JPH0815231A - Eddy current flaw detecting testing device - Google Patents

Eddy current flaw detecting testing device

Info

Publication number
JPH0815231A
JPH0815231A JP6150035A JP15003594A JPH0815231A JP H0815231 A JPH0815231 A JP H0815231A JP 6150035 A JP6150035 A JP 6150035A JP 15003594 A JP15003594 A JP 15003594A JP H0815231 A JPH0815231 A JP H0815231A
Authority
JP
Japan
Prior art keywords
eddy current
detection signal
calibration
current flaw
testing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6150035A
Other languages
Japanese (ja)
Inventor
Katsuhiko Kinoshita
勝彦 木下
Seiji Noda
誠治 野田
Mitsunari Takeuchi
三成 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP6150035A priority Critical patent/JPH0815231A/en
Publication of JPH0815231A publication Critical patent/JPH0815231A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an eddy current flaw detecting testing device, by which the measuring conditions such as a distance between a testing coil and a material to be tested, a gain at the time of amplifying the change of a current flowing through the testing coil to obtain a detection signal and so on can be automatically executed without hands. CONSTITUTION:CPU 6 tests a fitting hole 13 of a calibration testing piece 3 where an artificial damage with a designated depth is formed by a flaw detecting probe 1 including a testing coil 2 on the side of the forward end cylindrical part 1a. The CPU 6 controls the position of the flaw detecting probe 1 and sets a gain of an amplifier in an eddy current flaw detecting part 5 according to a detection signal output from the testing coil 2. A material 4 to be tested and a calibration testing piece 3 are disposed in a designated position on a testing table 8 constructed in such a manner as to move in the directions of X and Y or freely rotate. The movement and rotation of the testing table 8 and the position of the flaw detecting probe 1 are controlled by the CPU 6, and the CPU 6 prints control information on recording paper and writes the same on an optical disc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属部品等の傷を検出
する渦流探傷検査装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an eddy current flaw detector for detecting flaws on metal parts and the like.

【0002】[0002]

【従来の技術】被試験物の傷を発見する手段として、い
わゆる渦流探傷検査装置が知られている。この渦流探傷
検査装置の概略は以下に述べる通りである。まず、試験
コイルを被試験物に近接させ、試験コイルより被試験物
の表面を通過する交流磁界を発生する。これにより被試
験物の表面に渦電流が発生する。
2. Description of the Related Art A so-called eddy current flaw detector is known as a means for finding flaws in an object to be tested. The outline of this eddy current flaw detector is as described below. First, the test coil is brought close to the DUT, and an AC magnetic field passing through the surface of the DUT is generated from the test coil. As a result, an eddy current is generated on the surface of the DUT.

【0003】そして、試験コイルを被試験物の表面と平
行に移動させつつ、試験コイルに流れる電流を測定す
る。この試験コイルが移動する過程で、被試験物に損傷
が存在する場合には、被試験物の表面に流れる渦電流が
変化し、この結果、試験コイルに流れる電流が変化し、
試験コイルのインピーダンスが変化する。従って、この
試験コイルのインピーダンスの変化を検出信号として取
り出すことにより、被試験物の損傷の有無を判定するこ
とができる。
Then, the current flowing through the test coil is measured while moving the test coil in parallel with the surface of the DUT. In the process of moving the test coil, if the DUT has damage, the eddy current flowing on the surface of the DUT changes, and as a result, the current flowing through the test coil changes.
The impedance of the test coil changes. Therefore, the presence or absence of damage to the device under test can be determined by extracting the change in impedance of the test coil as a detection signal.

【0004】[0004]

【発明が解決しようとする課題】ところで、試験コイル
に流れる電流の変化の幅は、検査される被試験物の材
質、試験コイルと被試験物との距離、試験コイルを被試
験物に対して相対移動させる際の移動速度等により変化
する。また、検出すべき損傷の大きさも、検査すべき部
品、製品等によって異なる。従って、検出すべき損傷が
すべて検出されるようにするためには、試験コイルと被
試験物との距離、試験コイルに流れる電流の変化を増幅
して検出信号を得る際のゲイン等の測定条件を最適化す
る校正作業が必要がある。
By the way, the width of the change in the current flowing through the test coil depends on the material of the DUT to be inspected, the distance between the test coil and the DUT, and the test coil with respect to the DUT. It changes depending on the moving speed when moving relative. Further, the magnitude of damage to be detected also differs depending on the parts, products, etc. to be inspected. Therefore, in order to detect all the damage to be detected, the measurement conditions such as the distance between the test coil and the DUT, the gain when the change in the current flowing through the test coil is amplified, and the detection signal are obtained. Calibration work is required to optimize.

