JPH10199748A - 積層セラミックコンデンサ - Google Patents

積層セラミックコンデンサ

Info

Publication number
JPH10199748A
JPH10199748A JP9001229A JP122997A JPH10199748A JP H10199748 A JPH10199748 A JP H10199748A JP 9001229 A JP9001229 A JP 9001229A JP 122997 A JP122997 A JP 122997A JP H10199748 A JPH10199748 A JP H10199748A
Authority
JP
Japan
Prior art keywords
oxide
dielectric ceramic
layer
ceramic capacitor
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9001229A
Other languages
English (en)
Other versions
JP3039409B2 (ja
Inventor
Hiroyuki Wada
博之 和田
Harunobu Sano
晴信 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP9001229A priority Critical patent/JP3039409B2/ja
Priority to CNB981039669A priority patent/CN1155028C/zh
Priority to KR1019980000291A priority patent/KR100271727B1/ko
Priority to US09/004,696 priority patent/US6002577A/en
Publication of JPH10199748A publication Critical patent/JPH10199748A/ja
Application granted granted Critical
Publication of JP3039409B2 publication Critical patent/JP3039409B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/232Terminals electrically connecting two or more layers of a stacked or rolled capacitor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Capacitors (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

(57)【要約】 (修正有) 【課題】 誘電率が3000以上、2kV/mm及び20kV/mmでの
室温および125℃でのCR積で表した絶縁抵抗(MΩ・μ
F)がそれぞれ6000、2000以上、2000、500以上と高く、
静電容量の温度特性が各規格を満足し、耐候性能に優れ
た、低コストの小型大容量の積層セラミックコンデンサ
を提供する。 【解決手段】 (1-α-β-γ){BaO}m・TiO2+αM2O3+βRe
2O3+γ(Mn1-x-yNixCoy)O(ただし、M2O3は、Sc2O3,Y2O3
の中から選ばれる少なくとも1種類以上で、Re2O3は、Sm
2O3,Eu2O3の中から選ばれる少なくとも1種類以上で、
α,β,γ,m,x,yは、0.0025≦α+β≦0.025、0<β≦
0.0075、0.0025≦γ≦0.05、γ/(α
+β)≦4、0≦x<1.0、0≦y<1.0、0≦x+y<1.0、1.
000<m≦1.035)で表される主成分100モルに対して、副
成分として、酸化マグネシウムをMgOに換算して0.5〜5.
0モル添加し、さらに酸化ケイ素をSiO2に換算して0.2〜
5.0モル添加したもの。)

