JPH0994446A - ガス分離膜の製造方法及びガス分離膜並びにガス分離装置 - Google Patents

ガス分離膜の製造方法及びガス分離膜並びにガス分離装置

Info

Publication number
JPH0994446A
JPH0994446A JP25429795A JP25429795A JPH0994446A JP H0994446 A JPH0994446 A JP H0994446A JP 25429795 A JP25429795 A JP 25429795A JP 25429795 A JP25429795 A JP 25429795A JP H0994446 A JPH0994446 A JP H0994446A
Authority
JP
Japan
Prior art keywords
membrane
gas
treatment
gas separation
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25429795A
Other languages
English (en)
Inventor
Naomi Moriya
直美 盛屋
Hiroshi Okamoto
宏 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP25429795A priority Critical patent/JPH0994446A/ja
Publication of JPH0994446A publication Critical patent/JPH0994446A/ja
Pending legal-status Critical Current

Links

Abstract

(57)【要約】 【課題】 ガラス状高分子膜が本来有している分離性能
を維持しながら、ガスの透過性能を改善することが可能
なガス分離膜の提供を目的としている。 【解決手段】 室温においてガラス状態にある高分子膜
に膨潤剤を収着させる収着処理と、該収着処理した高分
子膜を、室温より高くガラス転移温度より低い温度で加
熱する加熱処理と、該加熱処理した高分子膜を室温まで
冷却する冷却処理と、室温にて高分子膜中の膨潤剤を除
去する脱膨潤剤処理の各工程を具備するガス分離膜の製
造方法及びガス分離膜並びにガス分離装置である。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、空気などの混合ガ
ス中から酸素、窒素などの成分ガスを分離する高分子膜
からなるガス膜の製造方法に関し、より詳しくはガラス
状高分子膜の分離性能を低下させることなく、ガス透過
性能を向上させたガラス状高分子膜の製造方法に関す
る。
【0002】
【従来の技術】従来、空気のような混合ガスから各成分
ガスを分離する方法としては、深冷分離技術や吸着分離
技術が一般に利用されていた。近年、空気分離技術の分
野において、低消費電力や装置構成の簡略さなどの観点
から、ガス透過膜を利用したガス分離技術が注目されて
いる。ガス透過膜を用いたガス分離法は、ガス分子が高
分子膜を透過する際に、ガス種によって透過性が異なる
という選択的透過性を利用している。空気分離膜として
の必要な特性は、高い酸素透過係数、高い分離係数を兼
ね備えていることであり、分離性、製膜性、膜強度など
が優れていることから、主にガラス状高分子膜が分離膜
として使用されている。
【0003】ここで、ガラス状高分子膜について説明す
る。高分子は、一般に、ガラス転移温度(Tg)をも
ち、ガラス転移温度より高い温度では、ミクロブラウン
運動によりゴム状弾性を示すが、ガラス転移温度より低
い温度では、ミクロブラウン運動が止まり凍結(固態)
状態となり、これをガラス状態と称す。そして、ガラス
転移温度以上での高分子の状態をゴム状態と称する。高
分子膜の選択的透過性を利用して混合ガスを分離しよう
とする際に、一般に高分子がゴム状態であると、ガスの
透過係数が高く透過速度は大きいが、ガスの分離係数は
小さく、分離性が悪い。他方、高分子がガラス状態であ
ると、ガスの透過係数は小さいが、分離係数は大きく、
分離性能が高い。
【0004】ここで、透過係数及び分離係数の算出法を
示す。
【0005】そして、この種のガス分離膜においては、
ガラス状態での高分子膜の高い分離性能を維持しつつ、
ガスの透過性を高めるための工夫がなされている。例え
ば、特公平6−47061号公報には、ガラス転移温度
(Tg)が高く、通常は室温でガラス状態であるポリス
チレンやニトロセルロースを一旦、ガラス転移温度以上
の温度に加熱してゴム状態として適当な支持体上に展延
させた後、液体窒素によって急冷してゴム状態を固定さ
せる方法が開示されている。また、米国特許第4755
192号明細書には、ガラス状態の高分子を二酸化炭素
やアンモニアなどの極性ガスで収着処理することによっ
て、ガスの透過係数を改善する技術が開示されている。
【0006】
【発明が解決しようとする課題】しかしながら、上述し
た従来法によるガス透過性能の改善方法では、高分子膜
をガラス転移温度以上の高温に加熱する加熱処理や、液
体窒素等の極低温下での急冷処理等が必要であり、製造
に手間がかかり、処理時間が長いなど種々の不都合な点
がある。また、上記処理方法では、分離性能と透過性能
の両方が改善されることがなく、より高性能なガス分離
膜の提供が求められている。また上記処理方法により製
造された分離膜は、大気圧下ではそのガス透過性能を充
分に維持することができず、大気圧下においても安定な
ガス分離膜の提供が求められている。
【0007】本発明は上記事情に鑑みてなされたもので
あり、ガラス状高分子膜が本来有している分離性能を維
持しながら、ガスの透過性能を改善することが可能なガ
ス分離膜の製造方法と改善されたガス分離膜並びにガス
分離装置の提供を目的としている。
【0008】
【課題を解決するための手段】本発明の請求項1に係る
発明は、室温においてガラス状態にある高分子膜に膨潤
剤を収着させる収着処理と、該収着処理した高分子膜
を、室温より高くガラス転移温度より低い温度で加熱す
る加熱処理と、該加熱処理した高分子膜を室温まで冷却
する冷却処理と、室温にて高分子膜中の膨潤剤を除去す
る脱膨潤剤処理とを順次行うことを特徴とするガス分離
膜の製造方法である。請求項2に係る発明は、室温にお
いてガラス状態にある高分子膜に膨潤剤を収着させる収
着処理と、該収着処理の間に高分子膜を、室温より高く
ガラス転移温度より低い温度で加熱する加熱処理と、該
