JPH10178947A - Device and method for farming seaweeds - Google Patents
Device and method for farming seaweedsInfo
- Publication number
- JPH10178947A JPH10178947A JP8348671A JP34867196A JPH10178947A JP H10178947 A JPH10178947 A JP H10178947A JP 8348671 A JP8348671 A JP 8348671A JP 34867196 A JP34867196 A JP 34867196A JP H10178947 A JPH10178947 A JP H10178947A
- Authority
- JP
- Japan
- Prior art keywords
- light
- seaweeds
- wavelength
- base
- plumules
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Cultivation Of Plants (AREA)
- Cultivation Of Seaweed (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、海藻類の養殖装置
および養殖方法に関する。The present invention relates to an apparatus and a method for cultivating seaweed.
【0002】[0002]
【従来の技術】従来より、海藻類の養殖には、光と温度
と無機の栄養塩をもって行っており、例えば海水を導入
した培養槽または海域を仕切って、基盤に海藻類の幼芽
を付着させ、温度管理と栄養源の管理を行って、太陽光
のもと養殖を行っていた。2. Description of the Related Art Conventionally, cultivation of seaweed has been carried out using light, temperature and inorganic nutrients. For example, a culture tank or sea area into which seawater is introduced is partitioned, and germs of seaweed are attached to a base. They managed the temperature and nutrient sources and cultivated under sunlight.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、高等植
物と異なり、海藻類は基本的に光合成を行うことで生活
しており、エネルギー源は太陽光に依存しているので、
天候に左右されるばかりか、海藻類の幼芽を付着させる
海水深度や透明度によって成育が左右される。従ってそ
の年毎の気象条件によって収穫量が異なるとともに、他
の生物のために特定の季節に海藻類を得ようとしても困
難であった。However, unlike higher plants, seaweeds basically live by performing photosynthesis, and the energy source depends on sunlight.
The growth depends not only on the weather, but also on the depth and transparency of the seawater where the larvae of the seaweeds attach. Therefore, the yield varies depending on the weather conditions of each year, and it is difficult to obtain seaweeds for a particular season for other organisms.
【0004】[0004]
【課題を解決するための手段】本発明はこのような点に
考慮して、季節や天候にほとんど左右されずに、しかも
効率よく、海藻類を養殖するものである。SUMMARY OF THE INVENTION In view of the foregoing, the present invention is to efficiently grow seaweed almost independently of the season and weather.
【0005】本発明は、海藻類の幼芽等を付着させた基
盤と、その基盤の幼芽等に複数の特定波長の光を照射さ
せる光源とを設けた養殖装置であり、海藻類のなかでも
特に着生する褐藻類に、好ましくは可視光領域の両端近
傍における波長、例えば赤色と青色の光を照射して養殖
するものである。The present invention is an aquaculture apparatus provided with a base on which germs of seaweeds are adhered and a light source for irradiating light of a plurality of specific wavelengths to the germs of the bases. However, the algae that grow especially are cultured by irradiating them with wavelengths near both ends of the visible light region, for example, red and blue light.
【0006】このような波長の光は、光源から緑色系や
紫外線系、赤外線系の光を遮断してもよいが、好ましく
は、発光ダイオードによって得ることができる。Light of such a wavelength may block green, ultraviolet or infrared light from the light source, but is preferably obtained by a light emitting diode.
【0007】[0007]
【発明の実施の形態】本発明における海藻類とは、例え
ばワカメ、コンブ、ホンダワラなどで、特には海中に着
生する褐藻類であり、浮遊性の微細藻類を除くという意
味である。また、海藻類の幼芽等とは、胞子の段階にあ
るもの、成体を含み、特に幼芽が効果が大きいというも
のである。そして、海藻類の幼芽を付着させる基盤と
は、藻類の付着基盤になるものを言い、例えば、木切れ
やプラスチック等の小片や管、ロープ、網、ブロック、
岩石、小石、波板、ボール等をいう。また、これらを支
持するワイヤーや枠、平板、岩などを含めて考慮しても
よい。BEST MODE FOR CARRYING OUT THE INVENTION The seaweeds in the present invention are, for example, seaweed, kelp, and honda straw, particularly brown algae that settle in the sea, meaning that floating microalgae are excluded. In addition, larvae and the like of seaweeds include those at the stage of spores and adults, and particularly those in which larvae have a large effect. The base on which seaweed germs adhere is referred to as a base on which algae are attached. For example, small pieces, pipes, ropes, nets, blocks, such as pieces of wood or plastic,
Rocks, pebbles, corrugated sheets, balls, etc. Further, a wire, a frame, a flat plate, a rock, or the like that supports them may be considered.
