JPH0992588A - Single-crystal silicon substrate - Google Patents

Single-crystal silicon substrate

Info

Publication number
JPH0992588A
JPH0992588A JP26610595A JP26610595A JPH0992588A JP H0992588 A JPH0992588 A JP H0992588A JP 26610595 A JP26610595 A JP 26610595A JP 26610595 A JP26610595 A JP 26610595A JP H0992588 A JPH0992588 A JP H0992588A
Authority
JP
Japan
Prior art keywords
composition ratio
substrate
ratio
isotope
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26610595A
Other languages
Japanese (ja)
Other versions
JP2701809B2 (en
Inventor
Akio Tanigawa
明男 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP26610595A priority Critical patent/JP2701809B2/en
Publication of JPH0992588A publication Critical patent/JPH0992588A/en
Application granted granted Critical
Publication of JP2701809B2 publication Critical patent/JP2701809B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PROBLEM TO BE SOLVED: To restrain a single-crystal silicon substrate from separating out oxygen by a method wherein the composition ratio of isotopes Si<29> and Si<30> to Si<28> in a region of the single-crystal substrate where a device is to be formed is set deviating from that of natural Si by specific % or above, and each of Si<29> , Si<30> , and Si<28> is set lower than specific % in composition ratio. SOLUTION: The composition ratio of isotopes Si<29> and Si<30> to Si<28> in a region of a single-crystal substrate 1 where a device is to be formed is set deviating from that of natural Si by ±10% or above, and furthermore each of Si<28> , Si<29> , and Si<30> is set lower than 99% in composition ratio. Or, an Si epitaxial crystal layer 2 controlled in an isotope composition ratio as prescribed is formed on an Si substrate 3 which is not controlled in composition ratio. By this setup, oxygen separated out by a thermal treatment and thermal donors can be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は半導体デバイスのサ
ブストレートとして用いられるシリコン単結晶基板に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon single crystal substrate used as a substrate for semiconductor devices.

【0002】[0002]

【従来の技術】半導体デバイスのシリコン単結晶基板と
しては、特殊用途の場合を除き、引き上げ法により形成
されたいわゆるCZ基板が用いられる。引き上げ法には
通常石英(SiO2 )製の坩堝が使用されるため、CZ
基板には、酸素が1017〜1018/cm3 程度含まれ
る。この酸素は当初固溶状態で格子間に存在しているが
熱処理を経ることにより析出する。この酸素析出には析
出核となるものが必要である。
2. Description of the Related Art As a silicon single crystal substrate for a semiconductor device, a so-called CZ substrate formed by a pulling method is used except for special applications. Since a crucible made of quartz (SiO 2 ) is usually used for the pulling method, CZ
The substrate contains oxygen of about 10 17 to 10 18 / cm 3 . Initially, this oxygen exists in the interstitial state in a solid solution state, but is precipitated by the heat treatment. For this oxygen precipitation, a substance that becomes a precipitation nucleus is necessary.

【0003】酸素を含むシリコン単結晶では、450℃
程度の熱処理によりサーマルドナー( thermal donor)
が発生し抵抗率が低下する。このサーマルドナーの発生
には酸素の析出が密接に関係しているものと考えられて
いる。而して、シリコン単結晶には、通常同位体が含ま
れており、濃縮などの特別の加工が加えられない限り、
その同位体比は、天然シリコンの同位体存在比のままで
ある。
For a silicon single crystal containing oxygen, 450 ° C.
Thermal donor (thermal donor)
Occurs and the resistivity decreases. It is considered that the precipitation of oxygen is closely related to the generation of this thermal donor. Thus, a silicon single crystal usually contains an isotope, and unless special processing such as concentration is added,
Its isotope ratio remains that of natural silicon.

