JPH09318644A - Ultrasonic flow velocity measuring method - Google Patents

Ultrasonic flow velocity measuring method

Info

Publication number
JPH09318644A
JPH09318644A JP8131644A JP13164496A JPH09318644A JP H09318644 A JPH09318644 A JP H09318644A JP 8131644 A JP8131644 A JP 8131644A JP 13164496 A JP13164496 A JP 13164496A JP H09318644 A JPH09318644 A JP H09318644A
Authority
JP
Japan
Prior art keywords
wave
received
ultrasonic
flow velocity
waves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8131644A
Other languages
Japanese (ja)
Inventor
Shigenori Okamura
繁憲 岡村
Takaomi Ikada
隆臣 筏
Akio Tomita
明男 冨田
Akio Kono
明夫 河野
Eiji Nakamura
英司 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Kansai Gas Meter Co Ltd
Original Assignee
Osaka Gas Co Ltd
Kansai Gas Meter Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Kansai Gas Meter Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP8131644A priority Critical patent/JPH09318644A/en
Publication of JPH09318644A publication Critical patent/JPH09318644A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To surely determine the received wave arrival timing and measure the flow velocity with high accuracy by integrating the waves of one or both polarities of the received waves, and setting the time when the integrated output reaches the reference value to the received wave arrival timing for measuring the propagation time difference. SOLUTION: Received waves from transceivers 2, 3 are half-wave shaped by a half-wave shaping circuit 7 through an amplifying circuit 5, and the integrated output from an integrating circuit 8 is compared with the reference voltage from a reference voltage generating circuit 10 by a comparing circuit 9. The reference voltage is set to the middle value where the integrated output rises synchronously with the rise of the half wave of the second wave, thus the integrated output reaches the reference voltage value at the middle time when it rises along the rise of the second wave beyond the peak value of the first wave, and the received wave arrival signal is outputted from the comparing circuit 9 at this time. When the received signal is integrated, the integrated output can be increased in response to the received wave-form, and the first wave of the received wave is not required to be captured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、超音波を利用し
てガスその他の流体の流速を測定する超音波流速測定方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic flow velocity measuring method for measuring the flow velocity of gas or other fluid using ultrasonic waves.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】ガスそ
の他の流体の流量を求めるに際し、まず流体の流速を連
続的ないし定期的に測定し、これに基いて流量を演算す
ることが行われている。このような流体の流速測定方法
の一つとして、超音波を利用した方法が知られている。
2. Description of the Related Art In determining the flow rate of a gas or other fluid, the flow rate of the fluid is first measured continuously or periodically, and the flow rate is calculated based on the measured flow rate. I have. As one of such fluid flow velocity measuring methods, a method using ultrasonic waves is known.

【0003】かかる超音波流速測定方法の原理を、図7
にて説明すると次のとおりである。図7において、
(1)は内部を矢印方向にガス等の流体が流れる管路で
ある。この管路(1)内には、流れ方向の上流側及び下
流側に、所定距離を隔てて送受波器(2)(3)が配置
されている。
FIG. 7 shows the principle of such an ultrasonic flow velocity measuring method.
The description is as follows. In FIG.
(1) is a pipeline through which a fluid such as gas flows in the direction of the arrow. In the pipeline (1), the transducers (2) and (3) are arranged at a predetermined distance upstream and downstream in the flow direction.

【0004】前記の各送受波器(2)(3)は送波器と
受波器を兼ねるもので、振動子からなる超音波発信兼受
信素子(図示略)を備えており、この超音波発信兼受信
素子がパルス発生回路(4)からの駆動パルスにより駆
動されて振動し、超音波を発生送信する一方、送信され
てきた超音波を受信して超音波発信兼受信素子が振動し
たときの受信波が増幅回路(5)から電気信号として出
力されるものとなされている。
Each of the transducers (2) and (3) serves as both a transmitter and a receiver, and includes an ultrasonic transmitting / receiving element (not shown) composed of a vibrator. When the transmitting / receiving element is driven by the driving pulse from the pulse generation circuit (4) and vibrates to generate and transmit an ultrasonic wave, while receiving the transmitted ultrasonic wave and the ultrasonic transmitting / receiving element vibrates. Is output as an electric signal from the amplifier circuit (5).