【0008】海藻類の幼芽は、最初には次の様にして種
糸に付着させる。一般に、春頃ワカメは、生態の胞子の
うが成熟する。そこで芽株と細い糸とを容器の中にいれ
て、芽株から放出された遊走子を糸に付着させて種糸と
する。遊走子は成長して配偶体となるので、水温17〜
22度cで光量2000〜7000ルックスに保持する
ことにより、水槽内で配偶体を成長させる。夏になる
と、水温を上げ、光量を下げて、配偶体を休眠させる。
秋が近くなると、水温を20度c以下に保持することに
より、配偶体を成熟させ、卵と精子に変化させる。秋に
なると受精卵が発芽してワカメの幼芽となる。そこで、
種糸を実験水槽に移し、自然環境を再現しながらその成
長を確認した。[0008] The larvae of the seaweed are first attached to the seed yarn in the following manner. In general, in the spring, seaweed matures in ecological spores. Therefore, the sprouts and the thin thread are placed in a container, and the zoospores released from the sprouts are attached to the threads to form seed threads. As the zoospore grows and becomes a gametophyte, the water temperature 17 ~
The gametophyte is grown in the aquarium by maintaining the light intensity at 2000-7000 lux at 22 degrees c. In the summer, the water temperature is raised, the light level is reduced, and the gametophytes are put to sleep.
As autumn approaches, the gamete matures and turns into eggs and sperm by keeping the water temperature below 20 ° C. In the fall, fertilized eggs germinate and become wakame larvae. Therefore,
The seed yarn was transferred to an experimental tank and its growth was confirmed while reproducing the natural environment.
【0009】図1は実験装置の断面図で、1はワカメの
幼芽を付着させた基盤であり、例えば1辺10〜30c
mの樹脂製の枠11に、上述した種糸12を巻き付けた
ものである。2は、その基盤1の幼芽に複数の特定波長
の光を照射させる光源で、例えば複数種類の発光ダイオ
ードランプ21、22を、各々20〜80個ずつ透明チ
ューブに封入したものである。発光ダイオードランプと
しては、GaN青紫色(発光波長430nm)、GaN
青色(発光波長450nm)、SiC青色(発光波長4
70nm)、GaP緑色(発光波長555nm)、Ga
P黄緑色(発光波長565nm)、GaAsPonGa
P黄色(発光波長585nm)、AlGaInP黄色
(発光波長590nm)、GaAsPonGaP橙色
(発光波長610nm)、AlGaInP橙色(発光波
長620nm)、GaAsPonGaP赤色(発光波長
635nm)、GaAlAs赤色(発光波長660n
m)、GaP赤色(発光波長695nm)、GaAlA
s赤色(発光波長700nm)、GaAlAs赤外色
(発光波長830nm)などの中から選択できる。この
ような発光ダイオードはコントローラ付きの電源23に
より、一定時間の常時点灯、あるいは所定時間単位の間
欠点灯される。3は培養液で、ここでは採取した海水を
適宜補給しながら、循環ポンプ32と補助タンク33を
使って循環させて用いている。この図では光源2を培養
液3中に浸漬し循環タンクを用いているが、培養液を入
れた培養水槽が小さく、それに比して基盤1が大きい場
合などは、光源2を培養液3の外にだして配置し、培養
液は海水などを培養水槽に流入させるだけでもよい。FIG. 1 is a cross-sectional view of an experimental apparatus. Reference numeral 1 denotes a base to which seaweed germ is adhered.