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】この発明は、電子機器に用い
られるセラミックコンデンサ、特にニッケルあるいはニ
ッケル合金からなる内部電極を有する積層セラミックコ
ンデンサに関する。
【0002】
【従来の技術】従来より、積層セラミックコンデンサの
製造工程は、以下のようなものが一般的である。まず、
その表面に内部電極となる電極材料を塗布したシート状
の誘電体セラミック材料が準備される。誘電体セラミッ
ク材料としては、たとえばBaTiO3を主成分とする
材料が用いられる。次に、この電極材料を塗布したシー
ト状の誘電体セラミック材料を積層して熱圧着し、一体
化したものを自然雰囲気中において1250〜1350
℃で焼成することで、内部電極を有する誘電体セラミッ
クが得られる。そして、この誘電体セラミックの端面
に、内部電極と導通する外部電極を焼き付けることによ
り、積層セラミックコンデンサが得られる。
【0003】したがって、内部電極の材料としては、次
のような条件を満たす必要がある。 (a)誘電体セラミックと内部電極とが同時に焼成され
るので、誘電体セラミックが焼成される温度以上の融点
を有すること。 (b)酸化性の高温雰囲気中においても酸化されず、し
かも誘電体セラミックと反応しないこと。 このような条件を満足させる電極としては、白金、金、
パラジウムあるいは銀−パラジウム合金などのような貴
金属が用いられてきた。しかしながら、これらの電極材
料は優れた特性を有する反面、高価であった。そのた
め、積層セラミックコンデンサの製造コストを上昇させ
る最大の要因となっていた。
【0004】貴金属以外に高融点をもつものとしてN
i,Fe,Co,W,Mo等の卑金属があるが、これら
の卑金属は高温の酸化性雰囲気中では容易に酸化されて
しまい、電極としての役目を果たさなくなってしまう。
そのため、これらの卑金属を積層セラミックコンデンサ
の内部電極として使用するためには、誘電体セラミック
とともに中性または還元性雰囲気中で焼成する必要があ
る。しかしながら、従来の誘電体セラミック材料では、
このような中性または還元性雰囲気で焼成すると著しく
還元してしまい、半導体化してしまうという欠点があっ
た。
【0005】このような欠点を克服するために、たとえ
ば特公昭57−42588号公報に示されるように、チ
タン酸バリウム固溶体において、バリウムサイト/チタ
ンサイトの比を化学量論比より過剰にした誘電体セラミ
ック材料や、特開昭61−101459号公報に示され
るように、チタン酸バリウム固溶体にLa,Nd,S
m,Dy,Y等の希土類酸化物を添加した誘電体セラミ
ック材料が提案されてきた。
【0006】また、誘電率の温度変化を小さくしたもの
として、たとえば特開昭62−256422号公報に示
されるBaTiO3−CaZrO3−MnO−MgO系の
組成や、特公昭61−14611号公報に示されるBa
TiO3−(Mg,Zn,Sr,Ca)O−B23−S
iO2系の組成の誘電体セラミック材料が提案されてき
た。
【0007】このような誘電体セラミック材料を使用す
ることによって、還元性雰囲気で焼成しても半導体化し
ない誘電体セラミックを得ることができ、内部電極とし
てニッケル等の卑金属を使用した積層セラミックコンデ
ンサの製造が可能になった。
【0008】
【発明が解決しようとする課題】近年のエレクトロニク
スの発展に伴い電子部品の小型化が急速に進行し、積層
セラミックコンデンサも小型化、大容量化の傾向が顕著
になってきた。そのため、誘電体セラミック材料の高誘
電率化と誘電体セラミック層の薄層化が急速な勢いで進
んでいる。したがって、高誘電率で、誘電率の温度変化
が小さく、信頼性に優れる誘電体セラミック材料に対す
る需要が大きくなっている。
【0009】しかしながら、特公昭57−42588号
公報や、特開昭61−101459号公報に示される誘
電体セラミック材料は、大きな誘電率が得られるもの
の、得られた誘電体セラミックの結晶粒が大きくなり、
積層セラミックコンデンサにおける誘電体セラミック層
厚みが10μm以下のような薄膜になると、1つの層中
に存在する結晶粒の数が減少し、信頼性が低下してしま
う欠点があった。しかも、誘電率の温度変化も大きいと
いう問題もあり、市場の要求に応えられていない。
【0010】また、特開昭62−256422号公報に
示される誘電体セラミック材料では、誘電率が比較的高
く、得られた誘電体セラミックの結晶粒も小さく、誘電
率の温度変化も小さいものの、CaZrO3や焼成過程
で生成するCaTiO3が、MnOなどとともに二次相
を生成しやすいため、高温での信頼性に問題があった。
【0011】また、特公昭61−14611号公報に示
される誘電体セラミック材料では、得られる誘電体セラ
ミックの誘電率が2000〜2800であり、積層セラ
ミックコンデンサの小型大容量化という点で不利である
という欠点があった。しかも、EIA規格で規定される
X7R特性、すなわち、温度範囲−55℃〜+125℃
の間で静電容量の変化率が±15%以内を満足し得ない
という問題があった。
【0012】さらに、特開昭63−103861号公報
に開示されている非還元性誘電体セラミックでは、絶縁
抵抗および容量の温度変化率が主成分であるBaTiO
3の結晶粒径に大きく影響を受け、安定した特性を得る
ための制御が困難である。しかも、絶縁抵抗を静電容量
との積(CR積)で示した場合1000〜2000MΩ
