JP2002131105A - Ultrasonic flow rate measuring method - Google Patents

Ultrasonic flow rate measuring method

Info

Publication number
JP2002131105A
JP2002131105A JP2000326446A JP2000326446A JP2002131105A JP 2002131105 A JP2002131105 A JP 2002131105A JP 2000326446 A JP2000326446 A JP 2000326446A JP 2000326446 A JP2000326446 A JP 2000326446A JP 2002131105 A JP2002131105 A JP 2002131105A
Authority
JP
Japan
Prior art keywords
ultrasonic
wave
flow rate
flow velocity
received
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000326446A
Other languages
Japanese (ja)
Inventor
Megumi Iwakawa
恵 岩川
Tadayuki Minami
忠幸 南
Shigeru Tagawa
滋 田川
Akio Kono
明夫 河野
Eiji Nakamura
英司 中村
Kazuo Eshita
和雄 江下
Tetsuya Yasuda
哲也 保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Kansai Gas Meter Co Ltd
Original Assignee
Osaka Gas Co Ltd
Kansai Gas Meter Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Kansai Gas Meter Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2000326446A priority Critical patent/JP2002131105A/en
Publication of JP2002131105A publication Critical patent/JP2002131105A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a measuring method of ultrasonic flow rate being able to more accurately specify the arrival timing of an ultrasonic and then ensure an adequate measurement accuracy. SOLUTION: In the ultrasonic flow rate measuring method, each ultrasonic transducer 2, 3 is positioned opposite to upstream and downstream sides of fluid to be measured, respectively, these ultrasonic transducers 2 and 3 mutually generate and transmit an ultrasonic as well as receiving the transmitted ultrasonic each other to measure flow rate of the fluid based on the propagation time of respective ultrasonic obtained from each received wave. The point in time when maximum half-wave Wp of the above received wave W has reached a reference voltage value E is defined as the arrival timing of the ultrasonic.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、超音波を利用し
てガスその他の流体の流速を測定する超音波流速測定方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic flow velocity measuring method for measuring the flow velocity of gas or other fluid using ultrasonic waves.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】従
来、ガスその他の流体の流量を求めるに際し、まず流体
の流速を連続的ないし定期的に測定し、これに基いて流
量を求めることが行われている。そして、このような流
体の流速測定方法の一つとして、超音波を利用した方法
が知られている。
2. Description of the Related Art Conventionally, when determining the flow rate of a gas or other fluid, the flow rate of the fluid is measured continuously or periodically, and the flow rate is determined based on this. ing. As one of such fluid flow velocity measuring methods, a method utilizing ultrasonic waves is known.

【0003】かかる超音波流速測定方法の原理を、図3
にて説明すると次のとおりである。図3において、
(1)は内部をガス等の流体が流れる流量測定管であ
る。この流量測定管(1)内には、流体の上流側と下流
側にそれぞれ超音波振動子(2)(3)が対向状態に配
置されている。この超音波振動子(2)(3)は、駆動
パルス発生回路(4)からの駆動パルスにより駆動され
て振動し、超音波を発生送信する一方、送信されてきた
超音波を受信するもので、その超音波振動子(3)
(2)が振動したときの受信波が受信増幅回路(5)か
ら出力されるものとなされている。
The principle of such an ultrasonic flow velocity measuring method is shown in FIG.
The description is as follows. In FIG.
(1) is a flow measuring pipe through which a fluid such as gas flows. In the flow measurement tube (1), ultrasonic vibrators (2) and (3) are arranged facing each other on the upstream side and the downstream side of the fluid. The ultrasonic vibrators (2) and (3) are driven by a driving pulse from a driving pulse generating circuit (4) to vibrate, generate and transmit ultrasonic waves, and receive transmitted ultrasonic waves. , Its ultrasonic transducer (3)
The reception wave when (2) vibrates is output from the reception amplification circuit (5).