加熱処理した高分子膜を室温まで冷却する冷却処理と、
室温にて高分子膜中の膨潤剤を除去する脱膨潤剤処理と
を順次行うことを特徴とするガス分離膜の製造方法であ
る。請求項3に係る発明は前記高分子膜がポリカーボネ
ート膜であり、前記加熱処理を40〜150℃の温度範
囲で行うことを特徴とする請求項1または2記載のガス
分離膜の製造方法である。請求項4に係る発明は、前記
高分子膜がニトロセルロース膜であり、前記加熱処理を
30〜50℃の温度範囲で行うことを特徴とする請求項
1または2記載のガス分離膜の製造方法である。請求項
5に係る発明は、前記高分子膜がポリイミド膜であり、
前記加熱処理を150〜250℃の温度範囲で行うこと
を特徴とする請求項1または2記載のガス分離膜の製造
方法である。請求項6に係る発明は、請求項3記載の方
法により製造されてなり、出発材料とするポリカーボネ
ート膜に比べ、酸素透過係数が40〜70%高く、かつ
分離係数が同等〜15%低いガス透過性能を有すること
を特徴とするガス分離膜である。請求項7に係る発明
は、請求項4記載の方法により製造されてなり、出発材
料とするニトロセルロース膜に比べ、酸素透過係数が2
0〜40%高く、かつ分離係数が同等〜15%低いガス
透過性能を有することを特徴とするガス分離膜である。
請求項8に係る発明は、請求項5記載の方法によって製
造されてなり、出発材料とするポリイミド膜に比べ、酸
素透過係数が10〜20%高く、かつ分離係数が同等〜
10%低いガス透過性能を有することを特徴とするガス
分離膜である。請求項9に係る発明は、ガス分離膜を備
え、該ガス分離膜に空気などの混合ガスを透過させ、該
ガス分離膜を透過した混合ガス中の成分ガスを分離する
ガス分離装置であり、請求項6から8のいずれかに記載
のガス分離膜を備えてなるガス分離装置である。
【0009】
【発明の実施の形態】本発明の分離膜の製造方法は、 室温においてガラス状態にある高分子膜に膨潤剤を収
着させる収着処理、 該収着処理した高分子膜を、室温より高くガラス転移
温度より低い温度で加熱する加熱処理、 該加熱処理した高分子膜を室温まで冷却する冷却処
理、 室温にて高分子膜中の膨潤剤を除去する脱膨潤剤処
理、 の各工程を具備している。前記〜の各工程は順次行
っても良いし、収着処理と加熱処理とを同時に行っ
ても良い。
【0010】本発明の製造方法において、「室温」と
は、5〜35℃(JIS K 0050の定義による)の
範囲であり、好ましくは15〜30℃の範囲である。た
だし、後述する実施例においては、実験を行った実際の
温度である23〜26℃を「室温」としている。
【0011】本発明の製造方法において使用される高分
子としては、ガラス転移温度が50℃以上、好ましくは
50〜400℃程度のものが好適に使用され、例えば、
ポリカーボネート、ニトロセルロース、ポリイミド、ポ
リスルホン、ポリエーテルスルホン、ポリエステル、ポ
リアミド、ポリアミドイミド、ポリフェニレンスルフィ
ド、ポリメチルメタクリレート、フッ素樹脂、ポリ塩化
ビニル、ポリ塩化ビニリデンなどが挙げられる。またこ
れらの高分子は、それぞれ単独で、或いはこれら高分子
のコポリマーやポリマーブレンドとしても用いることが
できる。
【0012】本発明の製造方法において使用される膨潤
剤としては、使用する高分子材料に対して化学的に安定
であり、沸点(減圧下での沸点でも良い)が−100℃
〜25℃程度の温度範囲のものが好ましい。膨潤剤の沸
点が高い程収着能力は高くなるが、膨潤剤の沸点が高い
と脱膨潤剤処理が困難となる。好適な膨潤剤を例示すれ
ば、二酸化炭素、一酸化炭素、エチレン、エタン、プロ
パン、ハロゲン化炭素またはハロゲン化炭化水素、一酸
化二窒素、二酸化硫黄などであり、特に好ましくは二酸
化炭素である。
【0013】次に本発明の製造方法における各々の処理
について説明する。 (収着処理)所望の厚さの高分子膜に二酸化炭素などの
膨潤剤を接触させ、高分子膜中に膨潤剤を吸収・吸着
(収着)させる。この時、膨潤剤はガス状または液状で
あり、好ましくは大気圧以上に加圧した状態で高分子膜
に接触させて収着を行う。ガラス状高分子膜の高分子鎖
間の隙間に二酸化炭素などの膨潤剤を入り込ませること
で、高分子鎖間の間隙を広げ、膨潤剤で室温或いは高分
子膜のガラス転移温度より低い温度で収着処理を行うこ
とで高分子鎖間の熱運動を活性化させるのと同時に、高
分子鎖間の熱運動が不必要に広がることが防止でき、高
分子鎖間の間隙の大きさを均一に広げることができる。
このような収着処理により、高分子膜の分離性能を低下
させることなく、透過性能の向上が可能となる。
【0014】(加熱処理)室温ではガラス状高分子の高
分子鎖運動は停止していて、実際には凝集状態を容易に
変えることはできない。そこで、適度な熱エネルギーを
付与することによって高分子鎖運動が容易となるので、
収着処理時の加熱処理が必要となる。従来法において加
熱処理は、使用する高分子膜のガラス転移温度以上に加
熱していたが、この場合、高分子鎖運動は激しくなり、
高分子鎖間の大きさは大小様々となって不均一な隙間が
形成される。このような不均一な凝集状態の高分子膜で
は、分子ふるいの機能が十分に得られなくなり、そのよ
うな高分子膜によるガスの分離係数は小さくなる。本発
明では、高分子膜を、室温より高くガラス転移温度より
低い所定温度で加熱処理を行うことにより、高分子鎖間
の間隙が均一な凝集状態の高分子膜を得ることができ
る。この加熱処理温度については、使用する高分子材料
毎に好適な加熱温度範囲が存在し、その温度範囲で加熱
処理することが望ましい。例えば、ポリカーボネートを
用いる場合の加熱処理温度は、40〜150℃、好まし
くは70〜120℃、最も好ましくは80〜100℃と
する。ニトロセルロースを用いる場合の加熱処理温度
は、30〜50℃、最も好ましくは35〜45℃とす
る。ポリイミドを用いる場合の加熱処理温度は、150
〜250℃、好ましくは170〜230℃、最も好まし
くは180〜200℃とする。
【0015】(冷却処理)前記加熱処理により高分子膜
の高分子鎖間に適度な運動状態を生じさせた後、高分子
膜を室温まで冷却する。この冷却処理を施すことで、前
記した高分子鎖の運動を凍結し、二酸化炭素などの膨潤
剤が高分子鎖間に埋め込まれた状態の高分子膜を得るこ
とができる。このような冷却処理を施すことで、室温下
でも収着、加熱処理時の凝集状態を維持することが可能
となる。この冷却処理において、加熱処理されていた高
