JPH0966202A - 圧力晶析による光学異性体の分離方法 - Google Patents
圧力晶析による光学異性体の分離方法Info
- Publication number
- JPH0966202A JPH0966202A JP22391795A JP22391795A JPH0966202A JP H0966202 A JPH0966202 A JP H0966202A JP 22391795 A JP22391795 A JP 22391795A JP 22391795 A JP22391795 A JP 22391795A JP H0966202 A JPH0966202 A JP H0966202A
- Authority
- JP
- Japan
- Prior art keywords
- solution
- pressure
- mixture
- composition
- atmospheric pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
(57)【要約】 (修正有)
【課題】 通常の冷却晶析法や圧力晶析を単独で実施し
たのでは分離することのできない光学異性体混合物の溶
液から、L体、D体あるいはラセミ体を高純度で回収
し、もしくはD体を可及的に除去することのできる分離
法を開発する。 【解決手段】 下記AとBの工程、またはAとB1 の工
程を実施する。 A:圧力晶析によってL体またはD体濃度の高められた
結晶を析出させると共に、高圧力下における共晶組成近
傍の母液とに分離する工程、 B:Aの母液の溶媒を蒸発させて濃縮し、ラセミ体を析
出させると共に、大気圧下における共晶組成近傍の混合
物溶液を得る工程、 B1 :Aで得た結晶を溶媒に溶解した後、再び圧力晶析
を行なう一方、母液の溶媒を蒸発させて濃縮し、ラセミ
体を析出させると共に、大気圧下における共晶組成近傍
の混合物溶液を得る工程。
たのでは分離することのできない光学異性体混合物の溶
液から、L体、D体あるいはラセミ体を高純度で回収
し、もしくはD体を可及的に除去することのできる分離
法を開発する。 【解決手段】 下記AとBの工程、またはAとB1 の工
程を実施する。 A:圧力晶析によってL体またはD体濃度の高められた
結晶を析出させると共に、高圧力下における共晶組成近
傍の母液とに分離する工程、 B:Aの母液の溶媒を蒸発させて濃縮し、ラセミ体を析
出させると共に、大気圧下における共晶組成近傍の混合
物溶液を得る工程、 B1 :Aで得た結晶を溶媒に溶解した後、再び圧力晶析
を行なう一方、母液の溶媒を蒸発させて濃縮し、ラセミ
体を析出させると共に、大気圧下における共晶組成近傍
の混合物溶液を得る工程。
Description
【0001】
【発明の属する技術分野】本発明は、大気圧下の状態図
においてラセミ体の形成によってD体またはL体の分離
不能域を有する光学異性体混合物の溶液から、高純度の
D体またはL体を効率よく分離する方法に関するもので
あり、この方法は、例えば合成により製造される光学異
性体混合物から、有用なL体を高純度で得る方法として
有効に活用できる。
においてラセミ体の形成によってD体またはL体の分離
不能域を有する光学異性体混合物の溶液から、高純度の
D体またはL体を効率よく分離する方法に関するもので
あり、この方法は、例えば合成により製造される光学異
性体混合物から、有用なL体を高純度で得る方法として
有効に活用できる。
【0002】
【従来の技術】例えばD−,L−マンデル酸はラセミ化
合物を生成する光学異性体であり、その常圧下における
水に対する溶解度曲線は図3に示す通りであって、D体
およびL体よりなる光学活性体結晶とラセミ体結晶の共
晶点A,Bが存在する。この様な光学異性体混合物の水
溶液における共晶組成A1 、B1 は、操作温度に拘らず
ほぼ一定であるから、D体とL体の含有組成が共晶組成
A1 とB1 の間にある混合液から、通常の冷却晶析法に
よってD体またはL体の結晶を析出分離することはでき
ない。
合物を生成する光学異性体であり、その常圧下における
水に対する溶解度曲線は図3に示す通りであって、D体
およびL体よりなる光学活性体結晶とラセミ体結晶の共
晶点A,Bが存在する。この様な光学異性体混合物の水
溶液における共晶組成A1 、B1 は、操作温度に拘らず
ほぼ一定であるから、D体とL体の含有組成が共晶組成
A1 とB1 の間にある混合液から、通常の冷却晶析法に
よってD体またはL体の結晶を析出分離することはでき
ない。
【0003】一方、マンデル酸水溶液の共晶組成は圧力
によって変化することが既に報告されている。他方、本
発明者等は、例えばm−クレゾールとp−クレゾールの
様に、2成分が分子間化合物を形成する2成分混合物の
共晶組成が圧力によって変わることを確認しており、こ
うした共晶組成の変化を利用し、圧力晶析法によってm
−クレゾールまたはp−クレゾールを分離する方法を開
発し、先に出願を済ませている(特公昭60−4820
5号公報)。
によって変化することが既に報告されている。他方、本
発明者等は、例えばm−クレゾールとp−クレゾールの
様に、2成分が分子間化合物を形成する2成分混合物の
共晶組成が圧力によって変わることを確認しており、こ
うした共晶組成の変化を利用し、圧力晶析法によってm
−クレゾールまたはp−クレゾールを分離する方法を開
発し、先に出願を済ませている(特公昭60−4820
5号公報)。
【0004】この公告発明では、m−クレゾールとp−
クレゾールの如く分子間化合物を生成する混合物の分子
間化合物生成領域から、高圧力下の晶析と低圧力下の晶
析の組み合わせによって1方成分を分離する可能性を示
しており、またラセミ体とD体またはL体との混合物か
ら、L体またはD体の分離にも活用し得ることも示唆し
ている。ところがこの方法は、あくまでも分子間化合物
を形成する2成分系の融液混合物から特定成分を析出せ
しめ、融液状の母液から分離する方法を開示するもので
あって、分離困難な混合物の溶液から特定成分を分離す
る方法ではない。しかもこの方法では、回収目的となる
特定成分の一部が融液状態の母液に溶け込んで母液側へ
高濃度で排出されるため、特定成分の回収率が低下する
という問題点を残している。さらに有機合成によって製
造される多くの化合物は、水や有機溶媒などの溶液系で
反応を行なうのが殆どであり、且つ粗精製工程で一旦溶
媒に溶解することも多い。従って、溶液状態で得られる
分離困難な混合物から特定成分を高純度で効率よく分離
するには、上記公告公報に開示した技術に加えて、新た
な技術的付加が必要となる。
クレゾールの如く分子間化合物を生成する混合物の分子
間化合物生成領域から、高圧力下の晶析と低圧力下の晶
析の組み合わせによって1方成分を分離する可能性を示
しており、またラセミ体とD体またはL体との混合物か
ら、L体またはD体の分離にも活用し得ることも示唆し
ている。ところがこの方法は、あくまでも分子間化合物
を形成する2成分系の融液混合物から特定成分を析出せ
しめ、融液状の母液から分離する方法を開示するもので
あって、分離困難な混合物の溶液から特定成分を分離す
る方法ではない。しかもこの方法では、回収目的となる
特定成分の一部が融液状態の母液に溶け込んで母液側へ
高濃度で排出されるため、特定成分の回収率が低下する