【0004】[0004]

【発明が解決しようとする課題】上述した従来のシリコ
ン単結晶では、熱処理によって結晶中に酸素析出物が生
成されたり、サーマルドナーが生成されたりする現象が
あり、従来のシリコン単結晶基板を用いた半導体装置の
特性を制御しきれないという問題があり、また、素子の
特性のバラツキが大きくなるという問題があった。した
がって、この発明の目的とするところは、酸素析出の抑
制されたシリコン単結晶基板を提供しうるようにするこ
とである。
In the above-mentioned conventional silicon single crystal, there is a phenomenon that oxygen precipitates are generated in the crystal or a thermal donor is generated by the heat treatment. Therefore, the conventional silicon single crystal substrate is used. However, there is a problem in that the characteristics of the semiconductor device cannot be completely controlled, and there is a problem in that variations in the characteristics of the element increase. Therefore, it is an object of the present invention to provide a silicon single crystal substrate in which oxygen precipitation is suppressed.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
めの本発明によるシリコン単結晶基板は、少なくともデ
バイスの形成される領域でのSi28の同位体Si29、S
30の組成比が天然のSiでの組成比から±10%以上
ずれており、かつ、Si28、Si29、Si30のいずれの
組成比も99%以下であることを特徴とするものであ
る。
To achieve the above object, a silicon single crystal substrate according to the present invention is provided with at least a Si 28 isotope Si 29 , S in a region where a device is formed.
The composition ratio of i 30 deviates from the composition ratio of natural Si by ± 10% or more, and the composition ratio of any of Si 28 , Si 29 , and Si 30 is 99% or less. is there.

【0006】[0006]

【発明の実施の形態】次に、本発明の実施の形態につい
て図面を参照して説明する。本発明のシリコン単結晶基
板では、少なくともデバイス形成領域において、結晶中
の同位体Si29、Si30の存在比が天然での存在比から
±10%以上ずれている。天然のシリコン同位体存在比
は、Si28:Si29:Si30=92.23:4.67:
3.10であるので、 Si29の存在比:4.20%以下、または5.14%以
上 Si30の存在比:2.79%以下、または3.41%以
上 ということになる。本発明によるシリコン単結晶基板の
もう一つの満たすべき条件は、Si28、Si29、Si30
のいずれの存在比も99%以下になされていることであ
る。
Next, embodiments of the present invention will be described with reference to the drawings. In the silicon single crystal substrate of the present invention, at least in the device formation region, the abundance ratios of the isotopes Si 29 and Si 30 in the crystal deviate from the natural abundance ratio by ± 10% or more. The natural silicon isotope abundance ratio is Si 28 : Si 29 : Si 30 = 92.23: 4.67:
Since it is 3.10, the abundance ratio of Si 29 : 4.20% or less, or 5.14% or more, the abundance ratio of Si 30 : 2.79% or less, or 3.41% or more. Another condition to be satisfied by the silicon single crystal substrate according to the present invention is Si 28 , Si 29 , Si 30.
The existence ratio of any of the above is 99% or less.

【0007】本発明によるシリコン単結晶基板では、図
1(a)に示すように、基板全体が上記の同位体比に成
分比が調整されたSi基板1であるか、あるいは、図1
(b)に示すように、成分比が調整されないSi基板3
上に、上記の同位体比に成分比が調整されたSiエピタ
キシャル層2の結晶層を設けたものである。これらの成
分比が調整された基板ないし結晶は、周知の同位体分離
技術を用いて各同位体に分離後、所望の同位体比に調合
することにより、あるいは天然のシリコンより特定の同
位体を引き抜くことにより若しくは天然のシリコンに特
定の同位体を添加することにより形成することができ
る。
In the silicon single crystal substrate according to the present invention, as shown in FIG. 1A, the entire substrate is the Si substrate 1 whose component ratio is adjusted to the above isotope ratio, or
As shown in (b), the Si substrate 3 whose component ratio is not adjusted
A crystal layer of the Si epitaxial layer 2 whose component ratio is adjusted to the above isotope ratio is provided on the top. Substrates or crystals with these component ratios adjusted are separated into their respective isotopes using a well-known isotope separation technique, and then the desired isotope ratio is prepared, or a specific isotope is isolated from natural silicon. It can be formed by drawing or by adding a specific isotope to natural silicon.

【0008】シリコン単結晶における酸素析出過程につ
いての研究において、本発明者は、特定の同位体比のシ
リコン単結晶において酸素が析出しやすいことを見いだ
した。したがって、この酸素を析出させやすい同位体比
のシリコンを避けることにより、酸素析出の抑制された
シリコン単結晶を得ることができる。
In a study on the oxygen precipitation process in a silicon single crystal, the present inventor found that oxygen is likely to precipitate in a silicon single crystal having a specific isotope ratio. Therefore, a silicon single crystal in which oxygen precipitation is suppressed can be obtained by avoiding this silicon having an isotope ratio that easily precipitates oxygen.