分子膜を室温まで冷却する際の冷却速度は5℃/分以
上、好ましくは10℃/分程度の冷却速度で冷却を行
う。この冷却速度が5℃/分よりも遅いと、高分子膜内
の高分子鎖の熱運動が徐々に停止することで高分子鎖が
密な状態(充填密度が高い状態)となり、得られるガス
分離膜のガス透過性能が小さくなる。一方、この冷却処
理においては、液体窒素などの極低温の冷媒を用いた急
冷は必要でない。
【0016】(脱膨潤剤処理)高分子鎖の凝集状態を冷
却処理により凍結した後、その高分子膜を室温で真空雰
囲気中に置くことにより、高分子鎖の凝集状態を変化さ
せることなく、膜から膨潤剤を除去することができ、ガ
スの通路となる空孔が形成される。このように形成され
た空孔の大きさは、前記加熱処理において記した通り均
一となる。なお、膨潤剤が分離すべきガスと同じである
場合、例えば膨潤剤として二酸化炭素を用い、製造した
分離膜で混合ガス中から二酸化炭素を分離する場合にあ
っては、この脱膨潤剤処理を省いても良い。即ち、冷却
処理を終えた分離膜で直ちにガス分離操作を行い、膨潤
剤と同じガスの分離を行うことで、脱膨潤剤処理を行う
ことができる。
【0017】以上のような処理を施して形成されたガス
分離膜は、出発材料とする高分子膜に比べて、分離係数
が同等か或いは若干低下するものの、ガス透過性能が大
幅に上昇したガス分離性能を有するものとなる。また、
この方法によれば、室温より高くガラス転移温度より低
い温度での加熱処理や10℃/分程度の速度で冷却処理
を施すことで、収着処理時の高分子鎖の凝集状態を凍結
することができるので、室温でも高分子鎖間の緩和が起
こらず、製造されたガス分離膜は、その透過性能が長期
間維持できる安定性の優れたものとなる。
【0018】次に、図1を参照して本発明のガス高分子
膜の製造方法の一例を説明する。図1は、ガス分離用高
分子膜の製造方法を実施するための製造装置を示すもの
であり、この製造装置は、内部を真空雰囲気及び収着処
理時の加圧雰囲気に維持し得る耐圧構造を有する処理容
器1と、膨潤剤として用いる二酸化炭素のボンベ2と、
真空ポンプ3と、処理容器1と二酸化炭素ボンベ2及び
真空ポンプ3を接続するように配設された管路4とを備
えて構成されている。また処理容器1には、処理容器内
に収容された高分子膜10を室温より高く、ガラス転移
温度より低い所定の温度に加熱するための加熱手段と、
加熱された高分子膜10を室温まで10℃/分程度の速
度で冷却するための冷却手段とを備えた温度調節装置5
が付設されている。この加熱手段及び冷却手段として
は、電気ヒータ、冷却水流通型冷却器、ペルティエ素子
を備えた電子冷却/加熱装置などの各種の加熱、加熱装
置を選択して使用することができる。また管路4は、管
路4の、ボンベ2と真空ポンプ3の接続端近傍に、それ
ぞれ弁6,7を介在した構成になっている。なお、管路
4と弁6,7は、ここに図示された例に限定されること
なく、種々の変更が可能である。
【0019】この製造装置を用いて本発明方法を実施す
るには、まず、出発材料となる高分子膜10を用意し、
これを処理容器1内に収容し、処理容器1を密閉する。
高分子膜10は、所定の厚さ、例えば1〜100μm厚
のフィルム状とし、適宜な形状に切断した膜や、管状や
中空糸状など所望の形状に成形した材料を使用して良
い。次に、真空ポンプ3を駆動させ、弁7を開けて処理
容器内を一旦真空排気し、その後、弁7を閉じ、弁6を
開けて処理容器1内に二酸化炭素を所定の圧力で導入
し、高分子膜10に加圧二酸化炭素接触させて収着処理
を施す。膨潤剤として二酸化炭素を用いる場合の圧力
は、10〜70kgf/cm2、好ましくは30〜50kgf/cm2
程度とする。次に、温度調節装置5により処理容器1と
内部の高分子膜10を、室温(15〜30℃)より高
く、材料とした高分子のガラス転移温度より低い所定温
度に加熱する。この加熱は上記収着処理と同時に開始し
ても良いし、収着処理を室温で暫く継続した後に加熱を
開始しても良い。この収着処理及び加熱処理の継続時間
は、数時間〜数日程度、好ましくは0.5〜3日間程度
である。次に、温度調節装置5により処理容器1と内部
の高分子膜10を室温(15〜30℃)まで、約10℃
/分の冷却速度で冷却する。この冷却後或いは冷却と同
時に、管路4または処理容器1のいずれかに設けられた
開放弁8を開放し、処理容器1内の二酸化炭素を排出し
て処理容器1内を常圧とする。続いて、弁8を閉じ、真
空ポンプ3を駆動させて弁7を開けることによって処理
容器1内を真空排気し、高分子膜10に収着された二酸
化炭素を除去する脱膨潤剤処理を行う。この脱膨潤剤処
理は、室温にて実施して良く、真空度10Torr以下、好
ましくは1Torr以下で真空排気するのが望ましい。この
脱膨潤剤処理の継続時間は、数時間〜数日間、好ましく
は0.5〜2日程度とする。脱膨潤剤処理は真空デシケ
ータなど他の容器にて行っても良い。
【0020】脱膨潤剤処理の後、処理容器1を常圧に戻
して開封し、形成されたガス分離膜を取り出す。なお、
この製造において、高分子膜10に代えて、高分子膜1
0や中空糸を予め組み込んだガス分離装置のモジュール
等を用いて実施しても良い。
【0021】上記のように製造された本発明に係るガス
分離膜は、出発材料とする高分子膜に比べ、分離係数が
同等ないし若干低下するものの、ガス透過係数が大幅に
向上されたガス分離特性を有する。例えば、ポリカーボ
ネート膜を出発材料とした場合、得られるガス分離膜
は、出発材料とするポリカーボネート膜に比べ、酸素透
過係数が40〜70%高く、かつ分離係数が同等〜15
%低いガス透過性能を有する。また、ニトロセルロース
膜を出発材料とした場合、得られるガス分離膜は、出発
材料とするニトロセルロース膜に比べ、酸素透過係数が
20〜40%高く、かつ分離係数が同等〜15%低いガ
ス透過性能を有する。また、ポリイミド膜を出発材料と
した場合、得られるガス分離膜は、出発材料とするポリ
イミド膜に比べ、酸素透過係数が10〜20%高く、か
つ分離係数が同等〜10%低いガス透過性能を有するも
のとなる。
【0022】本発明に係るガス分離膜は、上述したよう
に優れたガス分離性能を備えたものであり、空気などの
種々の混合ガスや未精製ガス中から特定の成分ガスを分
離するガス分離膜として適用が可能である。例えばこの
ガス分離膜は、空気からの酸素/窒素の分離、即ち酸素
富化により、医療用酸素富化空気、燃焼用酸素富化空気
の製造、或いは高酸素透過性コンタクトレンズへの適用