The seed yarn 12 described above is wound around a resin frame 11 of m. Reference numeral 2 denotes a light source for irradiating the seedlings of the base 1 with light of a plurality of specific wavelengths. For example, 20 to 80 light emitting diode lamps 21 and 22 are sealed in a transparent tube. GaN blue-violet (emission wavelength: 430 nm), GaN
Blue (emission wavelength 450 nm), SiC blue (emission wavelength 4
70 nm), GaP green (emission wavelength 555 nm), Ga
P yellow-green (emission wavelength: 565 nm), GaAsPonGa
P yellow (emission wavelength 585 nm), AlGaInP yellow (emission wavelength 590 nm), GaAsPonGaP orange (emission wavelength 610 nm), AlGaInP orange (emission wavelength 620 nm), GaAsPonGaP red (emission wavelength 635 nm), GaAlAs red (emission wavelength 660 n)
m), GaP red (emission wavelength 695 nm), GaAlA
It can be selected from s red (emission wavelength 700 nm), GaAlAs infrared color (emission wavelength 830 nm), and the like. Such a light emitting diode is constantly lit for a predetermined time or intermittently lit for a predetermined time unit by a power supply 23 with a controller. Reference numeral 3 denotes a culture solution, which is circulated using a circulation pump 32 and an auxiliary tank 33 while appropriately supplying the collected seawater. In this figure, the light source 2 is immersed in the culture solution 3 and a circulation tank is used. However, when the culture water tank containing the culture solution is small and the base 1 is large in comparison with this, the light source 2 is set to the culture solution 3. The culture solution may be placed outside, and the culture solution may simply flow seawater or the like into the culture tank.
【0010】図2は、このような養殖装置で、長さ15
0μmであった幼芽を、一定期間経過後にその長さを測
定した成長記録図で、上述した波長のうち代表的なもの
を示している。光源2は、660nmで8cd/本、5
50nmで18cd/本等の筒型の発光ダイオードラン
プ21、22を1乃至複数本用いた。発光ダイオードは
特定の波長で狭い半値幅の光、例えば550nmの青色
の光で半値幅70nmの光を出力でき、比較的消費電力
や発熱量が低いので最も扱いやすい。測定は基盤1の種
糸に付着したワカメの目視できるものすべてを長さ測定
し、極端な長さのものを除外して、その平均値をもって
基盤1毎のワカメの長さと表している。図2において、
横軸は経過日数を示し、縦軸はワカメの幼芽の長さ(μ
m)を示している。また特性曲線は、日毎にプロットし
たワカメの幼芽の長さ(μm)を曲線で結んだもので、
各特性曲線の右端に記した数字は照射光源の波長であ
り、660nmとは赤色660nmの光源のみを用い照
射した場合、550nm+660nmとは青色と赤色の
両方の光を照射した場合を各々示す。またsunとは同
じ実験日程において太陽光で成長させた基盤1のワカメ
の幼芽の長さ(μm)を示している。このような結果1
ケ月経過後には、代表的には、以下のような成長がみら
れた。FIG. 2 shows such an aquaculture apparatus having a length of 15 cm.
In the growth record diagram, the length of the germ, which was 0 μm, was measured after a lapse of a certain period of time, representative wavelengths described above are shown. Light source 2 is 8 cd / line at 660 nm, 5
One or a plurality of cylindrical light-emitting diode lamps 21 and 22 having a size of 50 cd and 18 cd / line were used. The light emitting diode can output light having a narrow half width at a specific wavelength, for example, light having a half width of 70 nm with blue light of 550 nm, and is relatively easy to handle because of relatively low power consumption and heat generation. In the measurement, the length of all visible wakame sticking to the seed yarn of the base 1 was measured, and the length of the wakame excluding the extreme length was excluded. In FIG.
The horizontal axis shows the number of days elapsed, and the vertical axis shows the length (μ
m). The characteristic curve is obtained by connecting the length (μm) of the young larvae of wakame plotted every day with a curve.
The numbers described at the right end of each characteristic curve are the wavelengths of the irradiation light sources. 660 nm indicates the case where only the red 660 nm light source is used, and 550 nm + 660 nm indicates the case where both the blue and red light are irradiated. In addition, sun indicates the length (μm) of larvae of the wakame seaweed on the substrate 1 grown on the same experimental schedule with sunlight. Result 1
After a period of two months, the following growth has typically been observed.