【0004】そして、上流側の超音波振動子(2)から
流れに対して順方向に送信された超音波が下流側の超音
波振動子(3)で受信されるまでの伝搬時間τと、下流
側の超音波振動子(3)から流れに対して逆方向に送信
された超音波が上流側の超音波振動子(2)で受信され
るまでの伝搬時間τ’とは流速に関係することから、こ
の超音波の伝搬時間を求めることにより流体の流速を測
定するものとなされている。
A propagation time τ until an ultrasonic wave transmitted in a forward direction with respect to the flow from the upstream ultrasonic oscillator (2) is received by the downstream ultrasonic oscillator (3), The propagation time τ ′ until the ultrasonic wave transmitted from the downstream ultrasonic oscillator (3) in the opposite direction to the flow is received by the upstream ultrasonic oscillator (2) is related to the flow velocity. Therefore, the flow velocity of the fluid is measured by obtaining the propagation time of the ultrasonic wave.

【0005】なお、図3において、(6)は各超音波振
動子(2)(3)と駆動パルス発生回路(4)及び受信
増幅回路(5)の接続を切替える切替回路であり、まず
駆動パルス発生回路(4)と超音波振動子(2)、超音
波振動子(3)と受信増幅回路(5)を接続して、順方
向の伝搬時間τを測定したのち、該切替回路(6)の作
動により駆動パルス発生回路(4)と超音波振動子
(3)、超音波振動子(2)と受信増幅回路(5)とが
接続されるように切り替えて、逆方向の伝搬時間τ’を
測定するものとなされている。
In FIG. 3, reference numeral (6) denotes a switching circuit for switching the connection between each of the ultrasonic transducers (2) and (3), the drive pulse generating circuit (4) and the receiving amplifier circuit (5). After connecting the pulse generating circuit (4) and the ultrasonic oscillator (2), the ultrasonic oscillator (3) and the receiving amplifier circuit (5), and measuring the forward propagation time τ, the switching circuit (6) ), The drive pulse generating circuit (4) and the ultrasonic vibrator (3), and the ultrasonic vibrator (2) and the receiving amplifier circuit (5) are switched so as to be connected. 'Has been made to measure.

【0006】ところで、従来、上述のような超音波の伝
搬時間τ、τ’は、受信増幅回路(5)から出力される
受信波の第1波ないし第3波を基準に測定されていた。
Heretofore, the propagation times τ and τ ′ of the ultrasonic wave as described above have been measured with reference to the first to third waves of the reception wave output from the reception amplification circuit (5).

【0007】より具体的に説明すると、駆動パルス発生
回路(4)から超音波振動子(2)(3)に一般に3個
程度の駆動パルスが印加され、これにより超音波振動子
(2)(3)は正弦波状に交番振動して、該振動に応じ
た超音波を発生送信する。この超音波の波形は、最初の
駆動パルスによる振動に、第2、第3の駆動パルスによ
る振動が重畳して、第1波よりも第2波、第3波、・・
・とピーク値が高くなったのち、やがてピーク値が減衰
していく振動波形を示す。従って、超音波振動子(3)
(2)に受信された受信波も、送信波の振動波形に対応
して第1波よりも第2波、第3波、・・・とピーク値が
高くなったのち、やがてピーク値が減衰していく振動波
形となる。そして、受信波の第1波ないし第3波が所定
の基準値に到達した時点、またはその直後に受信波がゼ
ロクロスする時点を超音波の到達タイミングとして超音
波の伝搬時間τ、τ’を測定していた。
More specifically, about three driving pulses are generally applied from the driving pulse generating circuit (4) to the ultrasonic vibrators (2) and (3), whereby the ultrasonic vibrator (2) ( 3) alternately vibrates in a sine wave shape, and generates and transmits an ultrasonic wave corresponding to the vibration. The waveform of this ultrasonic wave is such that the vibrations caused by the second and third drive pulses are superimposed on the vibrations caused by the first drive pulse, so that the second wave, the third wave,.
The figure shows a vibration waveform in which the peak value becomes high and then the peak value gradually decreases. Therefore, the ultrasonic transducer (3)
The peak value of the received wave received in (2) also becomes higher than the first wave in the second wave, the third wave,... Corresponding to the oscillation waveform of the transmitted wave, and then the peak value is attenuated. The vibration waveform. Then, the propagation times τ and τ ′ of the ultrasonic wave are measured when the first to third waves of the received wave reach a predetermined reference value or immediately after that, the time when the received wave crosses zero is the arrival timing of the ultrasonic wave. Was.