が可能であり、窒素富化では、半導体製造の雰囲気ガ
ス、防爆用雰囲気ガスの製造への適用が可能である。さ
らにメタンガス等の燃料ガス中の二酸化炭素除去用、空
気や窒素ガス中の二酸化炭素除去用(地球温暖化抑制の
ための二酸化炭素排出規制用)、天然ガスや石油精製工
程のオフガス等の燃料ガス中の水素回収用、或いは天然
ガスからのヘリウムガスの回収などの種々のガス分離関
連技術に適用することができる。
【0023】このガス分離膜は、フィルム状である場合
には通気性の多孔質板や細かい金属網などからなる通気
性支持板上に固定し、管状あるいは中空糸状である場合
には、適当な長さに揃えて両端部を固定し、ガス分離モ
ジュールとしてガス分離装置に適用される。図2は、本
発明に係るガス分離装置の一例として、本発明に係るガ
ス分離膜(中空糸状ガス分離膜)を備えた空気分離装置
を示すものである。この空気分離装置は、空気供給口1
2、酸素取出口13及び窒素取出口14を有する略中空
円筒状の外装体11内に、多数本の中空糸状ガス分離膜
20(以下、中空糸という)を束ね、その両端部を固定
具で固定してなるガス分離モジュールを挿入配置した構
成になっている。
【0024】この空気分離装置による空気分離操作は、
コンプレッサーなどの加圧手段によって適宜に加圧した
原料空気を空気供給口12から供給することにより行わ
れる。供給された空気はガス分離モジュールの多数本の
中空糸20内を通過し、この空気中の酸素が選択的に中
空糸20の膜壁を透過して中空糸20の外部に達する。
中空糸20の膜壁を透過しなかった窒素は、中空糸20
内を素通りし、空気供給口12の反対側の窒素取出口1
4に達し、窒素富化空気として取り出される。中空糸2
0の膜壁を透過した酸素は、酸素取出口13に達し、酸
素富化空気として取り出される。この空気分離装置によ
れば、特に加熱や冷却を必要とせず、低コストで酸素富
化空気および窒素富化空気を生産することが可能であ
る。なお、上述した空気分離装置では、中空糸状ガス分
離膜20の内部に原料ガス(空気)を供給し、酸素を膜
外に分離する構成としたが、中空糸状ガス分離膜20の
外部に原料ガス(空気)を供給し、酸素を膜内に分離す
る構成としても良い。また、中空糸状ガス分離膜20に
代えて、フィルム状や管状のガス分離膜を使用して空気
分離装置を構成しても良い。
【0025】
【実施例】以下、本発明について実施例により更に詳細
に説明する。本実施例1〜3における気体透過性能の評
価は、日本工業規格「プラスチックフィルム及びシート
の気体透過度試験方法」K−7126(1987)に準
じて行った。また、以下の実験例1〜23の各実験にお
いては、内容積20ml程度の小型の耐圧ステンレス容
器を処理容器とし、この処理容器内に高分子膜の小片を
入れ、二酸化炭素を加圧封入し、この処理容器を恒温槽
内に入れて加熱することによって加熱処理を行い、この
処理容器を氷冷することで冷却処理を行うようにして、
ガス分離膜の製造を実施した。
【0026】実施例1:ポリカーボネートからなるガス
分離膜の製造 [対照品1]ポリカーボネート(Scientific Polymer P
roducts社製、CAT#035)を5重量%となるように、ジク
ロロメタン(関東化学社製)に溶解し、高分子溶液を調
製した。これを水平なガラス板に塗布し、室温、真空下
で一晩以上乾燥させて厚さ60〜70μmの高分子膜を
得た。この膜の酸素透過係数PO2=0.95[B]、
酸素ガスと窒素ガスとの分離係数(PO2/PN2)α=
6.0であった。なお、このポリカーボネート膜のガラ
ス転移温度は約200℃である。
【0027】[実験例1]対照品1のポリカーボネート
膜を約20mm×20mm角の大きさに切り、これを処
理容器に入れ、該処理容器内を10Torr以下に真空排気
した後、膨潤剤として約50kgf/cm2の二酸化炭素を導
入した。その状態のまま、室温で3〜5日間放置し、二
酸化炭素を膜に収着させた(収着処理)。二酸化炭素雰
囲気下での収着処理を施したポリカーボネート膜が収容
された処理容器を恒温槽に入れ、処理容器内の温度が7
0℃〜80℃の範囲内で加熱し、48時間の加熱処理を
施した(加熱処理)。加熱処理終了後、処理容器を氷浴
に浸漬させて、室温になるまで約10℃/分の速度で冷
却処理すると同時に、処理容器内の二酸化炭素を放出し
て処理容器内を常圧とした(冷却処理)。更に、処理容
器を真空ポンプに接続して真空度約1Torrに真空排気
し、24時間維持して膜から膨潤剤である二酸化炭素を
除去した(脱膨潤剤処理)。上記処理を施して得られた
ガス分離膜の気体透過試験を行ったところ、分離係数α
=5.1、酸素透過係数PO2=1.39[B]であっ
た。得られた膜の分離係数は対照品1の膜と比較して約
15%低下したが、酸素透過係数は約46%の性能向上
を示した。また、得られたガス分離膜のガラス転移温度
は185℃であり、対照品1(ガラス転移温度200
℃)よりも低下していた。これは上記各処理によって、
ポリカーボネート膜中の高分子鎖間が広げられ、高分子
鎖が運動し易くなっているためと考えられる。
【0028】[実験例2]対照品1のポリカーボネート
膜を約20mm×20mm角の大きさに切り、これを処
理容器に入れて10Torr以下に真空排気した後、膨潤剤
として約50kgf/cm2の二酸化炭素を導入すると同時に
加熱処理を開始し、70℃〜80℃の範囲で24時間加
熱した。冷却処理、脱膨潤剤処理は、実験例1と同様の
手順にて行った。その結果、得られたガス分離膜の性能
は、酸素透過係数PO2=1.53[B]、分離係数α
=5.2となった。この結果を対照品と比較すると、酸
素透過係数は61%上昇し、分離係数については13%
の低下に留まった。この結果より、収着処理後に加熱処
理を開始しても、収着処理と加熱処理を同時に開始して
も、得られる膜の性能向上を達成できることがわかる。
【0029】[実験例3]収着処理圧力依存性 収着処理時の二酸化炭素の圧力を10kgf/cm2とした以
外は、実験例2と同様の方法にてガス分離膜を作製し
た。
【0030】[実験例4]収着処理圧力依存性 収着処理時の二酸化炭素の圧力を30kgf/cm2とした以
外は、実験例2と同様の方法にてガス分離膜を作製し
た。実験例2、3、4で得られた膜の気体透過性試験の
結果を表1に示す。
【0031】
【表1】
【0032】表1の結果より、収着処理圧力が高いほど
酸素透過係数の性能をより向上できることが明らかとな
った。
【0033】・加熱処理温度依存性 [実験例5]加熱処理温度を40〜50℃の範囲とした