【0011】[0011]
【表1】 [Table 1]
【0012】この表において、着生する褐藻類に照射す
る赤色系の特定波長の光とは、例えば660nmを示す
が、半値幅を考慮すると640nmから680nmに中
心波長があってもよい。また青色系の特定波長の光と
は、450nmの場合を示しているが、510nmから
400nm、好ましくはこの範囲の中の更に単波長側が
好ましい。それに対して緑色系の光は、単独で照射させ
ると、むしろワカメの成長を疎外していると推測され
る。また自然光のもとで成長させたワカメの幼芽は丸ま
って成長するが、特定波長のもとで大きく成長したワカ
メの幼芽は、細長く成長していた。In this table, the light of a specific wavelength of the red system which is applied to the brown algae to be set indicates, for example, 660 nm. However, considering the half width, the center wavelength may be from 640 nm to 680 nm. Further, the light of a specific wavelength of the blue system indicates a case of 450 nm, but it is preferably 510 nm to 400 nm, more preferably a single wavelength side in this range. On the other hand, it is presumed that the green-based light, if irradiated alone, rather alienates the growth of seaweed. Also, wakame sprouts grown under natural light grew rounded, whereas wakame sprouts that grew significantly under a particular wavelength were elongated.
【0013】この実験から判明したことは、まず第1に
ワカメは比較的水深の深い場所にて成長し、太陽光も波
長選択されて到達するものであるが、ワカメの幼芽の成
長を促進する波長は必ずしもその様な通常自然の状態で
与えられる波長の光に限られないことである。次いで、
着生する褐藻類などで必要な光量は概ね分かっている
が、成長を促進しあるいは抑制する波長が未だに不明瞭
なことである。地上の緑色植物においては、光合成電子
伝達系反応波長660〜680nm、高エネルギー反応
系波長450〜470nm、フィトクローム系波長66
0〜670nmなどが植物の利用する主な波長であると
されている(例えばオーム社の雑誌「エレクトロニク
ス」1996年8月号57頁)が、特定波長で成育を続
けてきた海藻類がかかる波長の光を必要とし、あるいは
特定の波長の光に対してこのような反応を示すかは定か
でない。僅かにクロレラなどで光合成を促進させると成
長が大きいことが報告されている程度であり、それらの
成長とワカメの成長は明らかに異なる。[0013] First, it was found from this experiment that wakame grows in a relatively deep water and sunlight reaches the place where the wavelength is selected. That is, the wavelength of the light is not necessarily limited to the light having the wavelength given in such a normal state. Then
The amount of light required for epiphytic brown algae is generally known, but the wavelength that promotes or inhibits growth is still unclear. In green plants on the ground, the reaction wavelength of the photosynthetic electron transport system is 660 to 680 nm, the wavelength of the high energy reaction system is 450 to 470 nm, and the wavelength of the phytochrome system is 66.
It is said that the main wavelength used by plants is 0 to 670 nm (eg, Ohm's magazine "Electronics", August 1996, p. 57), but the wavelength to which seaweeds that have continued to grow at a specific wavelength are such wavelengths. It is not clear whether the light requires a specific light or exhibits such a response to light of a specific wavelength. It has been reported that if photosynthesis is slightly promoted by chlorella or the like, it is reported that the growth is large, and the growth is clearly different from the growth of seaweed.
【0014】微細藻類であるクロレラの特定波長の光に
対する成長と、着生する褐藻類である海藻類の幼芽の成
長を比較して特徴的なことは、図2に示されるように海
藻類の幼芽に複数の特定波長の光、とりわけ可視光領域
の両端近傍の光を照射したとき(実線で示した特性曲線
A)著しい成長をもたらすことである。また地上の緑色
植物において光合成電子伝達系反応波長660〜680
nm、フィトクローム系波長660〜670nmといわ
れる赤色系の光を当てても、確かに成長は大きいが、こ
れのみでは2点鎖線で示した特性曲線Bの如くに著しく
顕著な成長にはいたらない。また自然の成長過程での波
長の光(青色系の代表として450nmのものを点線で
示す特性曲線C)でも単独では顕著な成長は示さなかっ
た。このように複数の特定な波長の光線、好ましくは可
視光領域の両端近傍における波長であり、例えば赤色と
青色の光を発光ダイオードによって得て、着生する褐藻
類である海藻類の幼芽に照射することによって、海から
離れていても、あるいは嵐がないかわりに太陽光の当ら
ない建造物の中にあっても、海藻類を育成することがで
きる。The characteristic of the comparison of the growth of chlorella, a microalgae, to light of a specific wavelength and the growth of germs of seaweeds, which are brown algae, is characteristic as shown in FIG. Irradiating a plurality of specific wavelengths of light, particularly light near both ends of the visible light region (characteristic curve A shown by a solid line) to the germ of the germ, results in significant growth. Also, in green plants on the ground, the reaction wavelength of the photosynthetic electron transfer system is 660-680.