という問題点を残している。さらに有機合成によって製
造される多くの化合物は、水や有機溶媒などの溶液系で
反応を行なうのが殆どであり、且つ粗精製工程で一旦溶
媒に溶解することも多い。従って、溶液状態で得られる
分離困難な混合物から特定成分を高純度で効率よく分離
するには、上記公告公報に開示した技術に加えて、新た
な技術的付加が必要となる。
【0005】
【発明が解決しようとする課題】本発明は上記の様な事
情に着目してなされたものであって、その目的は、分離
対象として、大気圧下の状態図でラセミ体を生成するた
めL体またはD体の分離不能域を有する光学異性体混合
物の溶液を選択し、該溶媒溶液からL体またはD体を効
率よく分離することのできる方法を確立しようとするも
のである。
情に着目してなされたものであって、その目的は、分離
対象として、大気圧下の状態図でラセミ体を生成するた
めL体またはD体の分離不能域を有する光学異性体混合
物の溶液を選択し、該溶媒溶液からL体またはD体を効
率よく分離することのできる方法を確立しようとするも
のである。
【0006】
【課題を解決するための手段】上記課題を達成すること
のできた本発明に係る分離法とは、大気圧下で状態図上
ラセミ体を形成するためL体またはD体の分離不能域を
有する光学異性体混合物の溶液であって、且つ高圧力下
で光学異性体の溶解度が減少し、ラセミ体とL体または
D体との共晶組成がラセミ体組成に近づく混合物系に属
し、該溶液中のL体とD体の組成比が異なる混合物が溶
媒に溶解している溶液から、L体またはD体を分離する
方法であって、 A:大気圧下における上記L体またはD体とラセミ体の
共晶組成もしくはその近傍の組成の溶液を加圧し、圧力
晶析によってL体またはD体濃度の高められた結晶を析
出させると共に、高圧力下における共晶組成近傍の母液
とに分離する工程、 B:上記Aで得た母液を、大気圧下もしくは減圧下で溶
媒を蒸発させて濃縮し、ラセミ体を析出させると共に、
大気圧下における共晶組成近傍の混合物溶液を得る工程 を実施し、あるいは、上記A工程の後に B1 :上記Aで得た結晶を前記溶媒に溶解した後、再び
圧力晶析を行なってL体またはD体濃度の更に高められ
た結晶を析出させる一方、母液は大気圧下もしくは減圧
下で溶媒を蒸発させて濃縮し、ラセミ体を析出させると
共に、大気圧下における共晶組成近傍の混合物溶液を得
る工程 を実施するところに要旨を有している。
のできた本発明に係る分離法とは、大気圧下で状態図上
ラセミ体を形成するためL体またはD体の分離不能域を
有する光学異性体混合物の溶液であって、且つ高圧力下
で光学異性体の溶解度が減少し、ラセミ体とL体または
D体との共晶組成がラセミ体組成に近づく混合物系に属
し、該溶液中のL体とD体の組成比が異なる混合物が溶
媒に溶解している溶液から、L体またはD体を分離する
方法であって、 A:大気圧下における上記L体またはD体とラセミ体の
共晶組成もしくはその近傍の組成の溶液を加圧し、圧力
晶析によってL体またはD体濃度の高められた結晶を析
出させると共に、高圧力下における共晶組成近傍の母液
とに分離する工程、 B:上記Aで得た母液を、大気圧下もしくは減圧下で溶
媒を蒸発させて濃縮し、ラセミ体を析出させると共に、
大気圧下における共晶組成近傍の混合物溶液を得る工程 を実施し、あるいは、上記A工程の後に B1 :上記Aで得た結晶を前記溶媒に溶解した後、再び
圧力晶析を行なってL体またはD体濃度の更に高められ
た結晶を析出させる一方、母液は大気圧下もしくは減圧
下で溶媒を蒸発させて濃縮し、ラセミ体を析出させると
共に、大気圧下における共晶組成近傍の混合物溶液を得
る工程 を実施するところに要旨を有している。
【0007】これらの分離法を実施するに当たっては、
上記B工程あるいはB1 工程で母液の濃縮によって得ら
れる混合物溶液に、大気圧下における上記共晶組成近傍
の原料溶液を混合して工程Aを繰り返すことにより、混
合物からのL体またはD体の回収率を一層高めることが
できるので好ましい。この発明が適用される光学異性体
混合物の種類は特に制限されず、高圧力下で光学異性体
の溶解度が減少し、ラセミ体とL体またはD体との共晶
組成がラセミ体組成に近づく混合物系に属し、該溶液中
のL体とD体の組成比が異なる不斉混合物であれば全て
の光学異性体混合物溶液に適用できるが、殊に本発明
は、人体に有用なL体の分離回収に有効に活用でき、た
とえばL体比率の高いD−,L−マンデル酸水溶液から
L−マンデル酸を分離回収する方法などとして極めて有
用である。
上記B工程あるいはB1 工程で母液の濃縮によって得ら
れる混合物溶液に、大気圧下における上記共晶組成近傍
の原料溶液を混合して工程Aを繰り返すことにより、混
合物からのL体またはD体の回収率を一層高めることが
できるので好ましい。この発明が適用される光学異性体
混合物の種類は特に制限されず、高圧力下で光学異性体
の溶解度が減少し、ラセミ体とL体またはD体との共晶
組成がラセミ体組成に近づく混合物系に属し、該溶液中
のL体とD体の組成比が異なる不斉混合物であれば全て
の光学異性体混合物溶液に適用できるが、殊に本発明
は、人体に有用なL体の分離回収に有効に活用でき、た
とえばL体比率の高いD−,L−マンデル酸水溶液から
L−マンデル酸を分離回収する方法などとして極めて有
用である。
【0008】
【発明の実施の形態】以下、D−,L−マンデル酸水溶
液を分離対象とする場合を例にとって、本発明を具体的
に説明するが、本発明の分離対象はもとよりこれに制限
されるものではなく、他の様々の光学異性体混合物の水
溶液あるいは他の有機溶媒溶液からL体またはD体を分
離する方法として有効に活用できる。
液を分離対象とする場合を例にとって、本発明を具体的
に説明するが、本発明の分離対象はもとよりこれに制限
されるものではなく、他の様々の光学異性体混合物の水
溶液あるいは他の有機溶媒溶液からL体またはD体を分
離する方法として有効に活用できる。
【0009】まず図1は、D−,L−マンデル酸のL体
とD体の含有組成と水に対する溶解度に及ぼす圧力の影
響を示した状態図であり、図1に実線で示す(これは図
3の状態図に対応する)如く、常圧(0.098MP
a,303K)条件の下では、L体側の共晶点Aの共晶
組成A1 はL体:D体=約70:30、D体側の共晶点
Bの共晶組成B1 はL体:D体=約30:70であり、
該共晶点組成A1 とB1の範囲内にある組成のD−,L
−マンデル酸水溶液から、常圧下でL体またはD体を晶
析法によって分別することはできない。
とD体の含有組成と水に対する溶解度に及ぼす圧力の影
響を示した状態図であり、図1に実線で示す(これは図
3の状態図に対応する)如く、常圧(0.098MP
a,303K)条件の下では、L体側の共晶点Aの共晶
組成A1 はL体:D体=約70:30、D体側の共晶点
Bの共晶組成B1 はL体:D体=約30:70であり、
該共晶点組成A1 とB1の範囲内にある組成のD−,L
−マンデル酸水溶液から、常圧下でL体またはD体を晶
析法によって分別することはできない。
【0010】一方、同じくD−,L−マンデル酸水溶液
の高圧下における状態図は、図1に破線で示した通りで
あり、圧力を高めるにつれて各成分の溶解度が低下する
と共に、共晶組成はラセミ組成(D体:L体=1:1)
側に移行し、圧力:176.4〜294.0MPaの範