【0005】しかしながら、従来の渦流探傷検査装置
は、このような校正作業を人手により行わねばならず、
その取り扱いが不便であった。また、人手による校正を
行った場合、その精度を上げることが困難であり、渦流
探傷検査装置の測定精度を低下させる要因ともなってい
た。
However, in the conventional eddy current flaw detector, such calibration work must be performed manually,
Its handling was inconvenient. In addition, it is difficult to improve the accuracy of manual calibration, which is also a factor that reduces the measurement accuracy of the eddy current flaw detector.

【0006】本発明は、このような背景の下になされた
もので、試験コイルと被試験物との距離、試験コイルに
流れる電流の変化を増幅して検出信号を得る際のゲイン
等の測定条件を人手に頼ることなく自動的に実施するこ
とができる渦流探傷検査装置を提供することを目的とす
る。
The present invention has been made under such a background, and measures the distance between the test coil and the DUT, the gain when the change in the current flowing through the test coil is amplified, and the detection signal is obtained. It is an object of the present invention to provide an eddy-current flaw inspection device that can automatically perform conditions without relying on human labor.

【0007】[0007]

【課題を解決するための手段】前述のような課題を解決
するために、請求項1にあっては、人工損傷の形成され
た校正用試験物に前記試験コイルを対向させ、所定振幅
の前記検出信号が得られるように該検出信号を得るため
の測定条件を設定する校正手段を有することを特徴とす
る。
In order to solve the above-mentioned problems, in a first aspect of the present invention, the test coil is made to face a calibration test object on which artificial damage is formed, and the test coil having a predetermined amplitude is provided. It is characterized in that it has calibration means for setting measurement conditions for obtaining the detection signal so that the detection signal can be obtained.

【0008】請求項2にあっては、前記校正手段が、所
定振幅の前記検出信号が得られるように前記校正用試験
物と前記試験コイルとの相対的な位置関係を調整するも
のであり、該校正手段による調整の後、前記試験コイル
および前記被試験物を相対移動させ、前記検出信号を得
る動作を行うことを特徴とする。
According to a second aspect of the present invention, the calibration means adjusts a relative positional relationship between the calibration test object and the test coil so that the detection signal having a predetermined amplitude is obtained. After the adjustment by the calibration means, the test coil and the DUT are moved relative to each other to perform the operation of obtaining the detection signal.

【0009】請求項3にあっては、前記校正手段が、所
定振幅の前記検出信号が得られるように、前記電流の変
化から該検出信号を得る際のゲインを調整することを特
徴とする。
According to a third aspect of the present invention, the calibration means adjusts the gain when the detection signal is obtained from the change in the current so that the detection signal having a predetermined amplitude can be obtained.

【0010】請求項4にあっては、前記校正用試験物が
大きさの異なった複数の人工損傷を有しており、前記校
正手段はこれらの各損傷に対応した前記検出信号の振幅
変化幅が所定範囲に亙って分布するように前記測定条件
の設定を行うことを特徴とする。
According to a fourth aspect of the present invention, the calibration test sample has a plurality of artificial damages of different sizes, and the calibration means has an amplitude change width of the detection signal corresponding to each of these damages. The measurement conditions are set so that the distributions are distributed over a predetermined range.

【0011】[0011]

【作用】請求項1に係る発明によれば、損傷を有する試
験物の検査を行った場合に所定振幅の検出信号が得られ
るように測定条件の設定が行われる。請求項2に係る発
明によれば、損傷を有する試験物の検査を行った場合に
所定振幅の検出信号が得られるように、被試験物と試験
コイルとの相対的位置関係の初期設定がなされる。請求
項3に係る発明によれば、損傷を有する試験物の検査を
行った場合に所定振幅の検出信号が得られるように、試
験コイルに流れる電流の変化から検出信号を得る際のゲ
インが調整される。請求項4に係る発明によれば、一定
範囲内の大きさの損傷が検出されるように測定条件が設
定される。
According to the first aspect of the present invention, the measurement conditions are set so that a detection signal having a predetermined amplitude can be obtained when an inspected test object is inspected. According to the second aspect of the invention, the relative positional relationship between the DUT and the test coil is initialized so that a detection signal with a predetermined amplitude can be obtained when the damaged test item is inspected. It According to the invention of claim 3, the gain when the detection signal is obtained from the change of the current flowing through the test coil is adjusted so that the detection signal having the predetermined amplitude can be obtained when the test object having the damage is inspected. To be done. According to the invention of claim 4, the measurement condition is set so that the damage having a size within a certain range is detected.

