pellet P to be measured, and the correction thereof are carried out by controlling the dimension density measuring device A in an integrated manner and calculating the density from the measured dimensional weight. All of this is done automatically by the microcomputer that calculates the above. That is, when the reference pellet P or the pellet P to be measured is placed on the base plate 14 and detected by the phototube 18, 19, the capstan roller 13 presses it against the free rollers 12a, 12b. And photocell 1
When 8.19 reconfirms this pellet P, the probes of each digital dial gauge 16.17 gently touch the pellet P.
applied to the outer circumferential surface and top surface, respectively. Next, the capstan roller 13 rotates at a constant speed as shown by the arrow in FIG. 3, and the pellet P is rotated at the same speed.
The probe of the digital dial gauge 16 for measuring the diameter moves from point a to point d shown in FIG. Furthermore, the height of the pellet P and the squareness of the upper surface are measured using a digital dial gauge 17 for height measurement. Then, based on the measured value, the upper transformation U is determined, correction is made, and density calculation is also performed.

また、寸法測定装置1は、 (1)各フリーローラ12!、12bの外周筒の平行度
、表面の精密仕上げ、 (2)各フリーローラ12a、12bのベースプレート
14に対する直角度、 (3)高さ測定用のデジタルダイヤルゲージ17の測定
子のベースプレート14に対する直角度、(4)直径測
定用のデジタルダイヤルゲージ16の測定子のベースプ
レート14に対する平行度、及びその支持腕16aの上
下移動線のベースプレート14に対する直角度 の各々に関して誤差が全く生じないようにこれを製作す
ることは事実上不可能であり、さらに、温度上昇による
熱膨張や使用に伴う摩耗等によっても誤差が生じる。し
かし、上記変換係数は、これらの精度への影響因子を具
体的に数値化したパラメータであり、この変換係数を用
いて補正するか、ら、ペレッ)Pの寸法測定値の精度は
大幅に高まる。したがって、従来のように測定器の精度
を無理に高めなくても、十分な精度の測定結果が得られ
る。このため、高精度な測定器の製作が不要になり、費
用が大幅に低減される。
In addition, the dimension measuring device 1 includes: (1) Each free roller 12! , the parallelism of the outer cylinder of 12b, the precision finish of the surface, (2) the perpendicularity of each free roller 12a, 12b to the base plate 14, (3) the perpendicularity of the contact point of the digital dial gauge 17 for height measurement to the base plate 14. (4) the parallelism of the gauge head of the digital dial gauge 16 for diameter measurement with respect to the base plate 14, and the perpendicularity of the vertical movement line of its support arm 16a with respect to the base plate 14 so that no errors occur. It is virtually impossible to manufacture, and errors also occur due to thermal expansion due to temperature rise and wear due to use. However, the above conversion coefficient is a parameter that specifically quantifies the factors that influence these accuracy, and if this conversion coefficient is used to correct it, the accuracy of Pellet's dimension measurement value will be significantly increased. . Therefore, measurement results with sufficient accuracy can be obtained without forcibly increasing the accuracy of the measuring instrument as in the conventional case. This eliminates the need to manufacture highly accurate measuring instruments, significantly reducing costs.

なお、上記において基準ペレッl−Pによる変換係数の
算出は、被測定物となるペレットPの寸法を測定する前
に一度行なっておけばよいが、ベレッ)Pの寸法測定中
でも、精度に影響すると思われる程度゛の外部温度の変
化があったときは、再びこれを行うのが好ましく、また
、装置の各部分の摩耗等による精度の低下を防ぐために
定期的にこれを行なうようにすれば一層好ましい。
In addition, in the above calculation of the conversion coefficient using the reference pellet l-P, it is only necessary to calculate the conversion coefficient once before measuring the dimensions of the pellet P to be measured. It is preferable to do this again when there is a change in the external temperature to a certain degree, and it is even better if you do this periodically to prevent accuracy from decreasing due to wear of each part of the device. preferable.

また、従来、ペレッ)Pの寸法のみならずその重量及び
密度も手作業により測定されており、作業能率が悪かっ
たが、前述のような寸法密度測定装置Aによれば全てが
自動的になされるので、極めて効率がよく、測定時間の
短縮が可能となると共に1人件費が大幅に節減できる。
Furthermore, in the past, not only the dimensions of pellets (P) but also their weight and density were measured manually, which resulted in poor work efficiency, but with the dimension and density measuring device A mentioned above, everything can be done automatically. Therefore, it is extremely efficient, making it possible to shorten measurement time and greatly reduce labor costs.