囲におけるL体側の共晶組成はL体:D体=約62〜6
4:38〜36、D体側の共晶組成はL体:D体=約6
2〜64:38〜36となるが、この場合でも、同じ操
作圧力を採用する限り2つの共晶組成に挟まれた領域の
混合物の水溶液であれば、L体またはD体の一方を分別
することはできない。
の高圧下における状態図は、図1に破線で示した通りで
あり、圧力を高めるにつれて各成分の溶解度が低下する
と共に、共晶組成はラセミ組成(D体:L体=1:1)
側に移行し、圧力:176.4〜294.0MPaの範
囲におけるL体側の共晶組成はL体:D体=約62〜6
4:38〜36、D体側の共晶組成はL体:D体=約6
2〜64:38〜36となるが、この場合でも、同じ操
作圧力を採用する限り2つの共晶組成に挟まれた領域の
混合物の水溶液であれば、L体またはD体の一方を分別
することはできない。
【0011】ところが図1からも明らかである様に、水
溶液状態での共晶組成は操作圧力を高めるにつれてラセ
ミ組成側へ移行するので、こうした傾向を利用し操作圧
力を適正に制御してやれば、ラセミ体析出領域の光学異
性体混合物からでもL体またはD体を分別できる可能性
がある。
溶液状態での共晶組成は操作圧力を高めるにつれてラセ
ミ組成側へ移行するので、こうした傾向を利用し操作圧
力を適正に制御してやれば、ラセミ体析出領域の光学異
性体混合物からでもL体またはD体を分別できる可能性
がある。
【0012】しかしながら、その分離に従来の圧力晶析
法を単独で若しくは通常の冷却晶析法を組み合わせて実
施した場合には、その効率が非常に悪いため、実操業に
そぐわない。例えば図1の大気圧における共晶点Aから
圧力をAp点にまで高めた場合、該共晶組成の変化に応
じてL体が析出する可能性があり、それによりL体純度
を高めることが可能と思われるが、L体としての生成量
は僅かであり、L体としての回収量は低くなる。また高
圧力下における共晶組成Apの母液を放圧して大気圧に
し、大気圧下で冷却晶析にかけると、ラセミ体の析出分
離が可能である様に思われるが、現実には、放圧によっ
て混合物(溶質)の溶解度が大幅に上昇するため、冷却
晶析によって析出するラセミ体の量は非常に少なく、大
気圧下での混合物組成を共晶組成Aにまで高めることも
容易でなく、結局のところL体の回収率はあまり上がら
ない。
法を単独で若しくは通常の冷却晶析法を組み合わせて実
施した場合には、その効率が非常に悪いため、実操業に
そぐわない。例えば図1の大気圧における共晶点Aから
圧力をAp点にまで高めた場合、該共晶組成の変化に応
じてL体が析出する可能性があり、それによりL体純度
を高めることが可能と思われるが、L体としての生成量
は僅かであり、L体としての回収量は低くなる。また高
圧力下における共晶組成Apの母液を放圧して大気圧に
し、大気圧下で冷却晶析にかけると、ラセミ体の析出分
離が可能である様に思われるが、現実には、放圧によっ
て混合物(溶質)の溶解度が大幅に上昇するため、冷却
晶析によって析出するラセミ体の量は非常に少なく、大
気圧下での混合物組成を共晶組成Aにまで高めることも
容易でなく、結局のところL体の回収率はあまり上がら
ない。
【0013】一方、冷却晶析による析出量を増やし、得
られる共晶組成A1 近傍の混合物((溶質)の濃度をた
とえば40%程度以上に高めた場合、この様な高濃度水
溶液を出発原料として圧力晶析にかけると、満足のいく
L体純度が得られにくくなる。その理由は次の様に考え
られる。
られる共晶組成A1 近傍の混合物((溶質)の濃度をた
とえば40%程度以上に高めた場合、この様な高濃度水
溶液を出発原料として圧力晶析にかけると、満足のいく
L体純度が得られにくくなる。その理由は次の様に考え
られる。
【0014】即ち、常圧状態で分離不能な共晶組成A1
の混合物水溶液を加圧していくと、前述の如く圧力の上
昇につれて、共晶組成は一点鎖線AX で示す如くラセミ
組成側に移行していくが、水溶液濃度が高い場合には、
該昇圧過程で連続的に上昇する圧力条件の下でラセミ体
と系中で過剰になってくるL体とが水溶液からほぼ同時
に析出することが分かった。従って析出物の組成は、操
作圧力が高まるにつれてL体リッチにはなるものの、そ
の上昇量は例えば図1の細線ax で示す如く極わずかで
あり、実験によって確認したところによると、後記表1
に示す如く、マンデル酸60g(L:D=70:30)
/水100gの水溶液を使用し、303Kの温度で圧力
を176.4MPaにまで高めたときに生成する析出物
の組成は、L体濃度で79.2%、215.6MPaに
まで高めたときに生成する析出物の組成は、L体濃度で
75.5%となり、ラセミ組成に対して僅か5〜9%程
度の純度アップが認められただけにすぎなかった。換言
すると、単に昇圧による共晶組成の変動を利用しただけ
では、L体を高純度物として分別することは難しいこと
が確認された。
の混合物水溶液を加圧していくと、前述の如く圧力の上
昇につれて、共晶組成は一点鎖線AX で示す如くラセミ
組成側に移行していくが、水溶液濃度が高い場合には、
該昇圧過程で連続的に上昇する圧力条件の下でラセミ体
と系中で過剰になってくるL体とが水溶液からほぼ同時
に析出することが分かった。従って析出物の組成は、操
作圧力が高まるにつれてL体リッチにはなるものの、そ
の上昇量は例えば図1の細線ax で示す如く極わずかで
あり、実験によって確認したところによると、後記表1
に示す如く、マンデル酸60g(L:D=70:30)
/水100gの水溶液を使用し、303Kの温度で圧力
を176.4MPaにまで高めたときに生成する析出物
の組成は、L体濃度で79.2%、215.6MPaに
まで高めたときに生成する析出物の組成は、L体濃度で
75.5%となり、ラセミ組成に対して僅か5〜9%程
度の純度アップが認められただけにすぎなかった。換言
すると、単に昇圧による共晶組成の変動を利用しただけ
では、L体を高純度物として分別することは難しいこと
が確認された。
【0015】そこで、析出するL体の純度アップを期し
て更に研究を進めた結果、上記の様にしてL体比率の高
められた析出物に水を加えて溶解し、これを再び圧力晶
析にかけると、この段階では、後記表2に示す如くL体
含有量が95%以上、あるいは99%以上といった高純
度のL体を結晶として分別し得ることが分かった。
て更に研究を進めた結果、上記の様にしてL体比率の高
められた析出物に水を加えて溶解し、これを再び圧力晶
析にかけると、この段階では、後記表2に示す如くL体
含有量が95%以上、あるいは99%以上といった高純
度のL体を結晶として分別し得ることが分かった。
【0016】この様な結果が得られた理由は次の様に考
えられる。即ち、先に説明した様に、常圧下での共晶組
成混合物の高濃度水溶液から昇圧した場合は、昇圧に伴
なう共晶組成の変化により系中で過剰になってくるL体
とラセミ体が共に析出することになり、従って析出物中
のL体の濃度はあまり上がらない。ところが、この操作
によってL体含有率を共晶組成以上に高めた析出物を水
に溶解して再度圧力晶析にかけると、圧力晶析の原液と
なる最初の水溶液のD・L体混合物がL体比率の高いも
の(たとえば図1のaで示す組成)となっているため、
この圧力晶析工程ではL体のみが優先的に析出し、各圧