【0009】シリコン単結晶は主に液相から固相に徐冷
することで作られるが、その際にわずかに凝固点の高い
Si29やSi30が先に凝集して結晶中に微細な固まりを
作る。この質量数の僅かに異なる元素の固まりは酸素析
出の核となり得る。天然のシリコン同位体存在比は、上
述のように、Si28:Si29:Si30=92.23:
4.67:3.10であるが、この程度の存在比の場合
特に固まりが生じやすい。しかし、例えば、Si29とS
30を天然の半分以下とした、同位体存在比:Si28
Si29:Si30=96.5:2.0:1.5のシリコン
では、固まりは生じにくく、Si29とSi30はSi28
晶内に均等に分散される傾向にある。また、固まりが形
成されてもその大きさと密度は低く抑えられる。固まり
の大きさが小さい場合には酸素析出の核となる可能性は
低くなる。また、逆に、Si29、Si30の存在比を上げ
て、例えば、Si28:Si29=50:50、としたシリ
コンでは同位体は混じり合って固まりが形成されること
はない。
A silicon single crystal is mainly produced by gradually cooling from a liquid phase to a solid phase. At that time, Si 29 and Si 30 having a slightly higher freezing point first agglomerate to form a fine lump in the crystal. create. This mass of elements having slightly different mass numbers can serve as a nucleus for oxygen precipitation. As described above, the natural silicon isotope abundance ratio is Si 28 : Si 29 : Si 30 = 92.23:
Although it is 4.67: 3.10, abundance is likely to occur especially in the case of this abundance ratio. However, for example, Si 29 and S
Isotope abundance ratio in which i 30 is half or less of natural one: Si 28 :
In the case of Si 29 : Si 30 = 96.5: 2.0: 1.5, silicon is less likely to be solidified, and Si 29 and Si 30 tend to be evenly dispersed in the Si 28 crystal. Further, even if a lump is formed, its size and density can be kept low. When the size of the lump is small, the possibility of becoming a nucleus of oxygen precipitation is low. On the contrary, in the silicon in which the abundance ratio of Si 29 and Si 30 is increased to, for example, Si 28 : Si 29 = 50: 50, isotopes are not mixed to form a lump.

【0010】本願発明では、このようにシリコンの同位
体比を天然の比から変化させることで、析出核となり得
る同位体の固まりの大きさと密度を制御し、これにより
酸素析出物やサーマルドナーの発生を抑制している。而
して、特定の同位体の純度を大幅に上げようとすると、
純度に応じてコストが幾何級数的に上昇する。ところ
が、本発明者の実験によれば、高純度に純度を上げても
酸素析出物の観点からは、特別の効果は得られなかっ
た。よって、本発明においては、各同位体の純度を99
%以下に限定している。このような本発明のシリコン単
結晶基板を用いて半導体装置を製造する場合、欠陥の発
生を抑制して、半導体デバイスの製造歩留りを向上させ
ることができるとともに極めて均一な特性のデバイスを
得ることができる。
In the present invention, by changing the isotope ratio of silicon from the natural ratio in this way, the size and density of isotope clusters that can become precipitation nuclei are controlled, whereby oxygen precipitates and thermal donors can be formed. The occurrence is suppressed. Then, if you try to greatly increase the purity of a particular isotope,
The cost increases exponentially according to the purity. However, according to the experiments of the present inventor, even if the purity was increased to a high degree of purity, no special effect was obtained from the viewpoint of oxygen precipitates. Therefore, in the present invention, the purity of each isotope is 99
It is limited to% or less. When manufacturing a semiconductor device using such a silicon single crystal substrate of the present invention, it is possible to suppress the occurrence of defects, improve the manufacturing yield of semiconductor devices, and obtain devices with extremely uniform characteristics. it can.