・μFであり、実用的であるとは言えなかった。
【0013】さらに、これまで提案されている非還元性
誘電体セラミックでは、高温負荷寿命試験での絶縁抵抗
の劣化については種々の改善がなされているものの、湿
中負荷試験での絶縁抵抗の劣化についてはあまり改善さ
れていなかった。
【0014】そこで、上記問題点を解決すべく、特開平
5−9066号公報、特開平5−9067号公報、特開
平5−9068号公報に種々の組成が提案されている。
しかし、その後のさらなる小型大容量化の要求により、
誘電体セラミック層の薄層化と並行して信頼性に対する
市場要求がより厳しくなり、さらに信頼性に優れた薄層
化対応の誘電体セラミック材料への要求が高まってきて
いる。したがって、高温、高湿下での信頼性特性に優れ
た小型大容量の積層セラミックコンデンサを提案する必
要が生じてきた。
【0015】しかしながら、所定の定格電圧で誘電体セ
ラミック層を単純に薄層化すると、一層当たりの電界強
度が大きくなる。したがって、室温、高温での絶縁抵抗
が低くなってしまい、信頼性が著しく低下してしまう。
そのため、従来の誘電体セラミック材料では、誘電体セ
ラミック層を薄層化する際には、定格電圧を下げる必要
があった。
【0016】そこで、誘電体セラミック層を薄層化して
も定格電圧を下げる必要のない、高電界強度下での絶縁
抵抗が高く、信頼性に優れた積層セラミックコンデンサ
を提案する必要が生じてきた。
【0017】それゆえに、この発明の主たる目的は、誘
電率が3000以上、絶縁抵抗を静電容量との積(CR
積)で表した場合に、2kV/mmでの室温および12
5℃での絶縁抵抗がそれぞれ6000MΩ・μF、20
00MΩ・μF以上、20kV/mmでの室温および1
25℃での絶縁抵抗がそれぞれ2000MΩ・μF、5
00MΩ・μF以上と高く、静電容量の温度特性がJI
S規格で規定するところのB特性およびEIA規格で規
定するところのX7R特性を満足し、高温負荷、湿中負
荷等の耐候性能に優れた、低コストの小型大容量の積層
セラミックコンデンサを提供することにある。
【0018】
【課題を解決するための手段】すなわち、第1の発明
は、複数の誘電体セラミック層と、それぞれの端縁が前
記誘電体セラミック層の両端面に露出するように前記誘
電体セラミック層間に形成された複数の内部電極と、露
出した前記内部電極に電気的に接続されるように設けら
れた外部電極とを含む積層セラミックコンデンサにおい
て、前記誘電体セラミック層が、不純物として含まれる
アルカリ金属酸化物の含有量が0.02重量%以下のチ
タン酸バリウムと、酸化スカンジウム、酸化イットリウ
ムの中から選ばれる少なくとも1種類以上と、酸化サマ
リウム、酸化ユーロピウムの中から選ばれる少なくとも
1種類以上と、酸化マンガン、酸化コバルト、酸化ニッ
ケルの中から選ばれる少なくとも1種類以上とからな
り、次の組成式、(1−α−β−γ){BaO}m・T
iO2+αM23+βRe23+γ(Mn1-x-yNix
y)O(ただし、M23は、Sc23,Y23の中か
ら選ばれる少なくとも1種類以上であり、Re23は、
Sm23,Eu23の中から選ばれる少なくとも1種類
以上であり、α,β,γ,m,x,yは、0.0025
≦α+β≦0.025、0<β≦0.0075、0.0
025≦γ≦0.05、γ/(α+β)≦4、0≦x<
1.0、0≦y<1.0、0≦x+y<1.0、1.0
00<m≦1.035)で表される主成分100モルに
対して、副成分として、酸化マグネシウムをMgOに換
算して0.5〜5.0モル添加含有し、さらに酸化ケイ
素をSiO2に換算して0.2〜5.0モル添加含有し
た材料によって構成され、前記内部電極はニッケルまた
はニッケル合金によって構成される積層セラミックコン
デンサである。
【0019】また、第2の発明は、前記外部電極は、導
電性金属粉末、またはガラスフリットを添加した導電性
金属粉末の焼結層によって構成されている積層セラミッ
クコンデンサである。
【0020】さらに、第3の発明は、前記外部電極は、
導電性金属粉末、またはガラスフリットを添加した導電
性金属粉末の焼結層からなる第1層と、その上のメッキ
層からなる第2層とからなる積層セラミックコンデンサ
である。
【0021】
【発明の実施の形態】以下、この発明の実施の形態につ
いて説明する。この発明の積層セラミックコンデンサ
は、誘電体セラミック層の材料として、チタン酸バリウ
ムと、酸化スカンジウム、酸化イットリウムの中から選
ばれる少なくとも1種類以上と、酸化サマリウム、酸化
ユーロピウムの中から選ばれる少なくとも1種類以上
と、酸化マンガン、酸化コバルト、酸化ニッケルの中か
ら選ばれる1種類以上の酸化物とを、上述の組成比に調
整し、酸化マグネシウムと、酸化ケイ素とを添加含有さ
せた誘電体セラミック材料を用いることによって、還元
性雰囲気中で焼成しても、その特性を劣化させることな
く焼成することができ、静電容量の温度特性がJIS規
格で規定されているB特性およびEIA規格で規定され
ているX7R特性を満足し、高電界強度下での室温およ
び高温において、絶縁抵抗が高く、信頼性が高い積層セ
ラミックコンデンサを得ることができる。
【0022】また、得られる誘電体セラミック層の結晶
粒径が1μm以下と小さいため、1つの誘電体セラミッ
ク層中に存在する結晶粒の数を増やすことができ、積層
セラミックコンデンサの誘電体セラミック層の厚みを薄
くしても信頼性の低下を防ぐことができる。
【0023】また、誘電体セラミックス層がチタン酸バ