力条件下におけるラセミ体は母液中に残る。従って、こ
の状態で固液分離を行なえば、L体を高純度の析出物と
して分別できるのである。
えられる。即ち、先に説明した様に、常圧下での共晶組
成混合物の高濃度水溶液から昇圧した場合は、昇圧に伴
なう共晶組成の変化により系中で過剰になってくるL体
とラセミ体が共に析出することになり、従って析出物中
のL体の濃度はあまり上がらない。ところが、この操作
によってL体含有率を共晶組成以上に高めた析出物を水
に溶解して再度圧力晶析にかけると、圧力晶析の原液と
なる最初の水溶液のD・L体混合物がL体比率の高いも
の(たとえば図1のaで示す組成)となっているため、
この圧力晶析工程ではL体のみが優先的に析出し、各圧
力条件下におけるラセミ体は母液中に残る。従って、こ
の状態で固液分離を行なえば、L体を高純度の析出物と
して分別できるのである。
【0017】尚、前記最初の圧力晶析工程で得られる析
出物に対する加水量は特に制限されないが、2回目の圧
力晶析を効率よく実施するうえで好ましいのは、2回目
の圧力晶析が行なわれる操作圧力条件下における当該混
合物の溶解度付近、あるいは該溶解度付近よりも若干D
・L体混合物濃度が高くなる様な加水量とすることが望
ましい。しかして、加水量が多過ぎる場合は、2回目の
圧力晶析工程で析出するL体の純度は高まるものの析出
量が少なくなって収率が低下し、逆に加水量が不足する
場合は、2回目の圧力晶析工程でラセミ体までも同時に
析出し易くなって析出物のL体純度が低下してくるから
である。即ち好ましい加水量は、その絶対量で規定する
のではなく、2回目の晶析操作圧力(即ち、当該圧力条
件下における状態図)に応じて適宜調整すべきである
が、本発明者等が実験により確認したところでは、2回
目の圧力晶析操作圧と温度に対応する共晶点を基準にし
て、水溶液としてのL体濃度が「加圧下の共晶点の溶解
度×L体/(L体+D体)」以上で、且つD体濃度が
「加圧下の共晶点の溶解度×D体/(L体+D体)」以
以下となる様に加水量を調整することによって、2回目
の圧力晶析をより効率よく遂行できることを確認してい
る。より標準的な加水量を示すと、例えば2回目の晶析
を170〜300MPaの圧力範囲で行なう場合は、図
1に示した状態図からも分かる様に、1回目の圧力晶析
で得られる晶析物の濃度が10〜20%程度となる様な
加水量を採用するのが一般的である。
出物に対する加水量は特に制限されないが、2回目の圧
力晶析を効率よく実施するうえで好ましいのは、2回目
の圧力晶析が行なわれる操作圧力条件下における当該混
合物の溶解度付近、あるいは該溶解度付近よりも若干D
・L体混合物濃度が高くなる様な加水量とすることが望
ましい。しかして、加水量が多過ぎる場合は、2回目の
圧力晶析工程で析出するL体の純度は高まるものの析出
量が少なくなって収率が低下し、逆に加水量が不足する
場合は、2回目の圧力晶析工程でラセミ体までも同時に
析出し易くなって析出物のL体純度が低下してくるから
である。即ち好ましい加水量は、その絶対量で規定する
のではなく、2回目の晶析操作圧力(即ち、当該圧力条
件下における状態図)に応じて適宜調整すべきである
が、本発明者等が実験により確認したところでは、2回
目の圧力晶析操作圧と温度に対応する共晶点を基準にし
て、水溶液としてのL体濃度が「加圧下の共晶点の溶解
度×L体/(L体+D体)」以上で、且つD体濃度が
「加圧下の共晶点の溶解度×D体/(L体+D体)」以
以下となる様に加水量を調整することによって、2回目
の圧力晶析をより効率よく遂行できることを確認してい
る。より標準的な加水量を示すと、例えば2回目の晶析
を170〜300MPaの圧力範囲で行なう場合は、図
1に示した状態図からも分かる様に、1回目の圧力晶析
で得られる晶析物の濃度が10〜20%程度となる様な
加水量を採用するのが一般的である。
【0018】尚上記では、1回目の圧力晶析にかける混
合物の水溶液濃度が高い場合について説明したが、該1
回目の圧力晶析にかける混合物の水溶液濃度が低くなる
につれて、1回目の圧力晶析によって析出分離されるL
体の純度は高くなってくる。たとえば、D−,L−マン
デル酸水溶液のマンデル酸濃度が38%程度であるとき
は、大気圧下の共晶組成の混合物の溶液から圧力晶析に
よって析出するL体の純度は72%前後に過ぎないが、
濃度を20%程度に下げるとL体純度は85%程度、濃
度を18%程度にまで下げるとL体純度は95〜99%
にまで高められる。
合物の水溶液濃度が高い場合について説明したが、該1
回目の圧力晶析にかける混合物の水溶液濃度が低くなる
につれて、1回目の圧力晶析によって析出分離されるL
体の純度は高くなってくる。たとえば、D−,L−マン
デル酸水溶液のマンデル酸濃度が38%程度であるとき
は、大気圧下の共晶組成の混合物の溶液から圧力晶析に
よって析出するL体の純度は72%前後に過ぎないが、
濃度を20%程度に下げるとL体純度は85%程度、濃
度を18%程度にまで下げるとL体純度は95〜99%
にまで高められる。
【0019】即ち、1回目の圧力晶析にかける光学異性
体混合物の濃度によっては、圧力晶析により析出分離さ
れるL体の純度は著しく変わってくる。従って、本発明
を実施するに当たっては、1回目の圧力晶析にかける
光学異性体の濃度を十分に下げることにより、1回目の
圧力晶析で高純度のL体を確保し、2回目の圧力晶析を
省略する方法(この場合は、濃縮工程の後再び1回目の
圧力晶析にかける際に、母液に水を加えて濃度を下げる
ことが必要となる)、あるいは1回目の圧力晶析に高
濃度の原料を使用し、1回目の圧力晶析でL体濃度をあ
る程度高めてから2回目の圧力晶析にかけて高純度のL
体を得る方法、のいずれを採用してもよく、どちらの方
法を採用するかは、本発明を実施する者の自由に委ねら
れる。
体混合物の濃度によっては、圧力晶析により析出分離さ
れるL体の純度は著しく変わってくる。従って、本発明
を実施するに当たっては、1回目の圧力晶析にかける
光学異性体の濃度を十分に下げることにより、1回目の
圧力晶析で高純度のL体を確保し、2回目の圧力晶析を
省略する方法(この場合は、濃縮工程の後再び1回目の
圧力晶析にかける際に、母液に水を加えて濃度を下げる
ことが必要となる)、あるいは1回目の圧力晶析に高
濃度の原料を使用し、1回目の圧力晶析でL体濃度をあ
る程度高めてから2回目の圧力晶析にかけて高純度のL
体を得る方法、のいずれを採用してもよく、どちらの方
法を採用するかは、本発明を実施する者の自由に委ねら
れる。
【0020】尚、上記1回目および2回目の圧力晶析工
程で析出物を除去した後の母液は、その後放圧して常圧
に戻し(図1の細線X)、水分を蒸発させて濃縮する
と、図1の状態図に沿ってL体/D体=1/1のラセミ
体が析出しつつ水溶液中のL・D体混合物の組成は矢印
Y方向に変化する。このとき、圧力晶析後の母液を更に
高温に加熱して水分を蒸発させた後、冷却してラセミ体
を析出させた方がより効率的である。この間の析出物は
ラセミ体組成であるから、これは必要によりL体/D体
=1/1のラセミ体の結晶として回収すればよい。そし
て、該濃縮液中のL・D体混合物組成が常圧における共
晶点Aに達すると、それ以上のラセミ体の回収も不可能
となるので、上記の方法を採用するときは、母液に水
を加え濃度を例えば20%程度に下げてから圧力晶析を