【0012】[0012]

【実施例】以下、図面を参照して本発明の一実施例につ
いて説明する。
An embodiment of the present invention will be described below with reference to the drawings.

【0013】A.実施例の構成 図1はこの発明の一実施例による渦流探傷検査装置の構
成図である。図1において、4は検査対象たる被試験物
である。この被試験物4は、図1に示すように、円盤状
の形状であり、複数の取り付け穴12,12,…が形成
されている。本実施例による渦流探傷検査装置は、これ
らの取り付け穴12,12,…の壁面の損傷を検査する
ものである。3はこの渦流探傷検査装置を校正するため
に使用される校正用試験片であり、その一例を図2に示
す。この校正用試験片3は、その材質、厚さ、取り付け
穴13の口径が被試験物4のそれらと同一であるが、取
り付け穴13の周囲に所定の深さの人工損傷が形成され
ている。図2に示すように取り付け穴13の中心を原点
とし、かつ鉛直方向のZ軸を有するX−Y−Z直交座標
系を想定した場合、取り付け穴13の周囲のうち−X方
向の位置に人工損傷9が、Y方向の位置に人工損傷10
が、X方向の位置に人工損傷11が形成されている。ま
た、各人工損傷9、10および11は、各々深さが異な
っており、本実施例では各々75[μm]、150[μ
m]および225[μm]となっている。
A. Configuration of Embodiment FIG. 1 is a configuration diagram of an eddy current flaw detector according to an embodiment of the present invention. In FIG. 1, 4 is a test object as an inspection target. As shown in FIG. 1, the DUT 4 has a disc shape, and a plurality of mounting holes 12, 12, ... Are formed therein. The eddy current flaw detector according to this embodiment is for inspecting the wall surface of these mounting holes 12, 12, .... Reference numeral 3 is a calibration test piece used to calibrate this eddy current flaw detector, an example of which is shown in FIG. The calibration test piece 3 has the same material, thickness, and diameter of the mounting hole 13 as those of the DUT 4, but artificial damage of a predetermined depth is formed around the mounting hole 13. . As shown in FIG. 2, assuming an XYZ orthogonal coordinate system having the center of the mounting hole 13 as the origin and having the Z axis in the vertical direction, the artificial hole is placed at a position in the -X direction around the mounting hole 13. Damage 9 is artificial damage 10 in the Y direction.
However, the artificial damage 11 is formed at the position in the X direction. The artificial damages 9, 10 and 11 have different depths, and in the present embodiment, they are 75 [μm] and 150 [μm], respectively.
m] and 225 [μm].

【0014】図1において、8は検査テーブルであり、
校正用試験片3および被試験物4はこの検査テーブル8
上の所定の位置に所定の姿勢で配置される。また、検査
テーブル8は、数値制御により上記X方向またはY方向
の移動、あるいは回転が自由にできる構造となってい
る。
In FIG. 1, 8 is an inspection table,
The calibration test piece 3 and the DUT 4 are the inspection table 8
It is arranged at a predetermined position above and in a predetermined posture. The inspection table 8 has a structure that can be freely moved or rotated in the X direction or the Y direction by numerical control.