リウムと、酸化スカンジウム、酸化イットリウムの中か
ら選ばれる少なくとも1種類以上と、酸化サマリウム、
酸化ユーロピウムの中から選ばれる少なくとも1種類以
上と、酸化マンガン、酸化コバルト、酸化ニッケルの中
から選ばれる少なくとも1種類以上の酸化物とにより構
成される誘電体セラミック材料の主成分のうち、そのチ
タン酸バリウム中に不純物として存在するSrO,Ca
O等のアルカリ土類金属酸化物、Na2O,K2O等のア
ルカリ金属酸化物、その他Al23,SiO2等の酸化
物の中で、特にNa2O,K2O等のアルカリ金属酸化物
の含有量が電気的特性に大きく影響することを確認して
いる。つまり、不純物として存在するアルカリ金属酸化
物量が0.02重量%未満のチタン酸バリウムを用いる
ことで、3000以上の誘電率が得られることを確認し
ている。
【0024】さらに、誘電体セラミック層中に酸化ケイ
素を添加させることによって、焼成過程の比較的高温状
態において、その焼成雰囲気をNi/NiOの平衡酸素
分圧付近の酸素分圧に調整することにより、焼結性がよ
くなるとともに、湿中負荷特性が向上することも確認し
ている。
【0025】上述したような誘電体セラミック材料を用
いて誘電体セラミック層を形成すれば、静電容量の温度
変化が小さく、信頼性が高い小型大容量の積層セラミッ
クコンデンサを実現することが可能となるとともに、ニ
ッケルまたはニッケル合金あるいはそれらにセラミック
粉末を少量添加したものを内部電極とすることが可能と
なる。
【0026】また、外部電極の組成は特に限定されるも
のではない。例えば、Ag,Pd,Ag−Pd,Cu,
Cu合金等の種々の導電性金属粉末の焼結層、または、
上記導電性金属粉末と、B23−Li2O−SiO2−B
aO系、B23−SiO2−BaO系、B23−SiO2
−ZnO系、Li2O−SiO2−BaO系等の種々のガ
ラスフリットとを配合した焼結層によって構成されてい
ればよい。また、少量であれば、導電性金属粉末とガラ
スフリットとともに、セラミック粉末を添加してもよ
い。より好ましくは、この焼結層の上にメッキ層を被覆
する場合であり、メッキ層は、Ni,Cu,Ni−Cu
合金等からなるメッキ層のみでもよいし、さらにその上
にはんだ、錫などのメッキ層を有してもよい。
【0027】次に、この発明を実施例に基づき、さらに
具体的に説明するが、この発明はかかる実施例のみに限
定されるものではない。この発明の一実施例である積層
セラミックコンデンサについて説明する。図1は一実施
例の積層セラミックコンデンサの概略断面図、図2は一
実施例の内部電極を有する誘電体セラミック層の概略平
面図、図3は一実施例のセラミック積層体の分解斜視図
を示す。この発明にかかる積層セラミックコンデンサ1
は、図1に示すように、内部電極4を介在して複数枚の
誘電体セラミック層2a,2bを積層して得られたセラ
ミック積層体3の両端面に外部電極5およびニッケル、
銅などのメッキ第1層6、はんだ、錫などのメッキ第2
層7が形成された直方体形状のチップタイプである。
【0028】次に、この発明にかかる積層セラミックコ
ンデンサ1の製造方法について、製造工程順に説明す
る。まず、セラミック積層体3を形成する。このセラミ
ック積層体3は次のようにして製造される。図2に示す
ように、チタン酸バリウムと、酸化スカンジウム、酸化
イットリウムの中から選ばれる少なくとも1種類以上
と、酸化サマリウム、酸化ユーロピウムの中から選ばれ
る少なくとも1種類以上と、酸化マンガン、酸化コバル
ト、酸化ニッケルの中から選ばれる少なくとも1種類以
上の酸化物と、酸化マグネシウムと、酸化ケイ素とから
なる材料粉末をスラリー化してシート状とした誘電体セ
ラミック層2(グリーンシート)を用意し、その一面に
ニッケルまたはニッケル合金からなる内部電極4を形成
する。なお、内部電極4を形成する方法は、スクリーン
印刷などによる形成でも、蒸着、メッキ法による形成で
もどちらでも構わない。
【0029】次に、内部電極4を有する誘電体セラミッ
ク層2bは必要枚数積層され、図3に示す如く、内部電
極4を有しない誘電体セラミック層2aにて挟んで圧着
し、積層体とする。その後、この積層された誘電体セラ
ミック層2a,2b,・・・,2b,2aを還元性雰囲
気中、所定の温度にて焼成し、セラミック積層体3が形
成される。次に、セラミック積層体3の両端面に、内部
電極4と接続するように、二つの外部電極5を形成す
る。
【0030】この外部電極5の材料としては、内部電極
4と同じ材料を使用することができる。また、銀、パラ
ジウム、銀−パラジウム合金、銅、銅合金等が使用可能
であり、また、これらの金属粉末にB23−SiO2
BaO系ガラス、Li2O−SiO2−BaO系ガラスな
どのガラスフリットを添加したものも使用されるが、積
層セラミックコンデンサの使用用途、使用場所などを考
慮に入れて、適当な材料が選択される。
【0031】また、外部電極5は、材料となる金属粉末
から構成される導電ペーストを、焼成により得たセラミ
ック積層体3に塗布して、焼き付けることで形成される
が、焼成前のセラミック積層体3に導電ペーストを塗布
して、セラミック積層体3の焼成と同時に外部電極5を
形成してもよい。この後、外部電極5上にニッケル、銅
などのメッキを施し、メッキ第1層6を形成する。最後
に、このメッキ第1層6の上にはんだ、錫などのメッキ
第2層7を形成し、チップ型の積層セラミックコンデン
サ1が製造される。
【0032】以下では、より詳細な実施例について説明