【0005】そして、上流側送受波器(2)から流れに
対して順方向に送信された超音波が下流側送受波器
(3)で受波されるまでの伝搬時間と、下流側送受波器
(3)から流れに対して逆方向に送信された超音波が上
流側送受波器(2)で受波されるまでの伝搬時間との差
は、流速に関係することから、この伝搬時間差を求める
ことにより流体の流速を測定するものとなされている。
なお、図7において、(6)は各送受波器(2)(3)
とパルス発生回路(4)及び増幅回路(5)の接続を切
替える切替回路であり、まずパルス発生回路(4)と上
流側の送受波器(2)、下流側の送受波器(3)と増幅
回路(5)を接続して、上流側から下流側への伝搬時間
を測定したのち、該切替回路(6)の作動によりパルス
発生回路(4)と下流側の送受波器(3)、上流側の送
受波器(2)と増幅回路(5)とが接続されるように切
替えて、下流側から上流側への伝搬時間を測定するもの
となされている。。
The propagation time until the ultrasonic wave transmitted from the upstream transducer (2) in the forward direction to the flow is received by the downstream transducer (3), and the downstream The difference between the propagation time until the ultrasonic wave transmitted in the opposite direction to the flow from the transmitter (3) and the ultrasonic wave received by the upstream transducer (2) is related to the flow velocity. , The flow velocity of the fluid is measured.
In FIG. 7, (6) indicates each transducer (2) (3)
And a switching circuit for switching the connection between the pulse generation circuit (4) and the amplification circuit (5). First, the pulse generation circuit (4), the upstream-side transducer (2), and the downstream-side transducer (3) After the amplifier circuit (5) is connected and the propagation time from the upstream side to the downstream side is measured, the pulse generating circuit (4) and the downstream transducer (3) are operated by the operation of the switching circuit (6). The transmission / reception device (2) on the upstream side and the amplifier circuit (5) are switched so as to be connected, and the propagation time from the downstream side to the upstream side is measured. .

【0006】ところで、上記のような超音波の伝搬時間
差は、従来、相互の送受波器(2)(3)を介して増幅
回路(5)から出力される受信波の第1波を基準にして
測定していた。より具体的に説明すると、パルス発生回
路(4)からは、一般に複数個の矩形状パルスが超音波
送信素子に送られるが、これにより超音波送信素子は正
弦波状に交番振動して、該振動に応じた超音波を出力す
る。この超音波の波形は、最初の駆動パルスによる振動
に、第2、第3の駆動パルスによる振動が重畳して、第
1波よりも第2波、第3波とピーク値が高くなったの
ち、やがてピーク値が減衰していく振動波形を示す。従
って、送受波器(2)(3)により受信された受信波
(W)(W´)も、送信波の振動波形に対応して図2に
示すように、第1波(W1)(W1´)よりも第2波
(W2)(W2´)、第3波(W3)(W3´)とピー
ク値が高くなったのち、やがてピーク値が減衰していく
振動波形となる。
[0006] By the way, the propagation time difference of the ultrasonic waves as described above is conventionally based on the first wave of the received wave output from the amplifier circuit (5) via the mutual transducers (2) and (3). Was measured. More specifically, a plurality of rectangular pulses are generally sent from the pulse generation circuit (4) to the ultrasonic transmission element, which causes the ultrasonic transmission element to oscillate in a sinusoidal fashion and to vibrate. The ultrasonic wave corresponding to is output. In the waveform of this ultrasonic wave, the vibration due to the first drive pulse is superposed with the vibration due to the second and third drive pulses, and the peak values of the second wave and the third wave are higher than those of the first wave. , Shows a vibration waveform in which the peak value is gradually attenuated. Therefore, the received waves (W) and (W ′) received by the wave transmitters / receivers (2) and (3) also correspond to the vibration waveforms of the transmitted waves, as shown in FIG. The peak value becomes higher than the second wave (W2) (W2 ′) and the third wave (W3) (W3 ′) than that of ′ ′, and then the peak value is gradually attenuated to become an oscillating waveform.

【0007】而して、受信波(W)(W´)の第1波
(W1)(W1´)を伝搬時間差の測定のために用いる
従来法では、第1波のピーク値が小さいため、これを捕
捉するための基準電圧も小さくせざるを得ず、伝搬時間
差の基準となる受信波到達タイミングを確定することが
容易でないという欠点があった。
In the conventional method in which the first waves (W1) and (W1 ') of the received waves (W) and (W') are used for measuring the propagation time difference, the peak value of the first wave is small, The reference voltage for capturing this has no choice but to be small, and there is a drawback in that it is not easy to determine the arrival timing of the received wave that serves as the reference for the propagation time difference.