【0015】また、図1において、1は探傷用プローブ
であり、図示しない駆動手段により上記X,YおよびZ
軸各方向に移動されるとともに回転されるようになって
いる。この探傷用プローブ1には、円筒形状の先端円筒
部1aが取り付けられており、この先端円筒部1aの側
面にはコイルからなる試験コイル2が取り付けられてい
る。また、先端円筒部1aの先端にはタッチセンサ(図
示略)が設けられている。5は渦流探傷部である。この
渦流探傷部5は、ゲイン調整の可能な増幅器を有してお
り、この増幅器により試験コイル2のインピーダンス変
化により得られる電圧の変化を増幅し検出信号として出
力する。また、渦流探傷部5はこの検出信号を時系列デ
ジタルデータに変換して出力すると共に検出信号の波形
を図示しない表示装置に表示する。この渦流探傷検査装
置の各部を制御するCPU(中央処理装置)6である。
上記渦流探傷部5内の検出信号を出力する増幅器のゲイ
ンはこのCPU6により設定される。また、検査テーブ
ル8の移動および回転の制御、探傷用プローブ1の上下
方向の位置制御等もこのCPU6が出力する制御情報に
従って制御される。7は記録装置であり、CPU6から
与えられる制御情報に従って記録紙への印字および光デ
ィスクへの書き込みを行う。
Further, in FIG. 1, reference numeral 1 denotes a flaw detection probe, which is driven by a driving means (not shown) to produce the X, Y and Z.
It is designed to be moved and rotated in each axial direction. A cylindrical tip cylindrical portion 1a is attached to the flaw detection probe 1, and a test coil 2 made of a coil is attached to a side surface of the tip cylindrical portion 1a. Further, a touch sensor (not shown) is provided at the tip of the tip cylindrical portion 1a. Reference numeral 5 is an eddy current flaw detection section. The eddy current flaw detection unit 5 has an amplifier capable of gain adjustment, and the amplifier amplifies a change in voltage obtained by a change in impedance of the test coil 2 and outputs it as a detection signal. Further, the eddy current flaw detection unit 5 converts the detection signal into time-series digital data and outputs it, and displays the waveform of the detection signal on a display device (not shown). It is a CPU (central processing unit) 6 that controls each part of the eddy current flaw detector.
The gain of the amplifier that outputs the detection signal in the eddy current flaw detection unit 5 is set by the CPU 6. The movement and rotation of the inspection table 8 and the vertical position control of the flaw detection probe 1 are also controlled according to the control information output by the CPU 6. Reference numeral 7 denotes a recording device, which prints on a recording paper and writes on an optical disc according to control information given from the CPU 6.

【0016】B.実施例の動作 以下、本実施例の動作を説明する。 (1)校正 図示しない入力手段を介して校正を指示するコマンドが
入力されると、CPU6により検査テーブル8の位置の
初期設定が行われ、この結果、校正用試験片3が探傷用
プローブ1の下方に位置することとなる。次いでCPU
6から探傷用プローブ1の駆動手段に制御信号が送ら
れ、探傷用プローブ1は徐々に降下する。そして、前述
したタッチセンサにより校正用試験片3との接触が検出
されると、CPU6により探傷用プローブ1が停止され
る。次にCPU6は、X,YおよびZ軸を制御し、徐々
に校正用試験片3の取り付け穴13に挿入する。この結
果、試験コイル2が校正用試験片3の取り付け穴13の
内壁に対向しつつ円運動し、試験コイル2が取り付け穴
13の内壁に形成された人工損傷9、10および11を
通過する毎に試験コイル2のインピーダンスが変化し、
出力電圧が変化することとなる。そして、この電圧の変
化が渦流探傷部5内の増幅器によって増幅され、この結
果得られる検出信号が時系列デジタルデータとなってC
PU6へ供給される。
B. Operation of Embodiment The operation of this embodiment will be described below. (1) Calibration When a command instructing calibration is input through the input means (not shown), the CPU 6 initializes the position of the inspection table 8 and, as a result, the calibration test piece 3 is transferred to the flaw detection probe 1. It will be located below. Then the CPU
A control signal is sent from 6 to the driving means of the flaw detection probe 1, and the flaw detection probe 1 gradually descends. When the touch sensor detects contact with the calibration test piece 3, the CPU 6 stops the flaw detection probe 1. Next, the CPU 6 controls the X, Y, and Z axes to gradually insert the calibration test piece 3 into the mounting hole 13. As a result, the test coil 2 moves circularly while facing the inner wall of the mounting hole 13 of the calibration test piece 3, and each time the test coil 2 passes through the artificial damages 9, 10 and 11 formed on the inner wall of the mounting hole 13. The impedance of the test coil 2 changes,
The output voltage will change. Then, this change in voltage is amplified by the amplifier in the eddy current flaw detection unit 5, and the detection signal obtained as a result becomes time-series digital data C
It is supplied to PU6.