する。 (実施例1)まず、出発原料として種々の純度のTiC
4とBa(NO32とを準備して秤量した後、蓚酸に
より蓚酸チタニルバリウム(BaTiO(C24)・4
2O)として沈澱させ、沈澱物を得た。この沈澱物を
1000℃以上の温度で加熱分解させて、表1の4種類
のチタン酸バリウム(BaTiO3)を合成した。
【0033】
【表1】
【0034】次に,チタン酸バリウムのBa/Tiモル
比mを調整するためのBaCO3と、純度99%以上の
Sc23,Y23,Sm23,Eu23,MnCO3
NiO,Co23,MgOと酸化ケイ素をSiO2に換
算して20重量%含有したコロイドシリカを準備した。
これらの原料粉末を表2に示す組成比となるように配合
し、配合物を得た。
【0035】
【表2】
【0036】この配合物に、ポリビニルブチラール系バ
インダーおよびエタノール等の有機溶剤を加えて、ボー
ルミルにより湿式混合し、セラミックスラリーを調製し
た。しかる後、セラミックスラリーをドクターブレード
法によりシート成形し、厚み11μmの矩形のグリーン
シートを得た。次に、上記セラミックグリーンシート上
に、Niを主体とする導電ペーストを印刷し、内部電極
を構成するための導電ペースト層を形成した。
【0037】導電ペースト層が形成されたセラミックグ
リーンシートを導電ペーストの引き出されている側が互
い違いとなるように複数枚積層し、積層体を得た。得ら
れた積層体を、N2雰囲気中にて350℃の温度に加熱
し、バインダを燃焼させた後、酸素分圧10-9〜10
-12MPaのH2−N2−H2Oガスからなる還元性雰囲気
中において表3に示す温度で2時間焼成し、セラミック
焼結体を得た。得られたセラミック焼結体表面を走査型
電子顕微鏡にて、倍率1500で観察し、グレインサイ
ズを測定した。
【0038】焼成後、得られた焼結体の両端面にB23
−Li2O−SiO2−BaO系のガラスフリットを含有
する銀ペーストを塗布し、N2雰囲気中において600
℃の温度で焼き付け、内部電極と電気的に接続された外
部電極を形成した。上記のようにして得られた積層セラ
ミックコンデンサの外形寸法は、幅:1.6mm、長
さ:3.2mm、厚さ:1.2mmであり、内部電極間
に介在する誘電体セラミック層の厚みは8μmであっ
た。また、有効誘電体セラミック層の総数は、19であ
り、一層当たりの対向電極の面積は、2.1mm2であ
った。
【0039】そして、これらについて電気的特性を測定
した。静電容量(C)および誘電損失(tanδ)は、
自動ブリッジ式測定器を用いて周波数1kHz、1Vr
ms、温度25℃にて測定し、静電容量から誘電率
(ε)を算出した。次に、絶縁抵抗(R)を測定するた
めに、絶縁抵抗計を用い、16Vの直流電圧を2分間印
加して、25℃、125℃での絶縁抵抗(R)を測定
し、静電容量(C)と絶縁抵抗(R)との積、すなわち
CR積を求めた。また、20kV/mmの電界での絶縁
抵抗(R)を測定するために、160Vの直流電圧を2
分間印加して、同様に、25℃、125℃での絶縁抵抗
(R)を測定して、CR積を求めた。
【0040】さらに、温度変化に対する静電容量の変化
率を測定した。なお、温度変化に対する静電容量の変化
率については、20℃での静電容量を基準とした−25
℃と85℃での変化率(ΔC/C20℃)と、25℃で
の静電容量を基準とした−55℃と125℃での変化率
(ΔC/C25℃)および−55℃〜125℃の範囲内
で絶対値としてその変化率が最大である値(|ΔC/△
C25℃|max)を示した。
【0041】また、高温負荷寿命試験として、各試料を
36個ずつ、温度150℃にて直流電圧を100V印加
して、その絶縁抵抗の経時変化を測定した。なお、高温
負荷寿命試験は、各試料の絶縁抵抗値(R)が106Ω
以下になったときの時間を寿命時間とし、その平均寿命
時間を示す。
【0042】さらに、湿中負荷試験として、各試料を7
2個ずつ、2気圧(相対湿度100%)、温度121℃
にて直流電流を16V印加した場合において、250時
間経過するまでに絶縁抵抗値(R)が106Ω以下にな
った試料の個数を示す。以上の結果を表3に示した。
【0043】
【表3】
【0044】表1、表2、表3から明かなように、この
発明の積層セラミックコンデンサは誘電率が3000以
上と高く、誘電損失は2.5%以下で、温度に対する静
電容量の変化率が、−25℃〜85℃での範囲でJIS
規格に規定されているB特性規格および、−55℃と1
25℃での範囲内でEIA規格に規定されているX7R
特性規格を満足する。また、20kV/mmと高電界強
度での25℃、125℃における絶縁抵抗をCR積で表
したときに、それぞれ2000MΩ・μF、500MΩ
・μF以上と高い値を示す。また、平均寿命時間が50
0時間以上と長く、湿中負荷試験での不良の発生は認め
られない。さらに、焼成温度も1300℃以下と比較的
低温で焼結可能であり、粒径についても1μm以下と小
さい。
【0045】ここで、この発明の積層セラミックコンデ
ンサに用いる誘電体セラミック材料の組成限定理由につ
いて説明する。(1−α−β−γ){BaO}m・Ti
2+αM23+βRe23+γ(Mn1-x-yNix
y)O(ただし、M23は、Sc23,Y23の中か
ら選ばれる少なくとも1種類以上、Re23は、Sm2
3,Eu23の中から選ばれる少なくとも1種類以
上)において、試料番号1のように、(M23+Re2
3)量(α+β)が0.0025未満の場合には、誘
電率が3000より低く、静電容量の温度変化率も大き