【0011】[0011]

【実施例】次に、本発明の実施例について説明する。 [第1の実施例]Si28に対するSi29とSi30の比を
天然の2倍に増加させた。すなわち、Si28:Si29
Si30=84.46:9.34:6.20の同位体比の
シリコン基板を得、これを電気炉で1000℃、16時
間、窒素雰囲気で熱処理した。図2は、熱処理後のSi
基板1の酸素析出状況を示す平面図である。同図に示さ
れるように、酸素析出物4は極めて少ない。
Next, an embodiment of the present invention will be described. [First Example] The ratio of Si 29 and Si 30 to Si 28 was increased to twice the natural ratio. That is, Si 28 : Si 29 :
A silicon substrate having an isotope ratio of Si 30 = 84.46: 9.34: 6.20 was obtained, and this was heat-treated in an electric furnace at 1000 ° C. for 16 hours in a nitrogen atmosphere. Figure 2 shows Si after heat treatment.
It is a top view which shows the oxygen precipitation condition of the board | substrate 1. FIG. As shown in the figure, the amount of oxygen precipitates 4 is extremely small.

【0012】[比較例1]比較のために、天然の同位体
存在比のシリコン基板について同様の熱処理を行った。
図3は、熱処理後の、成分比が調整されないSi基板3
の酸素析出状況を示す平面図である。同図に示されるよ
うに、従来のSi基板では多くの酸素析出物4が認めら
れた。
Comparative Example 1 For comparison, a similar heat treatment was performed on a silicon substrate having a natural isotope abundance ratio.
FIG. 3 shows a Si substrate 3 whose composition ratio is not adjusted after heat treatment.
FIG. 3 is a plan view showing the oxygen precipitation state of FIG. As shown in the figure, many oxygen precipitates 4 were observed in the conventional Si substrate.

【0013】[第2の実施例]Si28に対するSi29
Si30の比を天然の3分の1に減少させた。すなわち、
Si28:Si29:Si30=97.41:1.56:1.
03の同位体比のシリコン基板を得、電気炉で450
℃、30分、窒素雰囲気で熱処理した。熱処理後のサー
マルドナーの発生密度は計測装置の測定感度以下であっ
た。
[Second Embodiment] The ratio of Si 29 and Si 30 to Si 28 was reduced to one-third of the natural value. That is,
Si 28 : Si 29 : Si 30 = 97.41: 1.56: 1.
A silicon substrate with an isotope ratio of 03 was obtained, and 450 was obtained in an electric furnace.
Heat treatment was performed in a nitrogen atmosphere at 30 ° C. for 30 minutes. The generation density of thermal donors after the heat treatment was below the measurement sensitivity of the measuring device.

【0014】[比較例2]比較のために、天然の同位体
存在比のシリコン基板について同様の熱処理を行ったと
ころ、サーマルドナーの発生密度は7×1015cm-3
あった。
Comparative Example 2 For comparison, when a similar heat treatment was performed on a silicon substrate having a natural isotope abundance ratio, the generation density of thermal donors was 7 × 10 15 cm -3 .

【0015】[0015]

【発明の効果】以上説明したように、本発明によるシリ
コン単結晶基板は、結晶の引き上げ時にシリコン同位体
が固まりを作りにくい、あるいは固まりの大きさ、密度
が低くなる同位体比とするものであるので、熱処理によ
り発生する酸素析出やサーマルドナーを低く抑えること
ができる。したがって、本発明によれば、製造歩留りを
向上させることができるとともに半導体デバイスの特性
のバラツキを抑えることができる。
As described above, the silicon single crystal substrate according to the present invention has an isotope ratio that makes it difficult for silicon isotopes to form clusters when the crystal is pulled, or the size and density of the clusters become low. Therefore, oxygen precipitation and thermal donor generated by heat treatment can be suppressed to be low. Therefore, according to the present invention, it is possible to improve the manufacturing yield and suppress variations in the characteristics of semiconductor devices.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態を説明するためのシリコン
単結晶基板の断面図。
FIG. 1 is a cross-sectional view of a silicon single crystal substrate for explaining an embodiment of the present invention.

【図2】本発明の実施例の酸素析出状況を示す平面図。FIG. 2 is a plan view showing the state of oxygen precipitation in an example of the present invention.

【図3】従来例の酸素析出状況を示す平面図。FIG. 3 is a plan view showing the state of oxygen precipitation in a conventional example.