【0017】ここで、先端円筒部1aが図1において矢
印で示した方向に回転するものとし、試験コイル2が上
述した−X方向を向いている場合にθ=90[゜]、Y
方向を向いている場合にθ=180[゜]、X方向を向
いている場合にθ=270[゜]となるように先端円筒
部1aの回転角が定義されているとすると、先端円筒部
1aが1回転することにより図3に示す検出信号が渦流
探傷部5により得られる。図3において、θが90
[°]、180[°]および、270[°]の点に現れ
る信号は、それぞれ校正用試験片3に形成された人工損
傷9、10、11の影響によるものである。
Here, it is assumed that the tip cylindrical portion 1a rotates in the direction shown by the arrow in FIG. 1, and when the test coil 2 is oriented in the above-mentioned -X direction, θ = 90 [°], Y
If the rotation angle of the tip cylindrical portion 1a is defined so that θ = 180 [°] when facing the direction and θ = 270 [°] when facing the X direction, the tip cylindrical portion is defined. The detection signal shown in FIG. 3 is obtained by the eddy current flaw detection unit 5 by one rotation of 1a. In FIG. 3, θ is 90
The signals appearing at the points of [°], 180 [°], and 270 [°] are due to the influences of the artificial damages 9, 10, and 11 formed on the calibration test piece 3, respectively.

【0018】そして、CPU6は渦流探傷部5により得
られる検出信号の振幅が最大になるように探傷用プロー
ブ1をZ軸方向に移動させる。このような制御が行われ
る結果、探傷用プローブ1の上下方向の位置が渦流探傷
に最適な位置に設定される。
Then, the CPU 6 moves the flaw detection probe 1 in the Z-axis direction so that the amplitude of the detection signal obtained by the eddy current flaw detection unit 5 becomes maximum. As a result of such control, the vertical position of the flaw detection probe 1 is set to the optimum position for eddy current flaw detection.

【0019】次にCPU6は、渦流探傷部5から供給さ
れる時系列デジタルデータに基づいてθ=90[°]、
180[°]および270[°]に対応した検出信号の
各振幅値a(90)、a(180)およびa(270)
を求め、予め決定されたこれらの各振幅値の理想値b
(90)、b(180)およびb(270)との間に下
記の式(1)〜(3)が成立するか否かを判定する。 −Dmin≦a(90)−b(90)≦Dmax ・・・(1) −Dmin≦a(180)−b(180)≦Dmax ・・・(2) −Dmin≦a(270)−b(270)≦Dmax ・・・(3) ただし、上記式(1)〜(3)において、Dmaxおよび
Dminは、校正の精度を設定する値で、これらの値が小
さいほど検査精度は高くなる。そして、(1)式および
(2)式および(3)が、どれも成り立つ場合には、C
PU6は、渦流探傷部5内の増幅器のゲイン、探傷用プ
ローブ1の位置の位置を校正データとして記録装置7に
よって記録する。これに対し、(1)式および(2)式
および(3)式の内、いずれか1式でも成り立たない場
合、CPU6は、 S(90)=a(90)/b(90) ・・・(4) S(180)=a(180)/b(180) ・・・(5) S(270)=a(270)/b(270) ・・・(6) を演算し、次いで、 S(90)=S(270)±Δ ・・・(7) となるように探傷用プローブ1をX軸方向に移動させ
る。次に S(180)=S(90)±Δ ・・・(8) となるように探傷用プローブ1をY軸方向に移動させ
る。ここで、Δは、校正の精度を設定する値であり、こ
の値が小さいほど検査精度は高くなる。
Next, the CPU 6 makes θ = 90 [°] based on the time-series digital data supplied from the eddy current flaw detection unit 5.
Amplitude values a (90), a (180) and a (270) of the detection signal corresponding to 180 [°] and 270 [°], respectively.
And the ideal value b of each of these amplitude values determined in advance is calculated.
It is determined whether the following expressions (1) to (3) are established between (90), b (180) and b (270). -Dmin≤a (90) -b (90) ≤Dmax ... (1) -Dmin≤a (180) -b (180) ≤Dmax ... (2) -Dmin≤a (270) -b ( 270) ≦ Dmax (3) However, in the above formulas (1) to (3), Dmax and Dmin are values that set the accuracy of calibration, and the smaller these values, the higher the inspection accuracy. Then, when the expressions (1), (2) and (3) are all satisfied, C
The PU 6 records the gain of the amplifier in the eddy current flaw detection unit 5 and the position of the flaw detection probe 1 as calibration data by the recording device 7. On the other hand, if any one of the expressions (1), (2), and (3) does not hold, the CPU 6 determines that S (90) = a (90) / b (90) ... (4) S (180) = a (180) / b (180) ... (5) S (270) = a (270) / b (270) ... (6), and then S The flaw detection probe 1 is moved in the X-axis direction so that (90) = S (270) ± Δ (7). Next, the flaw detection probe 1 is moved in the Y-axis direction so that S (180) = S (90) ± Δ (8). Here, Δ is a value that sets the accuracy of calibration, and the smaller this value, the higher the inspection accuracy.