こと以外は、実験例1と同様の手順でガス分離膜の作製
を行った。
【0034】[実験例6]加熱処理温度を90〜120
℃の範囲としたこと以外は、実験例1と同様の手順でガ
ス分離膜の作製を行った。
【0035】[実験例7]加熱処理温度を120〜15
0℃の範囲としたこと以外は、実験例1と同様の手順で
ガス分離膜の作製を行った。
【0036】[実験例8]対照品1のポリカーボネート
膜を約20mm×20mm角の大きさに切り、これを処
理容器に入れて10Torr以下に真空排気した後、膨潤剤
として約50kgf/cm2の二酸化炭素を導入し、5日間、
室温で収着処理を施した。本実験では、加熱処理を行わ
ず、室温で収着処理を行ったので冷却処理が不必要とな
り、収着処理終了後、処理容器を真空排気して室温で脱
膨潤剤処理を行った。実験例1、5、6、7、8で得ら
れた膜の気体透過性試験の結果を表2に示す。
【0037】
【表2】
【0038】上記実験例1、5、6、7、8および対照
品1の結果から加熱処理温度は、ガラス転移温度より低
い温度による加熱処理でも、酸素透過性能を向上させる
ことが可能であることが分かる。また、実験例8の結果
から、加熱処理を施すことにより、膜への膨潤剤の収着
処理効果が高められることが明らかとなった。これは、
高温では収着量が低下するので、どちらかというと処理
能力は低下する。しかし、高分子鎖の運動が容易になる
ため、凝集状態が変化し易くなり、収着処理効果が大き
くなると考える。
【0039】・加熱処理時間依存性 [実験例9]対照品1のポリカーボネート膜を収容した
処理容器に約50kgf/cm2の二酸化炭素を導入すると同
時に、70℃〜80℃で加熱処理を開始し、3日間収着
処理と加熱処理を行った。冷却処理と脱膨潤剤処理につ
いては、実験例2と同様に行いガス分離膜を作製した。
【0040】[実験例10]対照品1のポリカーボネー
ト膜を収容した処理容器に約50kgf/cm2の二酸化炭素
を導入すると同時に、70℃〜80℃で加熱処理を開始
し、7日間収着処理と加熱処理を行った。冷却処理と脱
膨潤剤処理については、実験例2と同様に行いガス分離
膜を作製した。実験例2、9、10で得られた膜の気体
透過性試験の結果を表3に示す。表3の実験結果より、
加熱処理時間の長さは、得られるガス分離膜の透過性能
には大きな影響を及ぼさないことが明らかとなり、加熱
処理の継続時間は実験例2の24時間で充分であること
がわかる。
【0041】
【表3】
【0042】・ガス分離膜の性能維持試験 [実験例11]実験例1で得られたポリカーボネートか
らなるガス分離膜を大気圧下、室温で50日間放置した
後、気体透過性能試験を行ったところ、酸素透過係数P
2=1.31[B]、分離係数α=5.4という結果
であり、対照品1より酸素透過係数は38%大きく、分
離係数については10%の低下に留まった。この実験例
11の結果より、本発明の処理を施して得られたガス分
離膜は加圧下に保持しなくても長期間優れたガス分離性
能を維持できることが明らかとなった。
【0043】実施例2:ニトロセルロースからなるガス
分離膜の製造 [対照品2]ニトロセルロース(Scientific Polymer P
roducts社製、CAT#714)を5重量%となるように、テト
ラヒドロフラン(関東化学社製)に溶解し、高分子溶液
を調製した。これを水平なガラス板に塗布し、室温、真
空下で一晩以上乾燥させて厚さ45〜55μmの高分子
膜を得た。この膜の酸素透過係数PO2=0.22
[B]、酸素ガスと窒素ガスとの分離係数(PO2/P
2)α=6.2であった。なお、このニトロセルロー
ス膜のガラス転移温度は約53℃である。
【0044】[実験例12]対照品2のニトロセルロー
ス膜を約20mm×20mm角の大きさに切り、処理容
器に収容し、10Torr以下に真空排気した後、膨潤剤と
して約50kgf/cm2の二酸化炭素を導入すると同時に、
加熱処理を開始し、30℃〜35℃の範囲で24時間加
熱した。加熱処理終了後、処理容器を氷浴に浸漬し、室
温になるまで約10℃/分の速度で冷却処理すると同時
に、処理容器内の二酸化炭素を常圧になるまで放出し
た。更に、処理容器内を真空度約1Torrで24時間、室
温下で真空排気し、膜から膨潤剤を除去する脱膨潤剤処
理を施した。上記処理を施した膜の気体透過性能試験を
行ったところ、分離係数α=5.7、酸素透過係数PO
2=0.29[B]の膜が得られた。この分離係数につ
いて対照品2と比較すると8%の低下となるが、酸素透
過係数は32%上昇した。
【0045】・加熱処理温度依存性 ニトロセルロース膜はガラス転移温度が低いため加熱処
理温度を各種に設定しての実験は行わず、加熱処理を行
ったもの(実験例12)と、行わないもの(実験例1
3)とを比較した。 [実験例13]対照品2のニトロセルロース膜を20m
m×20mm角の大きさに切り、それを処理容器に入れ
て真空排気後、約50kgf/cm2の圧力の二酸化炭素で、
24時間室温で収着処理を施した。本実験では、加熱処
理を行わず、室温で収着処理を行ったので冷却処理が不
必要となり、収着処理終了後に脱膨潤剤処理を行った。
実験例12、13で得られた膜の気体透過性能試験の結
果を表4に示す。
【0046】
【表4】
【0047】上記実験例12、13の結果から、ニトロ
セルロースのガラス転移温度よりも低い温度での加熱処
理によって、膜の酸素透過性能が向上することはわか
る。また、ガラス転移温度がニトロセルロース膜のよう
に低いものについては、加熱処理を施さなくても室温に
おいて収着処理効果があることがわかる。
【0048】・加熱処理時間依存性 [実験例14]対照品2のニトロセルロース膜を20m
m×20mm角の大きさに切り、それを処理容器に入れ
て真空排気後、約50kgf/cm2の圧力の二酸化炭素を導
入すると同時に、30〜35℃で加熱処理を開始し、3
日間収着処理と加熱処理を行った。冷却処理と脱膨潤剤
処理については実験例12と同様に行ってガス分離膜を
作製した。
【0049】[実験例15]対照品2のニトロセルロー
ス膜を20mm×20mm角の大きさに切り、それを処
理容器に入れて真空排気後、約50kgf/cm2の圧力の二
酸化炭素を導入すると同時に、30〜35℃で加熱処理
を開始し、7日間収着処理と加熱処理を行った。冷却処
理と脱膨潤剤処理については実験例12と同様に行って
ガス分離膜を作製した。
【0050】実験例12、14、15で得られた膜の気
体透過性能試験の結果を表5に示す。表5の結果より、