【0008】しかしながら、受信波の第1波ないし第3
波は、いずれも受信波の立上がり初期の波で振幅が小さ
いため、装置の誤差の影響による振幅変動に影響を受け
やすく、測定に当初予定していた第1波ないし第3波と
は全く異なる半波において所定の基準値に到達してしま
い、超音波の到達タイミングを精度良く特定することが
できない場合があるという問題があった。特に、この問
題は、高精度な伝搬時間の測定が要求される小流量の流
体では無視できないものである。
However, the first to third received waves are
Each of the waves is an early wave of the received wave and has a small amplitude. Therefore, the waves are easily affected by amplitude fluctuation due to an error of the apparatus, and are completely different from the first to third waves originally planned for measurement. There is a problem that a predetermined reference value is reached in a half-wave, and the arrival timing of the ultrasonic wave cannot be accurately specified. In particular, this problem is not negligible for a small flow rate fluid that requires highly accurate measurement of the propagation time.

【0009】この発明は、上述の問題に鑑みてなされた
ものであって、超音波の到達タイミングを精度良く特定
することができ、ひいては十分な測定精度を確保するこ
とが可能な超音波流速測定方法の提供を課題とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and is capable of accurately determining the arrival timing of an ultrasonic wave, and furthermore, capable of ensuring sufficient measurement accuracy. The task is to provide a method.

【0010】[0010]

【課題を解決するための手段】この発明は、上述の課題
を解決するために、計測流体の上流側と下流側にそれぞ
れ超音波振動子を対向状態に配置し、前記各超音波振動
子から相互に超音波を発生送信するとともに、送信した
超音波を相互に受信し、各受信波から求めた各超音波の
伝搬時間に基づいて流体の流速を測定する超音波流速測
定方法において、前記受信波の最大半波または最大半波
付近の半波が基準値に到達した時点、あるいはその直後
に受信波がゼロクロスした時点を超音波の到達タイミン
グとすることを特徴とする。
According to the present invention, in order to solve the above-mentioned problems, ultrasonic transducers are arranged in an opposed state on an upstream side and a downstream side of a measurement fluid, respectively. In the ultrasonic flow velocity measuring method of mutually generating and transmitting ultrasonic waves, mutually receiving the transmitted ultrasonic waves, and measuring the flow velocity of the fluid based on the propagation time of each ultrasonic wave obtained from each received wave, The time when the maximum half wave of the wave or a half wave near the maximum half wave reaches the reference value, or immediately after that, the time when the received wave crosses zero is set as the arrival timing of the ultrasonic wave.

【0011】これによれば、受信波の最大半波または最
大半波付近の半波は振幅が大きく、装置の誤差による振
幅変動にほとんど影響を受けないので、超音波の到達タ
イミングを精度良く特定することができる。
According to this, the maximum half-wave of the received wave or a half-wave near the maximum half-wave has a large amplitude and is hardly affected by amplitude fluctuation due to an error of the apparatus, so that the arrival timing of the ultrasonic wave can be specified with high accuracy. can do.

【0012】また、前記超音波振動子から超音波を連続
して複数発生送信する場合、受信波の最大半波または最
大半波付近の半波の振幅は一層増大するので、超音波の
到達タイミングをより精度良く特定することができる。
When a plurality of ultrasonic waves are continuously generated and transmitted from the ultrasonic vibrator, the amplitude of the maximum half-wave of the received wave or a half-wave near the maximum half-wave is further increased. Can be specified with higher accuracy.

【0013】[0013]

【発明の実施の形態】図1は、この発明を実施するため
の超音波流速測定装置を示すものである。図1におい
て、(1)は超音波流速測定管、(2)(3)は流れ方
向の上流側及び下流側に所定距離を隔てて対向状態に配
置された超音波振動子、(4)は3個の駆動パルス
(K)を発生する駆動パルス発生回路、(5)は超音波
振動子(2)(3)で超音波を受信したときに受信波
(W)を出力する受信増幅回路、(6)は超音波振動子
(2)(3)と駆動パルス発生回路(4)及び受信増幅
回路(5)の接続を切り替える切替回路であり、これら
は図3に示したものと同じである。なお、図1の超音波
流速測定管(1)内の白抜き矢印は流体の流れを、黒矢
印は超音波の流れをそれぞれ示している。
FIG. 1 shows an ultrasonic flow velocity measuring apparatus for carrying out the present invention. In FIG. 1, (1) is an ultrasonic flow velocity measuring tube, (2) and (3) are ultrasonic vibrators arranged in a facing state at a predetermined distance upstream and downstream in a flow direction, and (4) is an ultrasonic vibrator. A driving pulse generating circuit for generating three driving pulses (K); (5) a receiving amplifier circuit for outputting a receiving wave (W) when ultrasonic waves are received by the ultrasonic transducers (2) and (3); (6) is a switching circuit for switching the connection between the ultrasonic transducers (2) and (3), the drive pulse generating circuit (4) and the receiving amplifier circuit (5), which are the same as those shown in FIG. . The hollow arrows in the ultrasonic flow velocity measuring tube (1) in FIG. 1 indicate the flow of fluid, and the black arrows indicate the flow of ultrasonic waves.