【0020】このような処理が繰り返されることにより
探傷用プローブ1のX方向およびY方向の位置調整が行
われ、(7)式および(8)式のすべてが成立する探傷
用プローブ1の位置が求められる。そして、探傷用プロ
ーブ1のX方向およびY方向の位置調整が終了すると、
CPU6により、 −Dmin≦a(90)−b(90)≦Dmax ・・・(9) が成立するように渦流探傷部5内の増幅器のゲインが調
整される。以上により校正が終了し、CPU6は、渦流
探傷部5内の増幅器のゲイン、探傷用プローブ1の位置
を校正データとして記録装置7によって記録する。
By repeating such processing, the position of the flaw detection probe 1 in the X direction and the Y direction is adjusted, and the position of the flaw detection probe 1 satisfying all of the expressions (7) and (8) is determined. Desired. When the position adjustment of the flaw detection probe 1 in the X and Y directions is completed,
The CPU 6 adjusts the gain of the amplifier in the eddy current flaw detection unit 5 so that −Dmin ≦ a (90) −b (90) ≦ Dmax (9) holds. The calibration is completed as described above, and the CPU 6 records the gain of the amplifier in the eddy current flaw detection unit 5 and the position of the flaw detection probe 1 as calibration data by the recording device 7.

【0021】そして、校正が終了すると、被試験物4の
取り付け穴12,12,…のうち第1番目に検査すべき
取り付け穴と校正用試験片3の取り付け穴13との相対
距離に対応した距離だけ検査テーブル8がX方向および
Y方向に進められる。この結果、第1番目の取り付け穴
12が探傷用プローブ1の直下に位置することとなる。
そして、試験コイルを介して取り付け穴12,12,…
の探傷検査が行われる。以後、各取り付け穴のピッチに
対応した角度ずつ検査テーブル8が回転され、第2番目
以降の各取り付け穴12,12,…の探傷検査が行われ
る。
When the calibration is completed, it corresponds to the relative distance between the first mounting hole to be inspected among the mounting holes 12, 12, ... Of the DUT 4 and the mounting hole 13 of the calibration test piece 3. The inspection table 8 is advanced in the X and Y directions by the distance. As a result, the first mounting hole 12 is located immediately below the flaw detection probe 1.
Then, the mounting holes 12, 12, ...
The flaw inspection is performed. Thereafter, the inspection table 8 is rotated by an angle corresponding to the pitch of each mounting hole, and the flaw detection inspection is performed on each of the second and subsequent mounting holes 12, 12, ....

【0022】本発明の適用範囲は、上記実施例に限った
ものではなく、種々の変形が可能である。例えば、被試
験物4の面部に沿って試験コイル2を直線移動させるこ
とにより探傷検査を行う場合に適用してもよい。また、
校正を行う測定条件は、探傷用プローブ1の位置、渦流
探傷部5内の増幅器のゲインに限定されるものではな
く、探傷検査の精度向上に有効な項目を必要に応じて校
正すればよい。
The scope of application of the present invention is not limited to the above embodiment, but various modifications can be made. For example, it may be applied to a case where a flaw inspection is performed by linearly moving the test coil 2 along the surface of the DUT 4. Also,
The measurement conditions for calibration are not limited to the position of the flaw detection probe 1 and the gain of the amplifier in the eddy current flaw detection unit 5, and items effective for improving the precision of flaw detection inspection may be calibrated as necessary.