Even if a red light having a wavelength of 660 to 670 nm, which is called a phytochrome-based wavelength, is applied, the growth is indeed large, but this alone does not result in a remarkable growth like the characteristic curve B indicated by the two-dot chain line. . Light of a wavelength in the natural growth process (characteristic curve C showing 450 nm as a representative of a blue color by a dotted line) alone did not show remarkable growth. As described above, a plurality of light beams having specific wavelengths, preferably wavelengths near both ends of the visible light region, for example, red and blue light are obtained by light emitting diodes, and germs of seaweeds, which are brown algae that grow, are obtained. Irradiation allows seaweed to grow even when away from the sea or in a building where there is no storm and no sunshine.
【0015】[0015]
【発明の効果】以上の如く、本発明により、ワカメ等を
季節や環境に大きく左右されることなく効率よく育成す
ることができた。As described above, according to the present invention, seaweed and the like can be efficiently grown without being largely influenced by the season and the environment.
【図面の簡単な説明】[Brief description of the drawings]
【図1】本発明実施例の養殖装置の断面図である。FIG. 1 is a sectional view of an aquaculture apparatus according to an embodiment of the present invention.
【図2】ワカメの養殖の成長記録図である。FIG. 2 is a graph showing the growth of seaweed culture.
1 基盤 11 樹脂製の枠 12 種糸 2 光源 3 培養液 Reference Signs List 1 base 11 resin frame 12 seed thread 2 light source 3 culture solution
Claims (2)
基盤の幼芽等に複数の特定波長の光を照射させる光源と
を具備したことを特徴とする海藻類の養殖装置。1. An apparatus for cultivating seaweeds, comprising: a base on which germs and the like of seaweed are adhered; and a light source for irradiating light of a plurality of specific wavelengths to the germs and the like of the base.
の特定波長の光を照射させて成長させることを特徴とす
る海藻類の養殖方法。2. A method for cultivating seaweeds, comprising irradiating the brown algae to be grown with light of a plurality of specific wavelengths of red and blue to grow.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8348671A JPH10178947A (en) | 1996-12-26 | 1996-12-26 | Device and method for farming seaweeds |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8348671A JPH10178947A (en) | 1996-12-26 | 1996-12-26 | Device and method for farming seaweeds |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10178947A true JPH10178947A (en) | 1998-07-07 |
Family
ID=18398580
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8348671A Pending JPH10178947A (en) | 1996-12-26 | 1996-12-26 | Device and method for farming seaweeds |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10178947A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0979603A1 (en) * | 1998-08-06 | 2000-02-16 | ZIMMERMANN, Ulrich | Procédé et installation pour la culture d' algues |
JP2008054530A (en) * | 2006-08-29 | 2008-03-13 | Hokkaido Univ | Method for cultivating perennial kelp |
JP2009022197A (en) * | 2007-07-19 | 2009-02-05 | Iwasaki Electric Co Ltd | Led lighting equipment, and aquafarming led lighting equipment |
JP2010187625A (en) * | 2009-02-20 | 2010-09-02 | Iwasaki Electric Co Ltd | Illuminator for cultivation |
CN104365468A (en) * | 2014-11-12 | 2015-02-25 | 江苏省海洋水产研究所 | Stereoscopic culturing system and method of porphyra yezoensis shell protonema |
JP2017212428A (en) * | 2016-05-25 | 2017-11-30 | 國立中正大學 | Light source module |
CN107616088A (en) * | 2017-10-26 | 2018-01-23 | 中国水产科学研究院黄海水产研究所 | The vertical device for raising seedlings of one main laver shell conchocelis and its application method |
JP2021045120A (en) * | 2019-09-12 | 2021-03-25 | 理研食品株式会社 | Germination method of upright nemacystus decipiens from discal nemacystus decipiens |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52107988A (en) * | 1976-02-26 | 1977-09-10 | Meiji Seika Co | Method of lave spore collection |
JPH08103167A (en) * | 1994-10-05 | 1996-04-23 | Kensei Okamoto | Light source for cultivating plant |