【0014】この実施形態では、受信増幅回路(5)の
出力側に比較回路(7)が設けられている。この比較回
路(7)は、図2に示すように、受信増幅回路(5)か
ら出力された受信波(W)と、基準電圧発生回路(8)
から出力される基準電圧値Eとを比較して、受信波
(W)が基準電圧値Eに到達した時点を超音波の到達タ
イミングと特定し、該超音波到達タイミングと同時に後
述のカウンタ(10)に受信信号を送信する回路であ
る。
In this embodiment, a comparison circuit (7) is provided on the output side of the reception amplification circuit (5). As shown in FIG. 2, the comparison circuit (7) includes a reception wave (W) output from the reception amplification circuit (5) and a reference voltage generation circuit (8).
Is compared with a reference voltage value E, which is output from the controller, the point in time at which the received wave (W) reaches the reference voltage value E is specified as the arrival timing of the ultrasonic wave. ) Is a circuit for transmitting a reception signal.

【0015】前記基準電圧発生回路(8)における基準
電圧Eは、受信増幅回路(5)から出力される受信波
(W)の最大半波(Wp)において初めて基準電圧値E
に到達するようにあらかじめ設定されている。この受信
波(W)の最大半波(Wp)は振幅が最も大きく、装置
の誤差による振幅変動にほとんど影響を受けないので、
超音波の到達タイミングを精度良く特定することができ
る。
The reference voltage E in the reference voltage generating circuit (8) is the first reference voltage value E in the maximum half wave (Wp) of the received wave (W) output from the receiving amplifier circuit (5).
Is set in advance to reach. Since the maximum half wave (Wp) of the received wave (W) has the largest amplitude and is hardly affected by amplitude fluctuation due to an error of the device,
The arrival timing of the ultrasonic wave can be specified with high accuracy.

【0016】一方、駆動パルス発生回路(4)の出力側
には、クロック回路(9)、カウンタ(10)および伝
搬時間演算回路(11)が設けられている。このクロッ
ク回路(9)は、図2に示すように、超音波振動子
(2)(3)から超音波が送信される時刻(A)と同期
して、一定周期のクロック波(L)を出力するものであ
る。
On the output side of the drive pulse generation circuit (4), a clock circuit (9), a counter (10) and a propagation time calculation circuit (11) are provided. As shown in FIG. 2, the clock circuit (9) synchronizes with a time (A) at which ultrasonic waves are transmitted from the ultrasonic transducers (2) and (3) to generate a clock wave (L) having a constant period. Output.

【0017】前記カウンタ(10)は、超音波振動子
(2)(3)から超音波が送信された時刻(A)から、
その送信された超音波が超音波振動子(3)(2)に受
信されるまでの時刻(B)までの時間内において、クロ
ック回路(9)から出力されたクロック波(L)の波数
をカウントするものである。なお、送信された超音波が
超音波振動子(3)(2)に受信される時刻(B)と
は、上述のように受信増幅回路(5)から出力される受
信波(W)の最大半波(Wp)が基準電圧値Eに到達し
た時刻である。
The counter (10) starts counting from the time (A) when ultrasonic waves are transmitted from the ultrasonic transducers (2) and (3).
In the time until the time (B) until the transmitted ultrasonic wave is received by the ultrasonic transducers (3) and (2), the wave number of the clock wave (L) output from the clock circuit (9) is changed. It is to count. The time (B) at which the transmitted ultrasonic wave is received by the ultrasonic transducers (3) and (2) is the maximum of the received wave (W) output from the reception amplifier circuit (5) as described above. This is the time when the half-wave (Wp) reaches the reference voltage value E.