【符号の説明】[Explanation of symbols]

1 成分比が調整されたSi基板 2 成分比が調整されたSiエピタキシャル層 3 成分比が調整されないSi基板 4 酸素析出物 1 Si substrate with adjusted component ratio 2 Si epitaxial layer with adjusted component ratio 3 Si substrate with unadjusted component ratio 4 Oxygen precipitate

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 少なくともデバイスの形成される領域で
のSi28の同位体Si29、Si30の組成比が天然のSi
での組成比から±10%以上ずれており、かつ、S
28、Si29、Si30のいずれの組成比も99%以下で
あることを特徴とするシリコン単結晶基板。
1. The composition ratio of isotopes Si 29 and Si 30 of Si 28 at least in a region where a device is formed is natural Si.
Deviates from the composition ratio in ± 10% or more, and S
A silicon single crystal substrate having a composition ratio of any of i 28 , Si 29 , and Si 30 of 99% or less.
【請求項2】 請求項1において限定された組成比の材
料からなるエピタキシャル層が、組成比の調整されてい
ない単結晶シリコン基板上に形成されていることを特徴
とするシリコン単結晶基板。
2. A silicon single crystal substrate, wherein an epitaxial layer made of a material having a composition ratio limited in claim 1 is formed on a single crystal silicon substrate whose composition ratio is not adjusted.
JP26610595A 1995-09-21 1995-09-21 Silicon single crystal substrate Expired - Lifetime JP2701809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26610595A JP2701809B2 (en) 1995-09-21 1995-09-21 Silicon single crystal substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26610595A JP2701809B2 (en) 1995-09-21 1995-09-21 Silicon single crystal substrate

Publications (2)

Publication Number Publication Date
JPH0992588A true JPH0992588A (en) 1997-04-04
JP2701809B2 JP2701809B2 (en) 1998-01-21

Family

ID=17426391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26610595A Expired - Lifetime JP2701809B2 (en) 1995-09-21 1995-09-21 Silicon single crystal substrate

Country Status (1)

Country Link
JP (1) JP2701809B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005142434A (en) * 2003-11-07 2005-06-02 Shin Etsu Handotai Co Ltd Silicon single crystal wafer and method for manufacturing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005142434A (en) * 2003-11-07 2005-06-02 Shin Etsu Handotai Co Ltd Silicon single crystal wafer and method for manufacturing same
JP4529416B2 (en) * 2003-11-07 2010-08-25 信越半導体株式会社 Manufacturing method of silicon single crystal wafer and silicon single crystal wafer

Also Published As

Publication number Publication date
JP2701809B2 (en) 1998-01-21

Similar Documents

Publication Publication Date Title
JPH0475655B2 (en)
JPS60202952A (en) Manufacture of semiconductor device
JPH10303208A (en) Semiconductor board and its manufacture
JPH11314997A (en) Production of semiconductor silicon single crystal wafer
JPH0212920B2 (en)
JP2701809B2 (en) Silicon single crystal substrate
JP2003151984A (en) Silicon epitaxial wafer and manufacturing method thereof
JPS60247935A (en) Manufacture of semiconductor wafer
EP0552366B1 (en) Semiconductor device manufacturing process
JPS62275099A (en) Semi-insulating indium phosphide single crystal
JP2725460B2 (en) Manufacturing method of epitaxial wafer
Scaff The role of metallurgy in the technology of electronic materials
JPS5821829A (en) Manufacture of semiconductor device
JPH05121319A (en) Manufacture of semiconductor device
JPH0534319B2 (en)
JPS59121193A (en) Silicon crystal
JPS63198334A (en) Manufacture of semiconductor silicon wafer
JP2505222B2 (en) Method for manufacturing semi-insulating GaAs substrate
JPH02229796A (en) P-type inp single crystal substrate material having low dislocation density
JPS6296388A (en) Quartz glass crucible for pulling up silicon single crystal
JPS6027678A (en) Method for growing single crystal
CA1271393A (en) Method of manufacturing a semi-insulating single crystal of gallium indium arsenide
RU2035799C1 (en) Heterostructure based on indium arsenide-antimonide-bismuthide and process of its manufacture
JPS60148128A (en) Semiconductor substrate
JPH03199198A (en) Lanthanum gallate single crystal and production thereof