行ない、また上記の方法を採用するときは、母液を高
濃度のままで前記1回目の圧力晶析にかけた後、更に2
回目の圧力晶析を行なってL体純度を高めればよく、こ
れらの操作を夫々繰り返して実施することにより、所望
に応じた純度のL体を分別することができる。このと
き、例えば上記放圧後濃縮の前後、或は加水による濃度
低下の前後任意の時点で原料混合物を逐次追加し、上記
の操作を繰り返せば、L体の分別を連続的に行なうこと
ができるので好ましい。
程で析出物を除去した後の母液は、その後放圧して常圧
に戻し(図1の細線X)、水分を蒸発させて濃縮する
と、図1の状態図に沿ってL体/D体=1/1のラセミ
体が析出しつつ水溶液中のL・D体混合物の組成は矢印
Y方向に変化する。このとき、圧力晶析後の母液を更に
高温に加熱して水分を蒸発させた後、冷却してラセミ体
を析出させた方がより効率的である。この間の析出物は
ラセミ体組成であるから、これは必要によりL体/D体
=1/1のラセミ体の結晶として回収すればよい。そし
て、該濃縮液中のL・D体混合物組成が常圧における共
晶点Aに達すると、それ以上のラセミ体の回収も不可能
となるので、上記の方法を採用するときは、母液に水
を加え濃度を例えば20%程度に下げてから圧力晶析を
行ない、また上記の方法を採用するときは、母液を高
濃度のままで前記1回目の圧力晶析にかけた後、更に2
回目の圧力晶析を行なってL体純度を高めればよく、こ
れらの操作を夫々繰り返して実施することにより、所望
に応じた純度のL体を分別することができる。このと
き、例えば上記放圧後濃縮の前後、或は加水による濃度
低下の前後任意の時点で原料混合物を逐次追加し、上記
の操作を繰り返せば、L体の分別を連続的に行なうこと
ができるので好ましい。
【0021】尚、上記の濃縮工程は、大気圧下で加熱濃
縮する方法の他、減圧濃縮法を採用することも可能であ
る。また、濃縮を加熱条件下で行なった場合は、これを
常温付近にまで冷却し、該冷却工程で生成するラセミ体
結晶も分別すればよい。尚、上記圧力晶析を行なう時の
温度条件は特に限定されないが、通常は0〜100℃の
範囲、より一般的には−20〜120℃の範囲で行なわ
れる。
縮する方法の他、減圧濃縮法を採用することも可能であ
る。また、濃縮を加熱条件下で行なった場合は、これを
常温付近にまで冷却し、該冷却工程で生成するラセミ体
結晶も分別すればよい。尚、上記圧力晶析を行なう時の
温度条件は特に限定されないが、通常は0〜100℃の
範囲、より一般的には−20〜120℃の範囲で行なわ
れる。
【0022】ところで上記の説明では、1回目の圧力晶
析の原料水溶液として、L体側共晶組成近傍のD・L体
混合物の水溶液を使用する場合について説明したが、実
際に分別処理される原料水溶液のD・L体混合組成は様
々であるので、それら組成の違いに対応できる共通の処
理工程も明らかにしておくことが望ましい。そこで、該
共通の処理について説明すると、次の通りである。
析の原料水溶液として、L体側共晶組成近傍のD・L体
混合物の水溶液を使用する場合について説明したが、実
際に分別処理される原料水溶液のD・L体混合組成は様
々であるので、それら組成の違いに対応できる共通の処
理工程も明らかにしておくことが望ましい。そこで、該
共通の処理について説明すると、次の通りである。
【0023】例えば、原料水溶液のD・L体混合組成が
図2のPである場合を考えると、本発明を実施するに当
たっては、まず組成PのD・L体混合物を含む水溶液を
常圧もしくは減圧で濃縮する(即ち、矢印Q1 に沿って
水溶液濃度を高めていく)か、その後引き続いて冷却す
ると、その濃度がP1 点に達した時点でラセミ体の析出
が始まり、ラセミ体の析出が進むにつれて水溶液中のD
・L体混合物組成は矢印Q2 で示す如く状態図の線に沿
って共晶点A方向に変化していく。このとき、より効率
的には、圧力晶析後の母液を更に高温に加熱して水分を
蒸発させた後、冷却してラセミ体を析出させる。この間
に生成する析出物は、L体/D体=1/1のラセミ体で
あるので、必要により高純度のラセミ体として回収す
る。そして共晶点に達した後は、前記図1で説明した様
に一旦希釈してから圧力晶析を行ない、或は高濃度のま
まで1回目の圧力晶析と2回目の圧力晶析を順次実施す
ることによって、L体を高純度の析出物として回収する
操作を進めればよい。
図2のPである場合を考えると、本発明を実施するに当
たっては、まず組成PのD・L体混合物を含む水溶液を
常圧もしくは減圧で濃縮する(即ち、矢印Q1 に沿って
水溶液濃度を高めていく)か、その後引き続いて冷却す
ると、その濃度がP1 点に達した時点でラセミ体の析出
が始まり、ラセミ体の析出が進むにつれて水溶液中のD
・L体混合物組成は矢印Q2 で示す如く状態図の線に沿
って共晶点A方向に変化していく。このとき、より効率
的には、圧力晶析後の母液を更に高温に加熱して水分を
蒸発させた後、冷却してラセミ体を析出させる。この間
に生成する析出物は、L体/D体=1/1のラセミ体で
あるので、必要により高純度のラセミ体として回収す
る。そして共晶点に達した後は、前記図1で説明した様
に一旦希釈してから圧力晶析を行ない、或は高濃度のま
まで1回目の圧力晶析と2回目の圧力晶析を順次実施す
ることによって、L体を高純度の析出物として回収する
操作を進めればよい。
【0024】また、原料水溶液のD・L体混合組成が図
2のWである場合は、共晶組成Aに対して過剰分のL体
は通常の圧力晶析法や冷却晶析法によっても晶析分離で
きるが、必要によっては、下記の様な濃縮法と圧力晶析
法を組み合わせることも可能である。即ち、組成WのD
・L体混合物を含む水溶液を常圧もしくは減圧で濃縮し
(即ち、矢印R1 に沿って水溶液濃度を高めていく)、
あるいは引き続いて冷却すると、その濃度がW1 点に達
した時点でL体の析出が始まり、L体の析出が進むにつ
れて水溶液中のD・L体混合物組成は矢印R2 で示す如
く状態図の線に沿って共晶点A方向に変化していく。こ
の間に生成する析出物は高純度のL体であるから、その
まま、もしくは2回目の圧力晶析によって得られるL体
析出物と合して回収すれば良い。このとき、より効率的
には、母液を高温に加熱して水分を蒸発させ、その後冷
却すれば、濃度上昇と温度降下による析出によりL体を
効率よく析出させることができる。
2のWである場合は、共晶組成Aに対して過剰分のL体
は通常の圧力晶析法や冷却晶析法によっても晶析分離で
きるが、必要によっては、下記の様な濃縮法と圧力晶析
法を組み合わせることも可能である。即ち、組成WのD
・L体混合物を含む水溶液を常圧もしくは減圧で濃縮し
(即ち、矢印R1 に沿って水溶液濃度を高めていく)、
あるいは引き続いて冷却すると、その濃度がW1 点に達
した時点でL体の析出が始まり、L体の析出が進むにつ
れて水溶液中のD・L体混合物組成は矢印R2 で示す如
く状態図の線に沿って共晶点A方向に変化していく。こ
の間に生成する析出物は高純度のL体であるから、その
まま、もしくは2回目の圧力晶析によって得られるL体
析出物と合して回収すれば良い。このとき、より効率的
には、母液を高温に加熱して水分を蒸発させ、その後冷
却すれば、濃度上昇と温度降下による析出によりL体を
効率よく析出させることができる。
【0025】尚、上記の濃縮工程において、原料水溶液