【0023】[0023]

【発明の効果】以上、説明したように、この発明によれ
ば、従来人間が実施していた、渦流探傷検査装置の校正
のための煩雑な操作が人間が関与することなく自動的に
実施され、精度のよい探傷検査を行うことができるとい
う効果が得られる。
As described above, according to the present invention, the complicated operation for calibrating the eddy current flaw detector, which has been conventionally performed by a human, is automatically performed without the human being involved. Therefore, it is possible to obtain an effect that the flaw detection inspection can be performed with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による渦流探傷検査装置の一例を示す構
成図である。
FIG. 1 is a configuration diagram showing an example of an eddy current flaw detector according to the present invention.

【図2】本発明による渦流探傷検査装置の自動校正に使
用する校正用試験片の一例を示す図である。
FIG. 2 is a diagram showing an example of a calibration test piece used for automatic calibration of the eddy current flaw detector according to the present invention.

【図3】本発明による渦流探傷検査装置において、図2
に示す校正用試験片を検査したときに渦流探傷器から出
力される信号波形を示す図である。
FIG. 3 shows an eddy current flaw detector according to the present invention.
It is a figure which shows the signal waveform output from an eddy current flaw detector when the test piece for calibration shown in is inspected.

【符号の説明】[Explanation of symbols]

1 探傷用プローブ 2 試験コイル 3 校正用試験片 4 被試験物 5 渦流探傷部 6 CPU 7 記録装置 8 検査テーブル 9 人工損傷(深さ[75μm]) 10 人工損傷(深さ[150μm]) 11 人工損傷(深さ[225μm]) 12 取り付け穴(被試験物) 13 取り付け穴(校正用試験片) 1 Probe for flaw detection 2 Test coil 3 Test piece for calibration 4 DUT 5 Eddy current flaw detection unit 6 CPU 7 Recording device 8 Inspection table 9 Artificial damage (depth [75 μm]) 10 Artificial damage (depth [150 μm]) 11 Artificial Damage (depth [225 μm]) 12 Mounting hole (DUT) 13 Mounting hole (calibration test piece)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 試験コイルを被試験物に沿って移動させ
ると共に該試験コイルにより被試験物に交流磁界を与
え、該試験コイルに流れる電流の変化に基づいて前記被
試験物の損傷を表わす検出信号を得る渦流探傷検査装置
において、 人工損傷の形成された校正用試験物に前記試験コイルを
対向させ、所定振幅の前記検出信号が得られるように該
検出信号を得るための測定条件を設定する校正手段を有
することを特徴とする渦流探傷検査装置。
1. A detection which indicates a damage of the DUT based on a change of a current flowing through the test coil by moving the test coil along the DUT and applying an AC magnetic field to the DUT by the test coil. In an eddy current flaw detection device for obtaining a signal, the test coil is made to face a calibration test object on which artificial damage is formed, and measurement conditions for obtaining the detection signal are set so that the detection signal having a predetermined amplitude can be obtained. An eddy current flaw detector having a calibration means.
【請求項2】 前記校正手段が、所定振幅の前記検出信
号が得られるように前記校正用試験物と前記試験コイル
との相対的な位置関係を調整するものであり、該校正手
段による調整の後、前記試験コイルおよび前記被試験物
を相対移動させ、前記検出信号を得る動作を行うことを
特徴とする請求項1記載の渦流探傷検査装置。
2. The calibration means adjusts a relative positional relationship between the calibration test object and the test coil so that the detection signal having a predetermined amplitude can be obtained. The eddy current flaw detector according to claim 1, wherein the test coil and the DUT are moved relative to each other to perform the operation of obtaining the detection signal.
【請求項3】 前記校正手段が、所定振幅の前記検出信
号が得られるように、前記電流の変化から該検出信号を
得る際のゲインを調整することを特徴とする請求項1記
載の渦流探傷検査装置。
3. The eddy current flaw detection according to claim 1, wherein the calibration means adjusts a gain when the detection signal is obtained from a change in the current so that the detection signal having a predetermined amplitude is obtained. Inspection device.
【請求項4】 前記校正用試験物が大きさの異なった複
数の人工損傷を有しており、前記校正手段はこれらの各
損傷に対応した前記検出信号の振幅変化幅が所定範囲に
亙って分布するように前記測定条件の設定を行うことを
特徴とする請求項1記載の渦流探傷検査装置。
4. The calibration test article has a plurality of artificial damages of different sizes, and the calibration means has an amplitude change width of the detection signal corresponding to each of these damages within a predetermined range. The eddy current flaw detector according to claim 1, wherein the measurement conditions are set so as to be distributed in a uniform manner.
JP6150035A 1994-06-30 1994-06-30 Eddy current flaw detecting testing device Pending JPH0815231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6150035A JPH0815231A (en) 1994-06-30 1994-06-30 Eddy current flaw detecting testing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6150035A JPH0815231A (en) 1994-06-30 1994-06-30 Eddy current flaw detecting testing device