加熱処理時間の長さはガス分離膜の透過性能には大きく
影響を及ぼさないことが明らかとなり、実験例12での
24時間の加熱処理で充分であることがわかる。
【0051】
【表5】
【0052】・ガス分離膜の性能維持試験 [実験例16]実験例12で作製したニトロセルロース
のガス分離膜を大気圧下、室温で50日間放置後、気体
透過性能試験を行ったところ、酸素透過係数PO2
0.26[B]、分離係数α=6.0という結果であ
り、対照品2より酸素透過係数は19%大きく、分離係
数についても3%の低下に留まった。
【0053】実施例3:ポリイミドからなるガス分離膜
の製造 [対照品3]本実施例で使用するポリイミド膜は、東レ
・デュポン社製のカプトン100−H、膜厚26μmを
使用した。この膜の酸素透過係数PO2=0.064
[B]、酸素ガスと窒素ガスとの分離係数(PO2/P
2)α=10であった。なお、このポリイミド膜のガ
ラス転移温度は約400℃である。
【0054】[実験例17]対照品3のポリイミド膜を
約20mm×20mmの大きさに切り、処理容器に入
れ、容器内を10Torr以下に真空排気した後、膨潤剤と
して約50kgf/cm2の二酸化炭素を導入すると同時に加
熱処理を開始し、180℃〜200℃の範囲で24時間
加熱した。加熱処理終了後、処理容器を氷浴に浸漬し
て、室温になるまで約10℃/分の速度で冷却処理し、
同時に処理容器内の二酸化炭素を排気して容器内を常圧
とした。更に、処理容器内を真空度1Torrとして24時
間真空排気し、膜から膨潤剤(二酸化炭素)を除去する
脱膨潤剤処理を行った。
【0055】上記処理を施した膜の気体透過試験を行っ
たところ、分離係数α=9.1、酸素透過係数PO2
7.5×10-2[B]の膜が得られた。この分離係数は
対照品3と比較すると9%の低下、酸素透過係数は17
%の性能向上となった。
【0056】・加熱処理温度依存性 [実験例18]加熱処理なし 対照品3のポリイミド膜を約20mm×20mmの大き
さに切り、処理容器に入れ、容器内を10Torr以下に真
空排気した後、膨潤剤として約50kgf/cm2の二酸化炭
素を導入し、24時間室温で収着処理を施した。本実験
では、加熱処理を行わず、室温で収着処理を行ったので
冷却処理が不必要となり、収着処理終了後、脱膨潤剤処
理を行った。
【0057】[実験例19]加熱処理温度を70〜80
℃の範囲としたこと以外は、実験例17と同様の手順に
よりガス分離膜を作製した。
【0058】[実験例20]加熱処理温度を160℃〜
180℃の範囲としたこと以外は、実験例17と同様の
手順でガス分離膜の作製を行った。実験例17、18、
19、20で得られたガス分離膜の気体透過性試験の結
果を表6に示す。
【0059】
【表6】
【0060】上記実験例17、18、19、20の結果
から、加熱処理温度は、ガラス転移温度より低い温度の
加熱処理によって、酸素透過性能を向上させることが可
能なことがわかると同時に、よりガラス転移温度に近い
温度による処理が有効なことが明らかとなった。
【0061】・加熱処理時間依存性 [実験例21]対照品3のポリイミド膜を約20mm×
20mmの大きさに切り、処理容器に入れ、容器内を1
0Torr以下に真空排気した後、膨潤剤として約50kgf/
cm2の二酸化炭素を導入すると同時に加熱処理を開始
し、3日間収着処理と加熱処理を行った。冷却処理と脱
膨潤剤処理については、実験例17と同様に行い、ガス
分離膜を作製した。
【0062】[実験例22]対照品3のポリイミド膜を
約20mm×20mmの大きさに切り、処理容器に入
れ、容器内を10Torr以下に真空排気した後、膨潤剤と
して約50kgf/cm2の二酸化炭素を導入すると同時に加
熱処理を開始し、7日間収着処理と加熱処理を行った。
冷却処理と脱膨潤剤処理については、実験例17と同様
に行い、ガス分離膜を作製した。実験例17、21、2
2で得られたガス分離膜の気体透過性試験の結果を表7
にまとめた。この実験結果より、加熱処理時間の長さは
ガス分離膜の透過性能には、大きく影響しないことが明
らかとなり、実験例17のように24時間の加熱処理で
充分であることがわかる。
【0063】
【表7】
【0064】[実験例23];性能維持試験 実験例17で得られたポリイミドの分離膜を大気圧下、
室温で50日間放置後、気体透過性能試験を行ったとこ
ろ、酸素透過係数PO2=7.2×10-2[B]、分離
係数α=9.2という結果であり、対照品3に比べ酸素
透過係数は13%大きく、分離係数は8%の低下に留ま
っていた。従って、本発明により製造されたポリイミド
膜は大気圧下で保持しておいても、気体透過性能が対照
品より劣ることはない。
【0065】
【発明の効果】以上説明したように、本発明のガス分離
膜の製造方法によれば、分離性、製膜性、膜強度に優れ
ているガラス状高分子膜において、分離性能を著しく低
下させることなく、透過性能を大幅に向上させることが
でき、優れたガス分離特性を有するガス分離膜を製造す
ることができる。また、本発明方法により得られるガス
分離膜は、大気圧以下の圧力下でも長期間透過性能を大
きく低下させることなく維持することができ、安定性に
優れたガス分離膜を製造することができる。また本発明
のガス分離膜の製造方法によれば、従来より短時間で、
ガラス状高分子膜の気体選択透過性能を改善することが
可能であり、従来の処理方法のようなガラス転移温度以
上の高温による加熱処理や、液体窒素等の極低温による
急冷処理が不要になるなど、処理操作の簡略化、処理装
置の簡素化を図ることができる。また、本発明のガス分
離膜は、ガス透過性能に優れ、その安定性にも優れてい
ることから、これをガス分離装置に適用することによっ
て、酸素富化空気などの分離ガス製造やガス精製操作が
効率よく低コストで実施可能となる。また、本発明のガ
ス分離装置は、ガス分離特性および安定性に優れたガス
分離膜を備えたものなので、極めて簡単な装置構成で酸
素富化空気などの分離ガス製造やガス精製操作を実施で
き、ガス分離装置の小型化、低コスト化が図れるととも
に、駆動電源等のランニングコストも安価であることか
ら、ガス分離技術に関する種々の分野において極めて有
用なものとなる。
【図面の簡単な説明】
【図1】図1は本発明に係るガス分離膜の製造方法を説
明するための製造装置を例示する概略構成図である。
【図2】図2は本発明に係るガス分離装置の一例を示す
断面図である。
【符号の説明】
10……高分子膜 20……中空糸(中空糸状高分子膜)