中のD・L混合物組成がL体/D体=1/1のラセミ体
である場合は、濃縮工程で析出するのは最後までラセミ
体のみであり、またL体もしくはD体単独組成のもので
ある場合は、濃縮工程で析出するのは最後までL体また
はD体のみであるから、上記濃縮工程は全く意味をなさ
なくなり、従ってこの様な場合は本発明から除外され
る。しかしながら、これら以外のD・L混合物を含む水
溶液であれば、濃縮工程で辿り着く組成は上記状態図の
共晶組成A1 になるから、上記以外の全ての組成のD・
L体混合物水溶液からのL体の分別に利用することがで
きる。
中のD・L混合物組成がL体/D体=1/1のラセミ体
である場合は、濃縮工程で析出するのは最後までラセミ
体のみであり、またL体もしくはD体単独組成のもので
ある場合は、濃縮工程で析出するのは最後までL体また
はD体のみであるから、上記濃縮工程は全く意味をなさ
なくなり、従ってこの様な場合は本発明から除外され
る。しかしながら、これら以外のD・L混合物を含む水
溶液であれば、濃縮工程で辿り着く組成は上記状態図の
共晶組成A1 になるから、上記以外の全ての組成のD・
L体混合物水溶液からのL体の分別に利用することがで
きる。
【0026】また上記では、L体リッチのD・L体混合
物水溶液からL体を分別する方法として説明しており、
現に本発明では特に人体に有用なL体の分別に有効に活
用されるが、場合によっては、D体リッチの混合物水溶
液からD体の分別や分離除去手段として活用することも
可能であり、この場合も、上記L体の分別操作と実質的
に同様の操作を行なえば良い。
物水溶液からL体を分別する方法として説明しており、
現に本発明では特に人体に有用なL体の分別に有効に活
用されるが、場合によっては、D体リッチの混合物水溶
液からD体の分別や分離除去手段として活用することも
可能であり、この場合も、上記L体の分別操作と実質的
に同様の操作を行なえば良い。
【0027】図4は、前記の方法を実施する際のフロ
ー図であって、原料溶液に適量の水を加えることによっ
て適当な濃度にまで希釈してから圧力晶析1にかけ、L
体純度の十分に高められた結晶を製品として回収する一
方、回収母液は濃縮してラセミ体結晶を析出させて母液
中のL体比率を高めた後原料溶液に返送して混合し、加
水して濃度調整を行った後、圧力晶析工程に循環する。
ー図であって、原料溶液に適量の水を加えることによっ
て適当な濃度にまで希釈してから圧力晶析1にかけ、L
体純度の十分に高められた結晶を製品として回収する一
方、回収母液は濃縮してラセミ体結晶を析出させて母液
中のL体比率を高めた後原料溶液に返送して混合し、加
水して濃度調整を行った後、圧力晶析工程に循環する。
【0028】また図5は、前記の方法を実施する際の
フロー図であって、高濃度の原料溶液を圧力晶析1にか
けてL体比率の高められた結晶を回収し、この結晶には
適量の水を加えて溶解し圧力晶析2にかけることによっ
て、析出するL体を高純度の結晶として採取する。一
方、圧力晶析1,2で分離される母液は、各晶析工程で
L体の析出が行なわれている分だけL体濃度が低下して
いるので、この母液は放圧して大気圧に戻し、必要によ
り減圧することにより濃縮し、濃縮工程で加熱した場合
は冷却してラセミ体結晶を析出させると共に、母液組成
を大気圧下の前記共晶組成に戻し、再び原料液に混合し
て前述の圧力晶析1,2を繰り返す。この操作を繰り返
すことによって、L体リッチの光学異性体混合物から高
純度のL体を効率よく分別することができる。
フロー図であって、高濃度の原料溶液を圧力晶析1にか
けてL体比率の高められた結晶を回収し、この結晶には
適量の水を加えて溶解し圧力晶析2にかけることによっ
て、析出するL体を高純度の結晶として採取する。一
方、圧力晶析1,2で分離される母液は、各晶析工程で
L体の析出が行なわれている分だけL体濃度が低下して
いるので、この母液は放圧して大気圧に戻し、必要によ
り減圧することにより濃縮し、濃縮工程で加熱した場合
は冷却してラセミ体結晶を析出させると共に、母液組成
を大気圧下の前記共晶組成に戻し、再び原料液に混合し
て前述の圧力晶析1,2を繰り返す。この操作を繰り返
すことによって、L体リッチの光学異性体混合物から高
純度のL体を効率よく分別することができる。
【0029】上記では、具体例としてD・Lマンデル酸
水溶液から有用なL体を分別する方法を主体にして説明
したが、本発明はもとよりこれに限定されるものではな
く、同様にして、D体比率の高いD・L体混合物水溶液
からD体を回収もしくは除去することも可能であり、必
要によっては、副次的産物としてラセミ体の分別も同時
に行うことができる。更には他の様々の光学異性体混合
物を含む溶液からのL体あるいはD体の分離回収もしく
はD体の除去に広く活用することができ、また使用する
溶媒も水に限らず、光学異性体の種類に応じた最適の溶
媒を適宜選択して用いることができる。溶媒の具体例と
しては、水の他、n−ヘキサン、ベンゼン、トルエン、
キシレン、クレゾール、メタノールやエタノール等のア
ルコール系溶媒、アセトン、メチルエチルケトン等のケ
トン系溶媒、エチルエーテル等のエーテル系溶媒など
を、光学異性体の種類に応じて適宜選択して使用するこ
とができる。また溶媒は単独溶媒として使用するのが一
般的であるが、場合によっては2種以上の混合溶媒とし
て使用することもある。
水溶液から有用なL体を分別する方法を主体にして説明
したが、本発明はもとよりこれに限定されるものではな
く、同様にして、D体比率の高いD・L体混合物水溶液
からD体を回収もしくは除去することも可能であり、必
要によっては、副次的産物としてラセミ体の分別も同時
に行うことができる。更には他の様々の光学異性体混合
物を含む溶液からのL体あるいはD体の分離回収もしく
はD体の除去に広く活用することができ、また使用する
溶媒も水に限らず、光学異性体の種類に応じた最適の溶
媒を適宜選択して用いることができる。溶媒の具体例と
しては、水の他、n−ヘキサン、ベンゼン、トルエン、
キシレン、クレゾール、メタノールやエタノール等のア
ルコール系溶媒、アセトン、メチルエチルケトン等のケ
トン系溶媒、エチルエーテル等のエーテル系溶媒など
を、光学異性体の種類に応じて適宜選択して使用するこ
とができる。また溶媒は単独溶媒として使用するのが一
般的であるが、場合によっては2種以上の混合溶媒とし
て使用することもある。
【0030】
【実施例】以下、実施例を挙げて本発明の構成および作
用効果をより具体的に説明するが、本発明はもとより下
記実施例によって制限を受けるものではなく、前・後記
の趣旨に適合し得る範囲で適当に変更を加えて実施する
ことも勿論可能であり、それらは何れも本発明の技術的
範囲に包含される。
用効果をより具体的に説明するが、本発明はもとより下
記実施例によって制限を受けるものではなく、前・後記
の趣旨に適合し得る範囲で適当に変更を加えて実施する
ことも勿論可能であり、それらは何れも本発明の技術的
範囲に包含される。
【0031】実施例1 L体/D体比が70/30であるD−,L−マンデル酸
42gを200gに溶解した水溶液(水溶液濃度18
%)を原料として使用し、この水溶液を176.4MP
aまたは215.4MPa(いずれも操作温度は303
K)で、圧力晶析にかけてL体リッチの析出物を得た。