くなり、125℃で高電圧の絶縁抵抗が低くなり、平均
寿命時間が極端に短くなるからである。試料番号19の
ように(M23+Re23)量(α+β)が0.025
を超える場合には、誘電率が3000より低く、25
℃、125℃での絶縁抵抗が低下し、平均寿命時間が短
く、湿中負荷試験で不良が発生し、焼結温度が高くなる
からである。
【0046】試料番号2のように(Mn,Ni,Co)
O量γが0.0025未満の場合には、還元性雰囲気で
焼成すると誘電体セラミックが還元され、半導体化して
絶縁抵抗が低下してしまうからである。試料番号20の
ように(Mn,Ni,Co)O量γが0.05を超える
場合には、印加電圧に依存せず、125℃での絶縁抵抗
が低くなり、平均寿命時間が短くなる。また、静電容量
の温度変化率も大きくなるからである。
【0047】試料番号23,24,25のように、Mn
を全く含まない場合には、絶縁抵抗が低下し、平均寿命
時間が500時間よりも短くなるからである。
【0048】試料番号3のように、Re23量βが0の
場合には、平均寿命時間が500時間よりも短くなるか
らである。試料番号22のように、Re23量βが0.
0075を超える場合には、静電容量の温度変化率が大
きくなり、JIS規格のB特性およびEIA規格のX7
R特性を満足しなくなるからである。
【0049】試料番号21のように、(M23+Re2
3)量(α+β)と(Mn,Ni,Co)O量γの比
率γ/(α+β)が4を越える場合には、静電容量の温
度変化率が大きくなり、125℃での絶縁抵抗が低く、
平均寿命が500時間より短くなるからである。
【0050】試料番号4,5のように、チタン酸バリウ
ムのモル比mが1.000以下の場合には、還元性雰囲
気で焼成したとき、半導体化する、あるいは絶縁抵抗が
低下し、平均寿命時間が500時間よりも短くなるから
である。試料番号26のように、モル比mが1.035
を超える場合には、焼結性が極端に悪くなるからであ
る。
【0051】試料番号6のように、MgO量が0.5モ
ル未満の場合には、絶縁抵抗が低下し、平均寿命時間が
500時間よりも短くなり、静電容量の温度変化率がJ
IS規格が規定するB特性を満足するものの、EIA規
格が規定するX7R特性を満足することができないから
である。試料番号27のようにMgO量が5.0モルを
超える場合には、焼結温度が高くなり、誘電率が300
0より低く、平均寿命時間が短く、湿中負荷試験で不良
が発生するからである。
【0052】試料番号7のように、酸化ケイ素の量が
0.2モル未満の場合には、焼結不足となるからであ
る。試料番号28のように、酸化ケイ素の量が5.0モ
ルを超える場合には、誘電率が3000を越えないから
である。
【0053】試料番号29のように、チタン酸バリウム
に不純物として含まれるアルカリ金属酸化物の量が0.
02重量部を越える場合には、誘電率の低下を生じるか
らである。
【0054】M23量αに対するRe23量βの比率
(β/α)値は特に規定しないが、静電容量の温度変化
率を規格の許容値から余裕をもたせるためには、β/α
≦1にすることが好ましい。
【0055】なお、上記実施例では、チタン酸バリウム
として、蓚酸法により作製した粉末を用いたが、これに
限定するものではなく、アルコキシド法あるいは水熱合
成法により作製されたチタン酸バリウム粉末を用いても
よい。これらの粉末を用いることにより、この実施例で
示した特性よりも向上することも有り得る。また、酸化
スカンジウム、酸化イットリウム、酸化サマリウム、酸
化ユーロピウム、酸化マンガン、酸化コバルト、酸化ニ
ッケルおよび酸化マグネシウムなども、酸化物粉末を用
いたが、これに限定されるものではなく、この発明の範
囲の誘電体セラミック層を構成するように配合すれば、
アルコキシド、有機金属などの溶液を用いても、得られ
る特性を何等損なうものではない。
【0056】
【発明の効果】この発明の積層セラミックコンデンサ
は、還元性雰囲気中で焼成しても還元されず、半導体化
しない誘電体セラミック材料から構成されているので、
電極材料として卑金属であるニッケルまたはニッケル合
金を用いることができ、1300℃以下と比較的低温で
焼成可能であり、積層セラミックコンデンサのコストダ
ウンを図ることができる。
【0057】また、この誘電体セラミック材料を用いた
積層セラミックコンデンサでは、誘電率が3000以上
あり、かつ誘電率の温度変化が小さい。また、絶縁抵抗
が高く、高温下、高湿下での特性劣化のない優れた特性
を示す。したがって、誘電体セラミック層を薄層化して
も、定格電圧を下げる必要がない。
【0058】さらに、結晶粒径が1μm以下と小さいた
め、誘電体セラミック層を薄層化したときに、従来の積
層セラミックコンデンサに比較して層中に存在する結晶
粒の量を多くできる。このため、信頼性が高く、しかも
小型で大容量の積層セラミックコンデンサを得ることが
できる。
【図面の簡単な説明】
【図1】この発明の一実施例である積層セラミックコン
デンサの概略断面図である。
【図2】この発明の一実施例である内部電極を有する誘
電体セラミック層の概略平面図である。
【図3】この発明の一実施例であるセラミック積層体の
分解斜視図である。
【符号の説明】
1 積層セラミックコンデンサ 2 誘電体セラミック層 2a 内部電極を有しない誘電体セラミック層 2b 内部電極を有する誘電体セラミック層 3 セラミック積層体 4 内部電極 5 外部電極 6 メッキ第1層 7 メッキ第2層