【0008】一方また、上記欠点を解消するために、受
信波(W)(W´)のピークをつないで得られる曲線
(エンベロープ)をつくり、このエンベロープが基準電
圧に達した時点をもって受信波到達タイミングとするこ
とも行われている。
On the other hand, in order to solve the above-mentioned drawbacks, a curve (envelope) obtained by connecting the peaks of the received waves (W) and (W ') is formed, and the received wave arrives when the envelope reaches the reference voltage. Timing is also done.

【0009】しかしながら、この方法では、エンベロー
プの傾斜が緩やかであるために、基準電圧がわずかに変
動した場合にも、受信波到達タイミングが大きく変動し
てしまい、やはり測定精度に欠けるという欠点があっ
た。
However, this method has a drawback that the arrival timing of the received wave fluctuates greatly even when the reference voltage slightly fluctuates due to the gradual inclination of the envelope, and the measurement accuracy is also insufficient. It was

【0010】この発明は、かかる技術的背景に鑑みてな
されたものであって、伝搬時間差の測定のための受信波
到達タイミングを精度良く確定することができ、ひいて
は十分な測定精度を確保できる超音波流速測定方法の提
供を目的とする。
The present invention has been made in view of the above technical background, and it is possible to accurately determine the arrival timing of a received wave for measuring the propagation time difference, and thus to ensure sufficient measurement accuracy. It is intended to provide a method for measuring an acoustic velocity.

【0011】[0011]

【発明が解決しようとする課題】上記目的を達成するた
めに、この発明の1つは、計測流体の上流側と下流側に
それぞれ送波器及び受波器を配置し、前記各送波器の超
音波発信素子に駆動パルスを印加して相互に超音波を発
生送信するとともに、送信された超音波を相互に受波器
で受信し、各受信波の比較から求めた該超音波の伝搬時
間の差に基いて流速を測定する超音波流速測定方法にお
いて、前記受信波の片方の極性の波あるいは全波整流し
た両方の極性の波を積分し、その積分出力が基準値に達
した時点を伝搬時間差の測定のための受信波到達タイミ
ングとすることを特徴とするものである。
In order to achieve the above object, one of the present inventions is to arrange a wave transmitter and a wave receiver respectively on the upstream side and the downstream side of a measurement fluid, Propagation of ultrasonic waves obtained by comparing each received wave while applying ultrasonic waves to the ultrasonic wave transmission element of In an ultrasonic flow velocity measuring method for measuring a flow velocity based on a time difference, a wave of one polarity of the received wave or a wave of both polarities obtained by full-wave rectification is integrated, and the time when the integrated output reaches a reference value. Is the reception wave arrival timing for measuring the propagation time difference.

【0012】これにより、受信波の第1波のピーク値よ
りも大きな値を基準値として採用設定することができ
る。このため、従来のようにピーク値の小さい第1波を
捕捉する必要はなくなる。また、受信波のピークをつな
いで得られるエンベロープが基準値に達した時点を受信
波到達タイミングとするのではなく、受信波の波形に対
応する積分出力の立上り部分において基準値と比較でき
るから、上記エンベロープ方に比べて、基準値が変動し
た場合の受信波到達タイミングの変動が抑制される。
Thus, a value larger than the peak value of the first wave of the received wave can be adopted and set as the reference value. Therefore, it is not necessary to capture the first wave having a small peak value as in the conventional case. Also, instead of setting the received wave arrival timing at the time when the envelope obtained by connecting the peaks of the received wave reaches the reference value, it is possible to compare with the reference value at the rising portion of the integrated output corresponding to the waveform of the received wave, Compared to the envelope method, variation in the reception wave arrival timing when the reference value varies is suppressed.

【0013】また、この発明の他の1つは、計測流体の
上流側と下流側にそれぞれ送波器及び受波器を配置し、
前記各送波器の超音波発信素子に駆動パルスを印加して
相互に超音波を発生送信するとともに、送信された超音
波を相互に受波器で受信し、各受信波の比較から求めた
該超音波の伝搬時間の差に基いて流速を測定する超音波
流速測定方法において、前記受信波の片方の極性の波あ
るいは全波整流した両方の極性の波を積分し、その積分
出力が基準値に達したのちにおける受信波のゼロクロス
時点を、伝搬時間差の測定のための受信波到達タイミン
グとすることを特徴とするものである。
Another aspect of the present invention is to arrange a wave transmitter and a wave receiver on the upstream side and the downstream side of the measurement fluid, respectively.
A drive pulse was applied to the ultrasonic wave transmitting element of each of the wave transmitters to mutually generate and transmit ultrasonic waves, and the transmitted ultrasonic waves were mutually received by the wave receivers, which were obtained by comparing the received waves. In an ultrasonic flow velocity measuring method for measuring a flow velocity based on a difference in propagation time of the ultrasonic wave, a wave of one polarity of the received wave or a wave of both polarities obtained by full-wave rectification is integrated, and its integrated output is a reference. It is characterized in that the zero cross time point of the received wave after reaching the value is set as the received wave arrival timing for measuring the propagation time difference.