この圧力晶析工程で排出した母液は、大気圧に放圧した
後、大気圧下もしくは減圧下に70〜100℃に加熱し
て濃縮し、次いで常温(25℃)まで降温することによ
り、生成するラセミ体の結晶を除去し、残りの母液に水
を加えて最初と同じ濃度に希釈してから、上記と同じ圧
力・温度条件で圧力晶析を行ない、L体リッチの結晶を
得た。
42gを200gに溶解した水溶液(水溶液濃度18
%)を原料として使用し、この水溶液を176.4MP
aまたは215.4MPa(いずれも操作温度は303
K)で、圧力晶析にかけてL体リッチの析出物を得た。
この圧力晶析工程で排出した母液は、大気圧に放圧した
後、大気圧下もしくは減圧下に70〜100℃に加熱し
て濃縮し、次いで常温(25℃)まで降温することによ
り、生成するラセミ体の結晶を除去し、残りの母液に水
を加えて最初と同じ濃度に希釈してから、上記と同じ圧
力・温度条件で圧力晶析を行ない、L体リッチの結晶を
得た。
【0032】上記において、最初の圧力晶析および2回
目の圧力晶析によって得たL体リッチの結晶のL体純度
は、176.4MPaで圧力晶析を行なったものの純度
は98.5%、215.4MPaで圧力晶析を行なった
ものの純度は91.0%であり、いずれも圧力晶析前の
L体純度(約70%)に対して大幅に純度が高められる
ことが確認された。
目の圧力晶析によって得たL体リッチの結晶のL体純度
は、176.4MPaで圧力晶析を行なったものの純度
は98.5%、215.4MPaで圧力晶析を行なった
ものの純度は91.0%であり、いずれも圧力晶析前の
L体純度(約70%)に対して大幅に純度が高められる
ことが確認された。
【0033】実施例2 D体/L体比が63/37であるD−,L−マンデル酸
18重量部を水100重量部に溶かした溶液(水溶液濃
度:15.3%)660gを、大気圧下もしくは減圧下
に70〜100℃に加熱して濃縮し、次いで30℃付近
まで降温することにより生成するラセミ体の結晶を除去
し、最後に共晶組成のD−,L−マンデル酸(L体/D
体=70/30)54gが水90gに溶解した溶液14
4gを得た。この水溶液を、176.4MPaまたは2
15.6MPa(いずれも303K)で圧力晶析を行な
い、各操作圧力における共晶組成となるまで晶析を行な
い、表1に示す如くL体比率の高められた結晶を得た。
18重量部を水100重量部に溶かした溶液(水溶液濃
度:15.3%)660gを、大気圧下もしくは減圧下
に70〜100℃に加熱して濃縮し、次いで30℃付近
まで降温することにより生成するラセミ体の結晶を除去
し、最後に共晶組成のD−,L−マンデル酸(L体/D
体=70/30)54gが水90gに溶解した溶液14
4gを得た。この水溶液を、176.4MPaまたは2
15.6MPa(いずれも303K)で圧力晶析を行な
い、各操作圧力における共晶組成となるまで晶析を行な
い、表1に示す如くL体比率の高められた結晶を得た。
【0034】
【表1】
【0035】次いで、上記で得た結晶に適量の水を加え
て溶解し、再び上記と同じ圧力に加圧して圧力晶析を行
ない、各操作圧力における共晶組成に達するまでに析出
する結晶を回収してそのL体純度を調べたところ、表2
に示す結果を得た。
て溶解し、再び上記と同じ圧力に加圧して圧力晶析を行
ない、各操作圧力における共晶組成に達するまでに析出
する結晶を回収してそのL体純度を調べたところ、表2
に示す結果を得た。
【0036】
【表2】
【0037】尚、上記1回目および2回目の圧力晶析工
程で分離される母液を合して放圧し、常圧で濃縮したと
ころ、上記原料水溶液の場合と同様に濃縮した後冷却す
ることによりラセミ体の結晶が析出すると共に、母液の
組成は次第に常圧の共晶組成に近づき、高純度のラセミ
体の析出が完了した時点における母液は共晶組成に近く
なり、前記操作を繰り返せば、L体の分別が行なえると
の確信を得た。
程で分離される母液を合して放圧し、常圧で濃縮したと
ころ、上記原料水溶液の場合と同様に濃縮した後冷却す
ることによりラセミ体の結晶が析出すると共に、母液の
組成は次第に常圧の共晶組成に近づき、高純度のラセミ
体の析出が完了した時点における母液は共晶組成に近く
なり、前記操作を繰り返せば、L体の分別が行なえると
の確信を得た。
【0038】
【発明の効果】本発明は以上の様に構成されており、殊
に溶媒溶液からの濃縮と圧力晶析を巧みに組み合わせる
ことによって、通常の冷却晶析法や圧力晶析を単独で実
施したのでは分離することのできない光学異性体混合物
の溶液から、L体、D体あるいはラセミ体を高純度で回
収し、あるいはD体の除去に利用することができ、また
公知の圧力晶析法に比べて操作を単純化しつつ効率的な
分別を行ない得ることになった。
に溶媒溶液からの濃縮と圧力晶析を巧みに組み合わせる
ことによって、通常の冷却晶析法や圧力晶析を単独で実
施したのでは分離することのできない光学異性体混合物
の溶液から、L体、D体あるいはラセミ体を高純度で回
収し、あるいはD体の除去に利用することができ、また
公知の圧力晶析法に比べて操作を単純化しつつ効率的な
分別を行ない得ることになった。
【図1】本発明に係る分離法を、状態図を参照しつつ説
明する図である。
明する図である。
【図2】同じく、本発明に係る分離法を、状態図を参照
しつつ説明する図である。
しつつ説明する図である。
【図3】D・L−マンデル酸水溶液の常圧における状態
図である。
図である。
【図4】本発明に係る分離法を例示するフロー図であ
る。
る。
【図5】本発明に係る他の分離法を例示するフロー図で
ある。
ある。
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C07B 63/00 7419−4H C07B 63/00 B C07C 59/50 9450−4H C07C 59/50
Claims (5)
- 【請求項1】 大気圧下で状態図上ラセミ体を形成する
ためL体またはD体の分離不能域を有する光学異性体混
合物の溶液であって、且つ高圧力下で光学異性体の溶解
度が減少し、ラセミ体とL体またはD体との共晶組成が
ラセミ体組成に近づく混合物系に属し、該溶液中のL体
とD体の組成比が異なる混合物が溶媒に溶解している溶
液から、L体またはD体を分離する方法であって、 A:大気圧下における上記L体またはD体とラセミ体の
共晶組成もしくはその近傍の組成の溶液を加圧し、圧力
晶析によってL体またはD体濃度の高められた結晶を析
出させると共に、高圧力下における共晶組成近傍の母液
とに分離する工程、 B:上記Aで得た母液を、大気圧下もしくは減圧下で溶
媒を蒸発させて濃縮し、ラセミ体を析出させると共に、
大気圧下における共晶組成近傍の混合物溶液を得る工
程、 を含むことを特徴とする光学異性体の分離方法。 - 【請求項2】 大気圧下で状態図上ラセミ体を形成する
ためL体またはD体の分離不能域を有する光学異性体混
合物の溶液であって、且つ高圧力下で光学異性体の溶解
度が減少し、ラセミ体とL体またはD体との共晶組成が
ラセミ体組成に近づく混合物系に属し、該溶液中のL体
とD体の組成比が異なる混合物が溶媒に溶解している溶
液から、L体またはD体を分離する方法であって、 A:大気圧下における上記L体またはD体とラセミ体の
共晶組成もしくはその近傍の組成の溶液を加圧し、圧力