Claims (3)

    【特許請求の範囲】
  1. 【請求項1】 複数の誘電体セラミック層と、 それぞれの端縁が前記誘電体セラミック層の両端面に露
    出するように前記誘電体セラミック層間に形成された複
    数の内部電極と、 露出した前記内部電極に電気的に接続されるように設け
    られた外部電極とを含む積層セラミックコンデンサにお
    いて、 前記誘電体セラミック層が、 不純物として含まれるアルカリ金属酸化物の含有量が
    0.02重量%以下のチタン酸バリウムと、 酸化スカンジウム、酸化イットリウムの中から選ばれる
    少なくとも1種類以上と、 酸化サマリウム、酸化ユーロピウムの中から選ばれる少
    なくとも1種類以上と、 酸化マンガン、酸化コバルト、酸化ニッケルの中から選
    ばれる少なくとも1種類以上とからなり、 次の組成式、 (1−α−β−γ){BaO}m・TiO2+αM23
    βRe23+γ(Mn1-x-yNixCoy)O (ただし、M23は、Sc23,Y23の中から選ばれ
    る少なくとも1種類以上であり、Re23は、Sm
    23,Eu23の中から選ばれる少なくとも1種類以上
    であり、α,β,γ,m,x,yは、 0.0025≦α+β≦0.025 0<β≦0.0075 0.0025≦γ≦0.05 γ/(α+β)≦4 0≦x<1.0 0≦y<1.0 0≦x+y<1.0 1.000<m≦1.035) で表される主成分100モルに対して、 副成分として、酸化マグネシウムをMgOに換算して
    0.5〜5.0モル添加含有し、 さらに酸化ケイ素をSiO2に換算して0.2〜5.0
    モル添加含有した材料によって構成され、 前記内部電極はニッケルまたはニッケル合金によって構
    成されることを特徴とする積層セラミックコンデンサ。
  2. 【請求項2】 前記外部電極は、導電性金属粉末、また
    はガラスフリットを添加した導電性金属粉末の焼結層に
    よって構成されていることを特徴とする請求項1に記載
    の積層セラミックコンデンサ。
  3. 【請求項3】 前記外部電極は、導電性金属粉末、また
    はガラスフリットを添加した導電性金属粉末の焼結層か
    らなる第1層と、その上のメッキ層からなる第2層とか
    らなることを特徴とする請求項1に記載の積層セラミッ
    クコンデンサ。
JP9001229A 1997-01-08 1997-01-08 積層セラミックコンデンサ Expired - Lifetime JP3039409B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP9001229A JP3039409B2 (ja) 1997-01-08 1997-01-08 積層セラミックコンデンサ
CNB981039669A CN1155028C (zh) 1997-01-08 1998-01-08 独石瓷介电容器
KR1019980000291A KR100271727B1 (ko) 1997-01-08 1998-01-08 모놀리식 세라믹 커패시터
US09/004,696 US6002577A (en) 1997-01-08 1998-01-08 Monolithic ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9001229A JP3039409B2 (ja) 1997-01-08 1997-01-08 積層セラミックコンデンサ