-
1996
- 1996-12-26 JP JP8348671A patent/JPH10178947A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52107988A (en) * | 1976-02-26 | 1977-09-10 | Meiji Seika Co | Method of lave spore collection |
JPH08103167A (en) * | 1994-10-05 | 1996-04-23 | Kensei Okamoto | Light source for cultivating plant |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0979603A1 (en) * | 1998-08-06 | 2000-02-16 | ZIMMERMANN, Ulrich | Procédé et installation pour la culture d' algues |
JP2008054530A (en) * | 2006-08-29 | 2008-03-13 | Hokkaido Univ | Method for cultivating perennial kelp |
JP2009022197A (en) * | 2007-07-19 | 2009-02-05 | Iwasaki Electric Co Ltd | Led lighting equipment, and aquafarming led lighting equipment |
JP2010187625A (en) * | 2009-02-20 | 2010-09-02 | Iwasaki Electric Co Ltd | Illuminator for cultivation |
CN104365468A (en) * | 2014-11-12 | 2015-02-25 | 江苏省海洋水产研究所 | Stereoscopic culturing system and method of porphyra yezoensis shell protonema |
JP2017212428A (en) * | 2016-05-25 | 2017-11-30 | 國立中正大學 | Light source module |
CN107616088A (en) * | 2017-10-26 | 2018-01-23 | 中国水产科学研究院黄海水产研究所 | The vertical device for raising seedlings of one main laver shell conchocelis and its application method |
JP2021045120A (en) * | 2019-09-12 | 2021-03-25 | 理研食品株式会社 | Germination method of upright nemacystus decipiens from discal nemacystus decipiens |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101333902B1 (en) | Converged device for an agriculture and aquaculture | |
JP5905589B2 (en) | Seaweed reverse culture method and apparatus | |
KR20070012327A (en) | Technology for cultivation of porphyra and other seaweeds in land-based sea water ponds | |
CN1985580A (en) | Fast tissue culture propagation process for azalea and camellia | |
KR102084308B1 (en) | Land aquaculture system for laver | |
KR101413324B1 (en) | The horizontal track-type tank for seaweed seedling production | |
JP4418855B2 (en) | Seed and seed production method and aquaculture method of red seaweed | |
KR20210017412A (en) | Aquaponics cultivation system based on Biofloc technology with compact filter | |
Wang et al. | Effect of blue light on indoor seedling culture of Saccharina japonica (Phaeophyta) | |
CN108668880A (en) | A kind of semi-submersible type sea grass breeding apparatus and breeding method | |
Pang et al. | Cultivation of the brown alga Hizikia fusiformis (Harvey) Okamura: stress resistance of artificially raised young seedlings revealed by chlorophyll fluorescence measurement | |
KR101594950B1 (en) | Mass culture and seeding apparatus for free-living gametophyte of Brown seaweed | |
JP4711807B2 (en) | Seaweed seedling production method | |
JPH10178947A (en) | Device and method for farming seaweeds | |
KR101710301B1 (en) | Method for red sea cucumber aquaculture using adhesive microalgae isolated from jeju lava seawater | |
WO2005074390A2 (en) | Method of producing young moss seedlings, method of producing moss mat and young moss seedlings | |
JP4262963B2 (en) | Comb culture method | |
Pang et al. | Cultivation of the intertidal brown alga Hizikia fusiformis (Harvey) Okamura: Mass production of zygote‐derived seedlings under commercial cultivation conditions, a case study experience | |
Xu et al. | Variation in morphology and PSII photosynthetic characteristics of M acrocystis pyrifera during development from gametophyte to juvenile sporophyte | |
CN1317944C (en) | Wheel leaf black algae engineering seedling fast breeding method | |
CN113632751B (en) | Jellyfish fry production method based on podocyst reproduction | |
JP2010110243A (en) | Method for producing seaweed seed and seedling | |
JP2001258389A (en) | Method for cultivating plant | |
CN1273007C (en) | Method for quickly reproducing engineering seedling of myriophyllum | |
KR102011245B1 (en) | A Street Tree Apparatus for Aquatic Plants. |