Claims (9)

    【特許請求の範囲】
  1. 【請求項1】 室温においてガラス状態にある高分子膜
    に膨潤剤を収着させる収着処理と、 該収着処理した高分子膜を、室温より高くガラス転移温
    度より低い温度で加熱する加熱処理と、 該加熱処理した高分子膜を室温まで冷却する冷却処理
    と、 室温にて高分子膜中の膨潤剤を除去する脱膨潤剤処理と
    を順次行うことを特徴とするガス分離膜の製造方法。
  2. 【請求項2】 室温においてガラス状態にある高分子膜
    に膨潤剤を収着させる収着処理と、 該収着処理の間に高分子膜を、室温より高くガラス転移
    温度より低い温度で加熱する加熱処理と、 該加熱処理した高分子膜を室温まで冷却する冷却処理
    と、 室温にて高分子膜中の膨潤剤を除去する脱膨潤剤処理と
    を順次行うことを特徴とするガス分離膜の製造方法。
  3. 【請求項3】 前記高分子膜がポリカーボネート膜であ
    り、前記加熱処理を40〜150℃の温度範囲で行うこ
    とを特徴とする請求項1または2記載のガス分離膜の製
    造方法。
  4. 【請求項4】 前記高分子膜がニトロセルロース膜であ
    り、前記加熱処理を30〜50℃の温度範囲で行うこと
    を特徴とする請求項1または2記載のガス分離膜の製造
    方法。
  5. 【請求項5】 前記高分子膜がポリイミド膜であり、前
    記加熱処理を150〜250℃の温度範囲で行うことを
    特徴とする請求項1または2記載のガス分離膜の製造方
    法。
  6. 【請求項6】 請求項3記載の方法により製造されてな
    り、出発材料とするポリカーボネート膜に比べ、酸素透
    過係数が40〜70%高く、かつ分離係数が同等〜15
    %低いガス透過性能を有することを特徴とするガス分離
    膜。
  7. 【請求項7】 請求項4記載の方法により製造されてな
    り、出発材料とするニトロセルロース膜に比べ、酸素透
    過係数が20〜40%高く、かつ分離係数が同等〜15
    %低いガス透過性能を有することを特徴とするガス分離
    膜。
  8. 【請求項8】 請求項5記載の方法によって製造されて
    なり、出発材料とするポリイミド膜に比べ、酸素透過係
    数が10〜20%高く、かつ分離係数が同等〜10%低
    いガス透過性能を有することを特徴とするガス分離膜。
  9. 【請求項9】 ガス分離膜を備え、該ガス分離膜に空気
    などの混合ガスを透過させ、該ガス分離膜を透過した混
    合ガス中の成分ガスを分離するガス分離装置であり、請
    求項6から8のいずれかに記載のガス分離膜を備えてな
    るガス分離装置。
JP25429795A 1995-09-29 1995-09-29 ガス分離膜の製造方法及びガス分離膜並びにガス分離装置 Pending JPH0994446A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25429795A JPH0994446A (ja) 1995-09-29 1995-09-29 ガス分離膜の製造方法及びガス分離膜並びにガス分離装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25429795A JPH0994446A (ja) 1995-09-29 1995-09-29 ガス分離膜の製造方法及びガス分離膜並びにガス分離装置