さらに、上記においては、測定器としてデジタルダイヤ
ルゲージ16,17を用いたが、レーザ等を利用した光
学的測定器等、他の形式のものによってもよい。
Further, in the above description, the digital dial gauges 16 and 17 are used as the measuring instruments, but other types of measuring instruments such as optical measuring instruments using a laser or the like may be used.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は、寸法が既知の基準ペレ
ットを回転手段により周方向に回転させながらその寸法
を測定器で測定し、その測定値と既知の寸法とを対応さ
せる変換係数を求め、次に、被測定物となるペレットを
同じく回転手段により周方向に回転させながら測定器で
その寸法を測定し、その測定値を上記変換係数によって
補正するようにしたものであるから、装置自体の製作に
際して避けられない誤差及び熱膨張、摩耗等による誤差
等に影響されることなくペレットの寸法を高精度に測定
することができ、また、ペレットの任意の点における寸
法を極めて容易に測定することができる。
As explained above, the present invention measures the dimensions of a standard pellet with a measuring device while rotating it in the circumferential direction using a rotating means, and calculates a conversion coefficient that makes the measured value correspond to the known dimensions. Next, the dimensions of the pellet to be measured are measured using a measuring device while being rotated in the circumferential direction by the same rotating means, and the measured values are corrected using the above conversion coefficient, so the device itself It is possible to measure the dimensions of pellets with high precision without being affected by errors that are unavoidable during production, errors due to thermal expansion, abrasion, etc., and it is also extremely easy to measure dimensions at any point on pellets. be able to.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第4図は本発明の装置の一実施例を示すも
ので、第1図は平面図、第2図は側面図、第3図は要部
の斜視略図、第4図は第3図のIVVlv矢視図である
。また、第5図ないし第7図は寸法密度測定装置を示す
もので、第5図は平面図、第6図は第5図のVl −V
l矢視図、第7図は同V+t−■矢視図である。 1・・・・・・核燃料ペレットの寸法測定装置、P・・
・・・・核燃料ペレット、12a、12b・・・・・・
フリーローラ、13・・・・・・キャプスタンローラ、
15・・・・・・ペレット回転手段、16・・・・・・
デジタルダイヤルゲージ(測定器)、17・・・・・・
デジタルダイヤルゲージ(測定器)。
1 to 4 show an embodiment of the apparatus of the present invention, in which FIG. 1 is a plan view, FIG. 2 is a side view, FIG. 3 is a schematic perspective view of the main parts, and FIG. FIG. 3 is a view taken along the IVVlv arrow in FIG. 3; In addition, Figures 5 to 7 show the dimensional density measuring device, with Figure 5 being a plan view and Figure 6 being Vl-V of Figure 5.
The l arrow view and FIG. 7 are the same V+t-■ arrow view. 1...Dimension measuring device for nuclear fuel pellets, P...
...Nuclear fuel pellets, 12a, 12b...
Free roller, 13...capstan roller,
15... Pellet rotation means, 16...
Digital dial gauge (measuring instrument), 17...
Digital dial gauge (measuring instrument).

Claims (2)

【特許請求の範囲】[Claims] (1)寸法が既知の円柱状の基準核燃料ペレットを周方
向に回転させながらその寸法を測定し、その測定値と既
知の寸法とを対応させる変換係数を求め、次に、被測定
物となる核燃料ペレットを周方向に回転させながらその
寸法を測定し、その測定値を上記変換係数によって補正
することを特徴とする核燃料ペレットの寸法測定方法。
(1) Measure the dimensions of a cylindrical reference nuclear fuel pellet with known dimensions while rotating it in the circumferential direction, find a conversion coefficient that correlates the measured value with the known dimensions, and then A method for measuring the dimensions of a nuclear fuel pellet, comprising measuring the dimensions of the nuclear fuel pellet while rotating it in the circumferential direction, and correcting the measured value using the conversion coefficient.
(2)円柱状の核燃料ペレットを周方向に回転させるペ
レット回転手段と、このペレット回転手段により回転せ
しめられる核燃料ペレットの寸法を測定する測定器と、
上記回転手段及び測定器を制御すると共に測定器で得ら
れた寸法の測定値を補正するコンピュータとから成るこ
とを特徴とする核燃料ペレットの寸法測定装置。
(2) a pellet rotation means for rotating a cylindrical nuclear fuel pellet in the circumferential direction; a measuring device for measuring the dimensions of the nuclear fuel pellet rotated by the pellet rotation means;
A nuclear fuel pellet size measuring device comprising the rotating means and a computer that controls the measuring device and corrects the dimension measurements obtained by the measuring device.
JP59127170A 1984-06-20 1984-06-20 Method and device for dimensional measurement of nuclear fuel pellet Pending JPS614911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59127170A JPS614911A (en) 1984-06-20 1984-06-20 Method and device for dimensional measurement of nuclear fuel pellet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59127170A JPS614911A (en) 1984-06-20 1984-06-20 Method and device for dimensional measurement of nuclear fuel pellet