【0018】前記伝搬時間演算回路(9)は、前記カウ
ンタ(10)でカウントされたクロック波(L)の波数
に基づいて伝搬時間τ(τ’)を算出するもので、具体
的には下式[1]の演算を行う。 (伝搬時間τ(τ’)) =(クロック波(L)の周期)×(出力されたクロック波(L)の波数) ・・・[1] そして、前記伝搬時間演算回路(14)の出力側には、
流体の流速を算出する流速演算回路(10)が設けら
れ、さらに該流速演算回路(10)の出力側には流体の
流量を算出する流量演算回路(11)が設けられてい
る。
The propagation time calculation circuit (9) calculates the propagation time τ (τ ') based on the number of clock waves (L) counted by the counter (10). The operation of Expression [1] is performed. (Propagation time τ (τ ′)) = (period of clock wave (L)) × (wave number of output clock wave (L)) [1] Then, the output of the propagation time calculation circuit (14) On the side,
A flow rate calculation circuit (10) for calculating the flow rate of the fluid is provided, and a flow rate calculation circuit (11) for calculating the flow rate of the fluid is provided on the output side of the flow rate calculation circuit (10).

【0019】前記流速演算回路(10)は、流体の流速
を算出するために、下式[2]の演算を行う。 v=L/2×(1/τ−1/τ’)・・・[2] v:流体の流速 L:流速測定管の長さ τ:順方向の超音波の伝搬時間 τ’:逆方向の超音波の伝搬時間 なお、順方向の伝搬時間τは、 τ=L/(c+v)・・・[3] とあらわされ、また、逆方向の超音波の伝搬時間τ’
は、 τ’=L/(c−v)・・・[4] とあらわされので(c:超音波の速度)、これら[3]
[4]式より上式[2]が導出される。
The flow velocity calculation circuit (10) performs the calculation of the following equation [2] in order to calculate the flow velocity of the fluid. v = L / 2 × (1 / τ−1 / τ ′) [2] v: flow velocity of fluid L: length of flow velocity measuring tube τ: propagation time of forward ultrasonic wave τ ′: backward direction The propagation time τ in the forward direction is expressed as τ = L / (c + v) (3), and the propagation time τ ′ in the backward ultrasonic wave
Is expressed as τ ′ = L / (cv) (4) (c: velocity of ultrasonic wave), and these [3]
The above equation [2] is derived from the equation [4].

【0020】前記流量演算回路(11)は、流体の流量
を算出するために、下式[5]の演算を行う。この流量
演算回路(11)により算出された流体の流量Qは、図
示略の記憶部に積算的に記憶される。 Q=v×S×t・・・[5] Q:流体の流量 v:流体の流速 S:流速測定管の断面積 t:所定時間(2秒) 次に図1に示した装置を用いた超音波流速測定方法につ
いて説明する。
The flow rate calculation circuit (11) calculates the following equation [5] to calculate the flow rate of the fluid. The fluid flow rate Q calculated by the flow rate calculation circuit (11) is integratedly stored in a storage unit (not shown). Q = v × S × t [5] Q: fluid flow rate v: fluid flow rate S: cross-sectional area of flow velocity measuring tube t: predetermined time (2 seconds) Next, the apparatus shown in FIG. 1 was used. An ultrasonic flow velocity measuring method will be described.

【0021】まず、上流側から下流側への順方向の超音
波の伝搬時間τを求めるべく、切替回路(6)の作動に
より駆動パルス発生回路(4)と上流側の超音波振動子
(2)、下流側の超音波振動子(3)と受信増幅回路
(5)とを接続する。
First, in order to determine the propagation time τ of the ultrasonic wave in the forward direction from the upstream side to the downstream side, the drive pulse generation circuit (4) and the upstream ultrasonic vibrator (2) are operated by the operation of the switching circuit (6). ), The downstream ultrasonic transducer (3) is connected to the receiving amplifier circuit (5).

【0022】そして、駆動パルス発生回路(4)から3
個の駆動パルスを発生させて超音波振動子(2)に印加
せしめ、該超音波振動子(2)から超音波を発生送信さ
せる。また、超音波の発生送信と同時に、クロック回路
(9)から一定周期のクロック波(L)を出力する。
The driving pulse generation circuits (4) to (3)
The driving pulses are generated and applied to the ultrasonic vibrator (2), and the ultrasonic vibrator (2) generates and transmits ultrasonic waves. At the same time as the generation and transmission of the ultrasonic waves, the clock circuit (9) outputs a clock wave (L) having a constant period.