【0014】これにより、基準値が多少変動してもゼロ
クロスのタイミングは変動しないから、確実にかつ安定
して受信波到達タイミングを確定することができる。
As a result, the zero-cross timing does not change even if the reference value fluctuates to some extent, so that the reception wave arrival timing can be reliably and stably determined.

【0015】[0015]

【発明の実施の形態】図1は請求項1に係る発明を実施
するための超音波流速測定装置を示すものである。図1
において、(1)は管路、(2)(3)は流れ方向の上
流側及び下流側に所定距離を隔てて配置された送受波
器、(4)は駆動パルスを発生するパルス発生回路、
(5)は送受波器(2)(3)で受信した受信波を出力
する増幅回路、(6)は各送受波器(2)(3)とパル
ス発生回路(4)及び増幅回路(5)の接続を切替える
切替回路であり、これらは図7に示したものと同じであ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an ultrasonic flow velocity measuring apparatus for carrying out the invention according to claim 1. FIG.
In Fig. 1, (1) is a pipe line, (2) and (3) are transducers arranged at a predetermined distance on the upstream side and the downstream side in the flow direction, and (4) is a pulse generation circuit for generating a drive pulse,
(5) is an amplifier circuit that outputs the received wave received by the transducers (2) and (3), and (6) is each transducer (2) and (3), a pulse generation circuit (4), and an amplifier circuit (5). ) Is a switching circuit for switching the connection, and these are the same as those shown in FIG. 7.

【0016】この実施形態では、受信側において、増幅
回路(5)からの各受信波(W)(W´)を半波整流す
る半波整流回路(7)と、半波整流回路の出力を積分す
る積分回路(8)が設けられている。
In this embodiment, on the receiving side, a half-wave rectifier circuit (7) for half-wave rectifying each received wave (W) (W ') from the amplifier circuit (5) and an output of the half-wave rectifier circuit are provided. An integrating circuit (8) for integrating is provided.

【0017】さらに、積分回路(8)の出力側には比較
回路(9)が設けられている。この比較回路(9)は、
積分回路(8)の出力と、基準電圧発生回路(10)か
らの基準電圧(V)を比較して、積分回路(8)の出力
が基準電圧に達すると、受信波到達信号を出力するもの
である。なお、基準電圧を、受信波(W)(W´)の第
1波(W1)(W1´)のピーク値よりも低い値に設定
すると、第1波を捕捉する従来方法と同じになることか
ら、第1波のピーク値よりも高い値に設定する必要があ
る。この実施形態では、第2波(W2)(W2´)の立
上がりに同期して積分出力が立ち上がる途中において積
分出力が基準電圧(V)に達するように、該基準電圧
(V)が設定されている。
Further, a comparison circuit (9) is provided on the output side of the integration circuit (8). This comparison circuit (9)
The output of the integrating circuit (8) is compared with the reference voltage (V) from the reference voltage generating circuit (10), and when the output of the integrating circuit (8) reaches the reference voltage, a reception wave arrival signal is output. Is. If the reference voltage is set to a value lower than the peak value of the first waves (W1) (W1 ') of the received waves (W) (W'), it becomes the same as the conventional method of capturing the first waves. Therefore, it is necessary to set the value higher than the peak value of the first wave. In this embodiment, the reference voltage (V) is set so that the integrated output reaches the reference voltage (V) while the integrated output rises in synchronization with the rising of the second wave (W2) (W2 ′). There is.