Publications (2)

Publication Number Publication Date
JPH10199748A true JPH10199748A (ja) 1998-07-31
JP3039409B2 JP3039409B2 (ja) 2000-05-08

Family

ID=11495651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9001229A Expired - Lifetime JP3039409B2 (ja) 1997-01-08 1997-01-08 積層セラミックコンデンサ

Country Status (4)

Country Link
US (1) US6002577A (ja)
JP (1) JP3039409B2 (ja)
KR (1) KR100271727B1 (ja)
CN (1) CN1155028C (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100474249B1 (ko) * 2002-03-19 2005-03-09 삼화콘덴서공업주식회사 유전체 세라믹 조성물 및 제조방법

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3644235B2 (ja) * 1998-03-03 2005-04-27 株式会社村田製作所 積層セラミック電子部品
JP2000277371A (ja) * 1999-03-29 2000-10-06 Taiyo Yuden Co Ltd 積層セラミック電子部品
JP2001035740A (ja) * 1999-07-23 2001-02-09 Taiyo Kagaku Kogyo Kk 外部端子電極具備電子部品及びその製造方法
US6514895B1 (en) 2000-06-15 2003-02-04 Paratek Microwave, Inc. Electronically tunable ceramic materials including tunable dielectric and metal silicate phases
KR100372687B1 (ko) * 2000-07-05 2003-02-19 삼성전기주식회사 유전특성의 편차가 적은 적층 세라믹 커패시터의 제조방법
US6673274B2 (en) 2001-04-11 2004-01-06 Cabot Corporation Dielectric compositions and methods to form the same
US6829136B2 (en) * 2002-11-29 2004-12-07 Murata Manufacturing Co., Ltd. Dielectric ceramic, method for making the same, and monolithic ceramic capacitor
US7324326B2 (en) * 2003-02-05 2008-01-29 Tdk Corporation Electronic device and the production method
JP4095586B2 (ja) * 2004-06-29 2008-06-04 Tdk株式会社 積層型セラミックコンデンサおよびその製造方法
JP3901196B2 (ja) * 2005-05-26 2007-04-04 株式会社村田製作所 積層セラミック電子部品
JP2007234828A (ja) * 2006-02-28 2007-09-13 Tdk Corp 電子部品及びその製造方法
WO2011121994A1 (ja) * 2010-03-30 2011-10-06 株式会社村田製作所 電源装置
KR20130070097A (ko) * 2011-12-19 2013-06-27 삼성전기주식회사 전자 부품 및 그 제조 방법
KR101753420B1 (ko) * 2012-03-13 2017-07-03 삼성전기주식회사 적층 세라믹 전자 부품
KR102089697B1 (ko) * 2014-04-30 2020-04-14 삼성전기주식회사 외부전극용 페이스트, 적층 세라믹 전자부품 및 그 제조방법
CN106316389B (zh) * 2016-08-05 2019-06-28 聊城大学 一种低电场驱动下的高电致应变无铅压电材料及制备方法
JP2018032788A (ja) * 2016-08-25 2018-03-01 太陽誘電株式会社 積層セラミックコンデンサおよびその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3024536B2 (ja) * 1995-12-20 2000-03-21 株式会社村田製作所 積層セラミックコンデンサ
JP2998639B2 (ja) * 1996-06-20 2000-01-11 株式会社村田製作所 積層セラミックコンデンサ
JP3282520B2 (ja) * 1996-07-05 2002-05-13 株式会社村田製作所 積層セラミックコンデンサ
JP3180681B2 (ja) * 1996-07-19 2001-06-25 株式会社村田製作所 積層セラミックコンデンサ
JP3180690B2 (ja) * 1996-07-19 2001-06-25 株式会社村田製作所 積層セラミックコンデンサ
SG48535A1 (en) * 1996-08-05 1998-04-17 Murata Manufacturing Co Dielectric ceramic composition and monolithic ceramic capacitor using the same
JP3039403B2 (ja) * 1996-12-06 2000-05-08 株式会社村田製作所 積層セラミックコンデンサ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100474249B1 (ko) * 2002-03-19 2005-03-09 삼화콘덴서공업주식회사 유전체 세라믹 조성물 및 제조방법

Also Published As

Publication number Publication date
CN1188318A (zh) 1998-07-22
CN1155028C (zh) 2004-06-23
JP3039409B2 (ja) 2000-05-08
US6002577A (en) 1999-12-14
KR19980070404A (ko) 1998-10-26
KR100271727B1 (ko) 2000-11-15

Similar Documents

Publication Publication Date Title
JP3039417B2 (ja) 積層セラミックコンデンサ
JP3039403B2 (ja) 積層セラミックコンデンサ
JP2998639B2 (ja) 積層セラミックコンデンサ
JP3918372B2 (ja) 誘電体セラミック組成物、および積層セラミックコンデンサ
JP3282520B2 (ja) 積層セラミックコンデンサ
JP3180690B2 (ja) 積層セラミックコンデンサ
JP3024536B2 (ja) 積層セラミックコンデンサ
KR100326951B1 (ko) 유전체 세라믹 조성물 및 모놀리식 세라믹 커패시터
KR100438517B1 (ko) 내환원성 유전체 세라믹 콤팩트 및 적층 세라믹 커패시터
JP3039397B2 (ja) 誘電体磁器組成物とそれを用いた積層セラミックコンデンサ
JP3024537B2 (ja) 積層セラミックコンデンサ
JP3180681B2 (ja) 積層セラミックコンデンサ
JP2993425B2 (ja) 積層セラミックコンデンサ
JP3509710B2 (ja) 誘電体セラミック組成物、および積層セラミックコンデンサ
JP3039409B2 (ja) 積層セラミックコンデンサ
JP3039426B2 (ja) 積層セラミックコンデンサ
JP3064918B2 (ja) 積層セラミックコンデンサ
JP3675076B2 (ja) 積層セラミックコンデンサ
JP3039386B2 (ja) 積層セラミックコンデンサ
JP3675077B2 (ja) 積層セラミックコンデンサ
JP3316720B2 (ja) 積層セラミックコンデンサ
JP3018934B2 (ja) 積層セラミックコンデンサ
JP3493882B2 (ja) 積層セラミックコンデンサ

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090303

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090303

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140303

Year of fee payment: 14

EXPY Cancellation because of completion of term