Publications (1)

Publication Number Publication Date
JPH0994446A true JPH0994446A (ja) 1997-04-08

Family

ID=17263027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25429795A Pending JPH0994446A (ja) 1995-09-29 1995-09-29 ガス分離膜の製造方法及びガス分離膜並びにガス分離装置

Country Status (1)

Country Link
JP (1) JPH0994446A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013524297A (ja) * 2010-04-13 2013-06-17 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッド 室内グレアの低減を発揮するコンタクトレンズ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013524297A (ja) * 2010-04-13 2013-06-17 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッド 室内グレアの低減を発揮するコンタクトレンズ

Similar Documents

Publication Publication Date Title
TWI411462B (zh) 具有低溫純化器之流體純化系統
EP0621071B1 (en) A method for the separation of gases at low temperatures
EP0326360A2 (en) Process for selectively separating water vapour from a gaseous mixture
US9272963B2 (en) Final biogas purification process
JP2008528285A (ja) ガス分離および圧縮装置
CN101538016A (zh) 分离和回收过氟化合物气体的工艺方法和系统
KR100783784B1 (ko) 제습모듈용 유무기 복합중공사막
JPH08323131A (ja) 混合ガスの分離方法
JP2021159816A (ja) 二酸化炭素の分離・回収システム
KR100845316B1 (ko) 폐헬륨가스의 회수 및 재생 방법과 장치
JP6699296B2 (ja) 不活性ガス供給が可能なガス分離膜装置及び富化ガスの製造方法
JPH0994446A (ja) ガス分離膜の製造方法及びガス分離膜並びにガス分離装置
JPH1157371A (ja) 超清浄空気の製造方法
JPS63278524A (ja) 気体分離膜の特性向上方法
KR20060091067A (ko) 헬륨가스의 초저온 정제 방법 및 장치
JP3166108B2 (ja) 冷却剤のパージおよび回収をする冷却方法
JP2006326555A (ja) 気体分離部材及びこれに用いる気体分離部材用支持体
JPH1129301A (ja) 超高純度水素ガスの製造装置
JP2002282640A (ja) ガス分離モジュールの保守方法
JP4107631B2 (ja) 濃縮オゾン製造装置
Cheng et al. Obtaining low pressures with cryosorption pumps
JPH05277325A (ja) ヘリウムガス精製装置及びその運転方法
Kamps et al. Gas transport and sub-Tg relaxations in unmodified and nitrated polyarylethersulfones
JP6851839B2 (ja) 熱回収型酸素窒素供給システム
JPH06304441A (ja) 有機溶剤回収装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060801