晶析によってL体またはD体濃度の高められた結晶を析
出させると共に、高圧力下における共晶組成近傍の母液
とに分離する工程、 B1 :上記Aで得た結晶を前記溶媒に溶解した後、再び
圧力晶析を行なってL体またはD体濃度の更に高められ
た結晶を析出させる一方、母液は大気圧下もしくは減圧
下で溶媒を蒸発させて濃縮し、ラセミ体を析出させると
共に、大気圧下における共晶組成近傍の混合物溶液を分
離する工程、 を含むことを特徴とする光学異性体の分離方法。 - 【請求項3】 上記B工程における母液の濃縮によって
得られる混合物溶液に、大気圧下における上記共晶組成
近傍の原料溶液を混合して工程Aを繰り返す請求項1に
記載の分離方法。 - 【請求項4】 上記B1 工程における母液の濃縮によっ
て得られる混合物溶液に、大気圧下における上記共晶組
成近傍の原料溶液を混合して工程Aを繰り返す請求項2
に記載の分離方法。 - 【請求項5】 光学異性体混合物溶液が、L体比率の高
いD−,L−マンデル酸の水溶液である請求項1〜4の
いずれかに記載の分離方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22391795A JPH0966202A (ja) | 1995-08-31 | 1995-08-31 | 圧力晶析による光学異性体の分離方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22391795A JPH0966202A (ja) | 1995-08-31 | 1995-08-31 | 圧力晶析による光学異性体の分離方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0966202A true JPH0966202A (ja) | 1997-03-11 |
Family
ID=16805745
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22391795A Withdrawn JPH0966202A (ja) | 1995-08-31 | 1995-08-31 | 圧力晶析による光学異性体の分離方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0966202A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013503832A (ja) * | 2009-09-02 | 2013-02-04 | マックス−プランク−ゲゼルシャフト・ツア・フェルデルング・デア・ヴィッセンシャフテン・エー・ファオ | 循環結晶化プロセスおよび結晶化デバイスによってラセミ化合物形成キラル物質を分離するための方法 |
-
1995
- 1995-08-31 JP JP22391795A patent/JPH0966202A/ja not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013503832A (ja) * | 2009-09-02 | 2013-02-04 | マックス−プランク−ゲゼルシャフト・ツア・フェルデルング・デア・ヴィッセンシャフテン・エー・ファオ | 循環結晶化プロセスおよび結晶化デバイスによってラセミ化合物形成キラル物質を分離するための方法 |
US8822721B2 (en) | 2009-09-02 | 2014-09-02 | MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. | Method for separation of racemic compound-forming chiral substances by a cyclic crystallization process and a crystallization device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100280766B1 (ko) | 페닐프로피온산의 실제적으로 순수한 에난티오머의 제조방법 | |
JPH08503949A (ja) | α−アリールカルボン酸塩の選択的結晶化 | |
US5332834A (en) | Racemization of an enantomerically enriched α-aryl carboxylic acid | |
CA2467001A1 (en) | Extraction process for removal of impurities from mother liquor in the synthesis of carboxylic acid | |
JP5052234B2 (ja) | コハク酸の製造方法 | |
JPH0966202A (ja) | 圧力晶析による光学異性体の分離方法 | |
CA2004887C (en) | Recovery of l-amino acid isomers from their racemic mixtures | |
EP0036265B1 (en) | Method of optical resolution of (+/-)-2-amino-1-butanol and/or (+/-) -mandelic acid | |
JPH0115496B2 (ja) | ||
JPH10120624A (ja) | 2−ヒドロキシナフタレン−6−カルボン酸の精製方法 | |
JPS60217897A (ja) | 乳酸の分離精製方法 | |
US5292933A (en) | Process for the resolution of threo-3-[(2-aminophenyl)-thio]-2-hydroxy-3-(4-methoxy-phenyl)propionic acid | |
JPH01226848A (ja) | 2‐(4‐イソブチルフエニル)‐プロピオン酸の精製法 | |
JP3239452B2 (ja) | α−L−アスパルチル−L−フェニルアラニンメチルエステル塩酸塩の製造法 | |
JPH09176054A (ja) | 結晶性物質の精製方法 | |
JP2841895B2 (ja) | 圧力晶析法による光学異性体の単離方法 | |
US2882302A (en) | Purification of glutamic acid enantiomorphs | |
JPH05163168A (ja) | 2,6−ジイソプロピルナフタレンの選択的分離方法 | |
JP2001328971A (ja) | アミノ酸アミドの精製法 | |
JP2748833B2 (ja) | 粗製アントラセンの回収方法 | |
JPS6391353A (ja) | システイン塩酸塩・1水和物の精製方法 | |
JPH03127751A (ja) | ジメチルフェノールの精製方法 | |
CN118715197A (zh) | 用于纯化粗甲基丙烯酸甲酯的方法 | |
JPH02202592A (ja) | 2‐メチルナフタレンの分離回収方法 | |
JPS60130543A (ja) | 酢酸コバルト結晶の精製法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20021105 |