Publications (1)

Publication Number Publication Date
JPH0815231A true JPH0815231A (en) 1996-01-19

Family

ID=15488080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6150035A Pending JPH0815231A (en) 1994-06-30 1994-06-30 Eddy current flaw detecting testing device

Country Status (1)

Country Link
JP (1) JPH0815231A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187662A (en) * 2006-01-12 2007-07-26 General Electric Co <Ge> Inspection of non-planar part using multifrequency eddy current with phase analysis
EP1986003A1 (en) * 2007-04-27 2008-10-29 Snecma Method and installation for non-destructive testing using Foucault currents, with automatic calibration.
KR200448416Y1 (en) * 2008-06-26 2010-04-09 한국전력공사 Calibration Standard for Array Eddy Current Testing Probe
JP2012032180A (en) * 2010-07-28 2012-02-16 Toshiba Corp Eddy current detector, method, and program

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187662A (en) * 2006-01-12 2007-07-26 General Electric Co <Ge> Inspection of non-planar part using multifrequency eddy current with phase analysis
EP1986003A1 (en) * 2007-04-27 2008-10-29 Snecma Method and installation for non-destructive testing using Foucault currents, with automatic calibration.
FR2915582A1 (en) * 2007-04-27 2008-10-31 Snecma Sa METHOD AND INSTALLATION FOR NON-DESTRUCTIVE CONTROL BY FOUCAULT CURRENTS WITH AUTOMATIC CALIBRATION
JP2008275614A (en) * 2007-04-27 2008-11-13 Snecma Method and installation for using eddy current for non-destructive inspection with automatic calibration
US7800363B2 (en) 2007-04-27 2010-09-21 Snecma Method and an installation for using eddy currents for non-destructive inspection with automatic calibration
KR200448416Y1 (en) * 2008-06-26 2010-04-09 한국전력공사 Calibration Standard for Array Eddy Current Testing Probe
JP2012032180A (en) * 2010-07-28 2012-02-16 Toshiba Corp Eddy current detector, method, and program

Similar Documents

Publication Publication Date Title
AU674666B2 (en) Arrayed eddy current probe system
EP2835635B1 (en) Method and apparatus for non-destructive testing
CN101122578B (en) Ferromagnetic metal component fatigue crack and stress integrated magnetic memory testing method
JPH01503733A (en) Workpiece inspection method and device
JP3758439B2 (en) Method for detecting a defect of a test object having a curved surface in a non-contact manner along the curved surface
CA1309463C (en) Automated eddy current metal hardness measurement system
JP2007086034A (en) Method for measuring rotational accuracy
JP2006153546A (en) Contact type steel pipe dimension-measuring device
US5339031A (en) Method and apparatus for non-contact hole eccentricity and diameter measurement
JP4960240B2 (en) System and method for dimensional inspection of threaded fasteners
US4792755A (en) Process and apparatus for the non-destructive examination of ferromagnetic bodies having sections of surface adjoining each other along edges and/or at corners
JPH0815231A (en) Eddy current flaw detecting testing device
US6414480B1 (en) Method and system for eddy current inspection calibration
KR102199456B1 (en) System for measuring rail axial stress of non-destructive type using jig module, and method for the same
JPH0322922B2 (en)
JP3753499B2 (en) Magnetic flaw detection apparatus and method
JPH04221757A (en) Defect detecting device
US5133220A (en) Rotor bore inspection system
JPH0628690Y2 (en) Metal plate defect detector
Cordier et al. Accurate steel tube axis alignment in nondestructive evaluation probe
Smetana et al. Austenitic Biomaterial Cracks Evaluation by Advanced Nondestructive Techniques
JPH0470561A (en) Method and apparatus for detecting heterogeneous layer in metal
JPS586458A (en) Hot eddy current flaw detecting method of steel material
CN115824028A (en) Rapid detection method and detection device for gap of precise metal sheet
Zbrowski et al. Rotational speed and transducer frequency as factors affecting possibility to detect defects in axisymmetric elements with a method of eddy currents

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20021015