【0018】図1に示した装置においては、流体の上流
側の送受波器(2)から所期する波形の送信波を送り、
これを下流側の送受波器(3)で受信し、図2に示すよ
うな受信波(W)を増幅回路(5)を介して得たのち、
直ちに切替回路(6)により接続を切替え、下流側の送
受波器(3)から所期する波形の送信波を送り、これを
上流側の送受波器(2)で受信し、同じく図2に示すよ
うな受信波(W´)を増幅回路(5)を介して得る。こ
れらの受信波(W)(W´)は、同図に示すように、第
1波(W1)(W1´)よりも第2波(W2)(W2
´)、第3波(W3)(W3´)とピーク値が高くなっ
たのち、やがてピーク値が減衰していく振動波形とな
る。
In the apparatus shown in FIG. 1, a transmitter / receiver (2) on the upstream side of the fluid sends a transmitter wave having a desired waveform,
This is received by the wave transmitter / receiver (3) on the downstream side, and a received wave (W) as shown in FIG. 2 is obtained through the amplifier circuit (5),
Immediately, the connection is switched by the switching circuit (6), the transmission wave of the desired waveform is sent from the downstream side transducer (3), and this is received by the upstream side transducer (2). The received wave (W ') as shown is obtained via the amplifier circuit (5). These received waves (W) and (W ') are, as shown in the figure, the second waves (W2) and (W2) rather than the first waves (W1) and (W1').
′), The third wave (W3) (W3 ′), and the peak value becomes higher, and then the vibration waveform becomes such that the peak value is gradually attenuated.

【0019】これらの受信波(W)(W´)は、半波整
流回路(7)によって半波整流され、図3に示すような
正側極性の波となり、さらにこれが積分回路(8)によ
って積分され、積分回路(8)の積分出力は図4のよう
に、第1、第2、第3…の半波に対応して順次ピーク値
が大きくなる階段状波形となる。
These received waves (W) and (W ') are half-wave rectified by the half-wave rectifier circuit (7) to become waves of positive polarity as shown in FIG. 3, which are further integrated by the integrating circuit (8). As shown in FIG. 4, the integrated output of the integrating circuit (8) has a step-like waveform in which the peak value sequentially increases corresponding to the first, second, third, ... Half waves.

【0020】次に、上記のような積分回路(8)の積分
出力と、基準電圧発生回路(10)からの基準電圧
(V)が比較回路(9)により比較される。この実施形
態では、基準電圧(V)は、第2波の半波の立上がりに
同期して積分出力が立ち上がる途中の値に設定してある
から、積分出力が第1波のピーク値を超え第2波の立上
がりに沿って上昇している途中の時間T1で基準電圧値
(V)に達することになる。そして、その時点で比較回
路(9)から受信波到達信号が出力される。このよう
に、受信波(W)(W´)を積分することで、受信波形
に対応する形で積分出力を増大することができるから、
受信波(W)(W´)の第1波(W1)(W1´)を捕
捉する必要はなくなる。
Next, a comparison circuit (9) compares the integrated output of the integration circuit (8) as described above with the reference voltage (V) from the reference voltage generation circuit (10). In this embodiment, the reference voltage (V) is set to a value during which the integrated output rises in synchronization with the rising of the half wave of the second wave, so that the integrated output exceeds the peak value of the first wave and The reference voltage value (V) is reached at a time T1 during the rising of the two waves. Then, at that time, the received wave arrival signal is output from the comparison circuit (9). In this way, by integrating the received waves (W) and (W ′), the integrated output can be increased in a form corresponding to the received waveform.
It is not necessary to capture the first wave (W1) (W1 ') of the received waves (W) (W').

【0021】而して、2つの受信波(W)(W´)は、
流体流速に応じて変化する伝搬時間差(位相差)を生じ
ているから、上流側で受信された受信波の到達信号は、
送信後の時間T2において出力される。従って、2つの
受信波到達信号の時間差(T2−T1)が伝搬時間差と
なり、これを測定するとともに、これに基いて流体流速
を求め、さらに必要に応じて流量を求める。また、流体
流速を連続的ないし定期的に測定する必要がある場合に
は、上記の操作を所定の時間ごとに連続的ないし定期的
に繰り返せば良い。
Thus, the two received waves (W) (W ') are
Since there is a propagation time difference (phase difference) that changes according to the fluid flow velocity, the arrival signal of the received wave received on the upstream side is
It is output at time T2 after transmission. Therefore, the time difference (T2-T1) between the two received wave arrival signals becomes the propagation time difference, which is measured, the fluid flow velocity is obtained based on this, and the flow rate is obtained if necessary. When it is necessary to measure the fluid flow velocity continuously or periodically, the above operation may be repeated continuously or periodically at predetermined intervals.