Publications (1)

Publication Number Publication Date
JPS614911A true JPS614911A (en) 1986-01-10

Family

ID=14953392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59127170A Pending JPS614911A (en) 1984-06-20 1984-06-20 Method and device for dimensional measurement of nuclear fuel pellet

Country Status (1)

Country Link
JP (1) JPS614911A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62245910A (en) * 1986-04-18 1987-10-27 Toshiba Corp Method and device for measuring length of radioactive member
US4828106A (en) * 1986-06-27 1989-05-09 Fuji Photo Film Co., Ltd. Packaging case for photosensitive sheet films
JPH02179408A (en) * 1988-12-29 1990-07-12 Kubota Ltd Measuring apparatus of powder compression moldings
JP2008082756A (en) * 2006-09-26 2008-04-10 Toshiba Corp Nuclear fuel pellet inspection device
JP2008249352A (en) * 2007-03-29 2008-10-16 Kayaba Ind Co Ltd Dimension measuring device and dimension measuring method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5478166A (en) * 1977-12-05 1979-06-22 Hitachi Ltd Method and apparatus for measuring length of electron microscopes
JPS5913518A (en) * 1982-07-12 1984-01-24 Sumitomo Metal Ind Ltd Measuring method of thickness of steel plate
JPS5919804A (en) * 1982-07-26 1984-02-01 Hitachi Ltd On-line automatic calibrating device of radiation thickness gauge

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5478166A (en) * 1977-12-05 1979-06-22 Hitachi Ltd Method and apparatus for measuring length of electron microscopes
JPS5913518A (en) * 1982-07-12 1984-01-24 Sumitomo Metal Ind Ltd Measuring method of thickness of steel plate
JPS5919804A (en) * 1982-07-26 1984-02-01 Hitachi Ltd On-line automatic calibrating device of radiation thickness gauge

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62245910A (en) * 1986-04-18 1987-10-27 Toshiba Corp Method and device for measuring length of radioactive member
JPH056841B2 (en) * 1986-04-18 1993-01-27 Tokyo Shibaura Electric Co
US4828106A (en) * 1986-06-27 1989-05-09 Fuji Photo Film Co., Ltd. Packaging case for photosensitive sheet films
JPH02179408A (en) * 1988-12-29 1990-07-12 Kubota Ltd Measuring apparatus of powder compression moldings
JP2008082756A (en) * 2006-09-26 2008-04-10 Toshiba Corp Nuclear fuel pellet inspection device
JP2008249352A (en) * 2007-03-29 2008-10-16 Kayaba Ind Co Ltd Dimension measuring device and dimension measuring method

Similar Documents

Publication Publication Date Title
JP2527996B2 (en) Workpiece inspection method and device
US6442857B1 (en) Portable surface inspector
JP5425267B2 (en) Coordinate measuring device
JP2006509194A (en) Workpiece inspection method
JPH02275305A (en) Method and device for measuring pipe size
US20010029778A1 (en) Surface texture measuring instrument, surface texture measuring method and stylus radius measuring instrument
CN107328347B (en) Detection tool and detection method using same
US5701178A (en) Non-damaging flatness and thickness gauge for glass
JP5532850B2 (en) Semiconductor wafer shape measuring method and shape measuring apparatus used therefor
CN108534676B (en) Method for detecting spatial error in measurement space of coordinate measuring machine
JPS614911A (en) Method and device for dimensional measurement of nuclear fuel pellet
CN206531473U (en) Non-contact thickness measuring device
JPH03156307A (en) Movable device for inspecting corrected surface
JPS61149802A (en) Gage device for measuring 1/4 vane chord angle of compressorvane
CN116000813A (en) Device and method for detecting outer raceway size of tapered roller bearing
GB2260819A (en) Gauge for checking dimensions of springs
JP2935603B2 (en) Roundness measuring device with straightness measuring function
GB2112942A (en) Measuring instruments
JPH02213701A (en) Method and device for inspecting inside diameter of disk
CN112444177A (en) Wall thickness measuring instrument for cylinder part
JPS62134514A (en) Apparatus for measuring thickness and flatness degree of magnetic disk
JPH05133741A (en) Automatic measuring device for disc flatness
JPH0422801A (en) Bottom thickness measuring instrument for tube with bottom
JPH02168109A (en) Measuring apparatus of bend of pipe end of pipe body
JP2861494B2 (en) Inspection system for inner coating of cans