【0022】図5は請求項2の発明を実施するための測
定装置を示すものである。この実施形態では、比較回路
(9)の出力側にゼロクロス検出回路(11)を設け、
比較回路(9)から信号が出力された直後において、増
幅回路(5)から出力される受信波のゼロクロスを到達
時間T1´T2´のタイミングで検出し、これをもって
受信波到達タイミングとするものである。こうすること
により、基準電圧発生回路(10)からの基準電圧
(V)が変動した場合でも、ゼロクロスのタイミングは
変動しないから、受信波到達タイミングに変動が生じる
ことはなく、ひいてはさらに精度の高い流速測定を行う
ことができる。
FIG. 5 shows a measuring apparatus for carrying out the invention of claim 2. In this embodiment, a zero cross detection circuit (11) is provided on the output side of the comparison circuit (9),
Immediately after the signal is output from the comparison circuit (9), the zero cross of the received wave output from the amplifier circuit (5) is detected at the timing of arrival time T1'T2 ', and this is used as the received wave arrival timing. is there. By doing so, even if the reference voltage (V) from the reference voltage generation circuit (10) changes, the zero-cross timing does not change, so that the arrival timing of the received wave does not change, and therefore the accuracy is even higher. Flow velocity measurement can be performed.

【0023】なお、図5、図6に示した実施形態におい
て、図1に示したものと同一構成部分については同一の
名称、符号を付し、その説明は省略する。
In the embodiments shown in FIGS. 5 and 6, the same components as those shown in FIG. 1 are designated by the same names and reference numerals, and the description thereof will be omitted.

【0024】以上の実施形態では、受信波を半波整流す
ることにより一方の極性の波のみを積分した場合を示し
たが、受信波を全波整流することにより、受信波の両極
性の波を積分するものとしても良い。また、流体流れの
上流側と下流側に各1個の送受波器を設け、切替回路で
接続を切替えて、上流側から下流側への送信と下流側か
ら上流側への送信を順次的に行う場合を示したが、上流
側に送波器と受波器を別々に設けるとともに下流側にも
これに対応して受波器と送波器を別々に設けることによ
り、伝搬時間の測定を同時的に行うものとしても良い。
In the above embodiment, the case where only the wave of one polarity is integrated by rectifying the received wave by half wave is shown. However, the wave of both polarities of the received wave is obtained by rectifying the received wave by full wave. May be integrated. Also, one wave transmitter / receiver is provided on each of the upstream side and the downstream side of the fluid flow, and the connection is switched by the switching circuit to sequentially perform transmission from the upstream side to the downstream side and transmission from the downstream side to the upstream side. Although the case was shown, the propagation time can be measured by installing the wave transmitter and the wave receiver separately on the upstream side and the wave receiver and the wave transmitter separately on the downstream side. It may be performed simultaneously.

【0025】[0025]

【発明の効果】請求項1に係る発明は、上述の次第で、
受信波の片方の極性の波あるいは全波整流した両方の極
性の波を積分し、その積分出力が基準値に達した時点を
伝搬時間差の測定のための受信波到達タイミングとする
から、受信波の第1波のピーク値よりも大きな値を基準
値として採用設定することができる。このため、従来の
ようにピーク値の小さい第1波を捕捉する必要はなくな
るから、受信波到達タイミングを確実に決定することが
できる。しかも、受信波のピークをつないで得られるエ
ンベロープが基準値に達した時点を受信波到達タイミン
グとするのではなく、受信波の波形に対応する積分出力
の立上り部分において基準値と比較できるから、上記エ
ンベロープ方に比べて、基準値が変動した場合の受信波
到達タイミングの変動を抑制でき、該タイミングを精度
良く決定することができ、ひいては高精度な流速測定が
可能となる。
According to the first aspect of the present invention,
Since the wave of one polarity of the received wave or the wave of both polarities that is full-wave rectified is integrated and the time when the integrated output reaches the reference value is the received wave arrival timing for measuring the propagation time difference, the received wave A value larger than the peak value of the first wave can be adopted and set as the reference value. Therefore, it is not necessary to capture the first wave having a small peak value as in the conventional case, and the arrival timing of the received wave can be reliably determined. Moreover, instead of setting the reception wave arrival timing at the time when the envelope obtained by connecting the peaks of the reception wave reaches the reference value, it is possible to compare with the reference value at the rising portion of the integrated output corresponding to the waveform of the reception wave. Compared with the envelope method, it is possible to suppress the variation of the reception wave arrival timing when the reference value varies, the timing can be determined with high accuracy, and it is possible to measure the flow velocity with high accuracy.

【0026】また、請求項2に係る発明は、受信波の片
方の極性の波あるいは全波整流した両方の極性の波を積
分し、その積分出力が基準値に達したのちにおける受信
波のゼロクロス時点を伝搬時間差の測定のための受信波
到達タイミングとするものである。従って、基準値が多
少変動してもゼロクロスのタイミングは変動しないか
ら、確実にかつ安定して受信波到達タイミングを確定す
ることができ、益々高精度な流速測定が可能となる。
According to a second aspect of the present invention, a received wave having one polarity or a full-wave rectified wave having both polarities is integrated, and the zero crossing of the received wave after the integrated output reaches a reference value. The time point is used as the reception wave arrival timing for measuring the propagation time difference. Therefore, even if the reference value fluctuates to some extent, the zero-cross timing does not fluctuate, so that the arrival timing of the received wave can be reliably and stably determined, and the flow velocity can be measured with higher accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項1の発明を実施するための超音波流速測
定装置の一例を示すブロック図である。
FIG. 1 is a block diagram showing an example of an ultrasonic flow velocity measuring device for carrying out the invention of claim 1;

【図2】図1の装置の増幅回路から出力された2つの受
信波の波形図である。
FIG. 2 is a waveform diagram of two received waves output from the amplifier circuit of the device of FIG.

【図3】同じく半波整流回路の出力波形図である。FIG. 3 is an output waveform diagram of the half-wave rectifier circuit.

【図4】同じく積分回路の出力波形図である。FIG. 4 is an output waveform diagram of the integration circuit.

【図5】請求項2の発明を実施するための超音波流速測
定装置の一例を示すブロック図である。
FIG. 5 is a block diagram showing an example of an ultrasonic flow velocity measuring apparatus for carrying out the invention of claim 2.

【図6】図5の装置の積分回路の出力波形図である。FIG. 6 is an output waveform diagram of an integrating circuit of the apparatus of FIG.

【図7】従来方法を実施するための超音波流速測定装置
の一例を示すブロック図である。
FIG. 7 is a block diagram showing an example of an ultrasonic flow velocity measuring device for performing a conventional method.

【符号の説明】[Explanation of symbols]

1…配管 2、3…送受波器 4…パルス発生回路 5…増幅回路 6…切替回路 7…半波整流回路 8…積分回路 9…比較回路 10…基準電圧発生回路 11…ゼロクロス検出回路 W、W´…受信波 1 ... Piping 2, 3 ... Transceiver 4 ... Pulse generation circuit 5 ... Amplification circuit 6 ... Switching circuit 7 ... Half-wave rectification circuit 8 ... Integration circuit 9 ... Comparison circuit 10 ... Reference voltage generation circuit 11 ... Zero cross detection circuit W, W '... received wave

───────────────────────────────────────────────────── フロントページの続き (72)発明者 冨田 明男 大阪市中央区平野町四丁目1番2号 大阪 瓦斯株式会社内 (72)発明者 河野 明夫 大阪市東成区東小橋2丁目10番16号 関西 ガスメータ株式会社内 (72)発明者 中村 英司 大阪市東成区東小橋2丁目10番16号 関西 ガスメータ株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Akio Tomita 4-1-2, Hirano-cho, Chuo-ku, Osaka-shi Inside Osaka Gas Co., Ltd. Inside Kansai Gas Meter Co., Ltd. (72) Eiji Nakamura Inventor Kansai Gas Meter Co., Ltd. 2- 10-16 Higashi Kobashi, Higashi-Nari-ku, Osaka City

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 計測流体の上流側と下流側にそれぞれ送
波器及び受波器を配置し、前記各送波器の超音波発信素
子に駆動パルスを印加して相互に超音波を発生送信する
とともに、送信された超音波を相互に受波器で受信し、
各受信波の比較から求めた該超音波の伝搬時間の差に基
いて流速を測定する超音波流速測定方法において、 前記受信波の片方の極性の波あるいは全波整流した両方
の極性の波を積分し、その積分出力が基準値に達した時
点を伝搬時間差の測定のための受信波到達タイミングと
することを特徴とする超音波流速測定方法。
1. A transmitter and a receiver are arranged on an upstream side and a downstream side of a measurement fluid, respectively, and a driving pulse is applied to an ultrasonic transmitting element of each of the transmitters to generate and transmit ultrasonic waves mutually. While receiving the transmitted ultrasonic waves with each other,
In the ultrasonic flow velocity measuring method for measuring the flow velocity based on the difference in the propagation time of the ultrasonic wave obtained from the comparison of the respective received waves, a wave of one polarity of the received wave or a wave of both polarities full-wave rectified An ultrasonic flow velocity measuring method, characterized by integrating and using a time point when the integrated output reaches a reference value as a received wave arrival timing for measuring a propagation time difference.
【請求項2】 計測流体の上流側と下流側にそれぞれ送
波器及び受波器を配置し、前記各送波器の超音波発信素
子に駆動パルスを印加して相互に超音波を発生送信する
とともに、送信された超音波を相互に受波器で受信し、
各受信波の比較から求めた該超音波の伝搬時間の差に基
いて流速を測定する超音波流速測定方法において、 前記受信波の片方の極性の波あるいは全波整流した両方
の極性の波を積分し、その積分出力が基準値に達したの
ちにおける受信波のゼロクロス時点を、伝搬時間差の測
定のための受信波到達タイミングとすることを特徴とす
る超音波流速測定方法。
2. A wave transmitter and a wave receiver are respectively arranged on the upstream side and the downstream side of a measurement fluid, and a drive pulse is applied to an ultrasonic wave transmitting element of each wave transmitter to mutually generate and transmit ultrasonic waves. In addition, the transmitted ultrasonic waves are mutually received by the receiver,
In the ultrasonic flow velocity measuring method for measuring the flow velocity based on the difference in the propagation time of the ultrasonic wave obtained from the comparison of the respective received waves, a wave of one polarity of the received wave or a wave of both polarities full-wave rectified An ultrasonic flow velocity measuring method, characterized in that the zero crossing point of the received wave after the integration is reached and the integrated output reaches a reference value is set as the received wave arrival timing for measuring the propagation time difference.
JP8131644A 1996-05-27 1996-05-27 Ultrasonic flow velocity measuring method Pending JPH09318644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8131644A JPH09318644A (en) 1996-05-27 1996-05-27 Ultrasonic flow velocity measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8131644A JPH09318644A (en) 1996-05-27 1996-05-27 Ultrasonic flow velocity measuring method

Publications (1)

Publication Number Publication Date
JPH09318644A true JPH09318644A (en) 1997-12-12

Family

ID=15062881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8131644A Pending JPH09318644A (en) 1996-05-27 1996-05-27 Ultrasonic flow velocity measuring method

Country Status (1)

Country Link
JP (1) JPH09318644A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6886412B2 (en) * 2001-02-19 2005-05-03 Ngk Spark Plug Co., Ltd. Ultrasonic-wave propagation-time measuring method and gas concentration sensor
EP2366981A1 (en) 2003-04-21 2011-09-21 Teijin Pharma Limited Oxygen concentration system for generating oxygen-enriched gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6886412B2 (en) * 2001-02-19 2005-05-03 Ngk Spark Plug Co., Ltd. Ultrasonic-wave propagation-time measuring method and gas concentration sensor
EP2366981A1 (en) 2003-04-21 2011-09-21 Teijin Pharma Limited Oxygen concentration system for generating oxygen-enriched gas

Similar Documents

Publication Publication Date Title
JP3022623B2 (en) Electrical measuring device for measuring signal propagation time
JP2002131105A (en) Ultrasonic flow rate measuring method
US20030014138A1 (en) Coordinate data entry device
JP4271979B2 (en) Ultrasonic gas concentration flow measurement method and apparatus
JP2003014515A (en) Ultrasonic flowmeter
JPH09318644A (en) Ultrasonic flow velocity measuring method
JPH1019619A (en) Method of ultrasonic measuring flow velocity
JP4797515B2 (en) Ultrasonic flow measuring device
JP2001317975A (en) Method and apparatus for ultrasonic flow velocity measurement
JP2608961B2 (en) Sound wave propagation time measurement method
JPH1073462A (en) Method for measuring flow velocity using ultrasonic wave
JP2008185441A (en) Ultrasonic flowmeter
JP2000338123A (en) Ultrasonic floe speed measuring method
JPH1073463A (en) Method for measuring flow velocity using ultrasonic wave
JPH01100414A (en) Ultrasonic-wave flow velocity measuring apparatus
JPH11148848A (en) Method for judging pulse skip in measuring ultrasonic wave propagation time
JPH08193861A (en) Flow-rate measuring apparatus
WO2012157261A1 (en) Ultrasonic flow meter
JP2003050145A (en) Method and apparatus for ultrasonic flow-velocity measurement
JPH1038650A (en) Ultrasonic flow velocity measuring method
JP4759829B2 (en) Flow measuring device
JPH11287683A (en) Regulating method of reference voltage value in ultrasonic flow velocity measurement
JP5092413B2 (en) Flow velocity or flow rate measuring device
JP4671481B2 (en) Ultrasonic flow meter
JP3720155B2 (en) Ultrasonic flow velocity measurement method