【0023】その後、超音波振動子(2)から送信され
た超音波が下流側の超音波振動子(3)に受信される
と、受信増幅回路(4)から受信波(W)が出力される
ので、比較回路(7)において、受信増幅回路(5)か
ら出力された受信波(W)と、基準電圧発生回路(8)
からの基準電圧値Eとを比較して、受信波(W)の最大
半波(Wp)が基準電圧値Eに到達した時点を超音波の
到達タイミングと特定し、該超音波到達タイミングと同
時に後述のカウンタ(10)に受信信号を送信する。
Thereafter, when the ultrasonic wave transmitted from the ultrasonic vibrator (2) is received by the ultrasonic vibrator (3) on the downstream side, a reception wave (W) is output from the reception amplifier circuit (4). Therefore, in the comparison circuit (7), the reception wave (W) output from the reception amplification circuit (5) and the reference voltage generation circuit (8)
, The time when the maximum half-wave (Wp) of the received wave (W) reaches the reference voltage value E is determined as the arrival timing of the ultrasonic wave, and at the same time as the arrival timing of the ultrasonic wave. The reception signal is transmitted to a counter (10) described later.

【0024】前記カウンタ(9)では、超音波振動子
(2)(3)から超音波が送信された時刻(A)から、
その送信された超音波が超音波振動子(3)(2)に受
信されるまでの時刻(B)までの時間内において、クロ
ック回路(9)から出力されたクロック波(L)の波数
をカウントし、その波数を伝搬時間演算回路(11)に
送信する。
In the counter (9), from the time (A) at which ultrasonic waves are transmitted from the ultrasonic transducers (2) and (3),
In the time until the time (B) until the transmitted ultrasonic wave is received by the ultrasonic transducers (3) and (2), the wave number of the clock wave (L) output from the clock circuit (9) is changed. It counts and transmits the wave number to the propagation time calculation circuit (11).

【0025】前記伝搬時間演算回路(11)では、カウ
ンタ(9)から送信されてきたクロック波(L)の波数
に基づいて、上式[1]の演算により超音波の伝搬時間
τを算出し、該伝搬時間τを流速演算回路(12)に送
信する。
The propagation time calculation circuit (11) calculates the ultrasonic wave propagation time τ by the calculation of the above equation [1] based on the wave number of the clock wave (L) transmitted from the counter (9). Is transmitted to the flow velocity calculation circuit (12).

【0026】こうして順方向の超音波の伝搬時間τを求
めたあとは、前記切替回路(6)の作動により駆動パル
ス発生回路(4)と下流側の超音波振動子(3)、上流
側の超音波振動子(2)と受信増幅回路(5)とが接続
されるように切り替えて、上述と同様に逆方向の超音波
の伝搬時間τ’を求め、該伝搬時間τ’を流速演算回路
(12)に送信する。
After the propagation time τ of the forward ultrasonic wave is obtained in this manner, the drive pulse generating circuit (4), the downstream ultrasonic vibrator (3) and the upstream ultrasonic vibrator (3) are operated by the operation of the switching circuit (6). The ultrasonic vibrator (2) and the receiving amplifier circuit (5) are switched so as to be connected, and the propagation time τ ′ of the ultrasonic wave in the opposite direction is obtained in the same manner as described above, and the propagation time τ ′ is calculated by the flow velocity calculation circuit. Send to (12).

【0027】前記流速演算回路(12)では、順方向お
よび逆方向の超音波の伝搬時間τ、τ’に基づいて、上
式[2]の演算により流体の流速vを算出し、該流体の
流速vを流量演算回路(13)に送信する。
The flow velocity calculation circuit (12) calculates the flow velocity v of the fluid by the calculation of the above equation [2] based on the propagation times τ and τ ′ of the ultrasonic waves in the forward and reverse directions, and calculates the flow velocity v of the fluid. The flow velocity v is transmitted to the flow calculation circuit (13).

【0028】前記流量演算回路(13)では、上式
[5]の演算により流体の流量Qを算出し、該流体の流
量Qを図示略の記憶部に積算的に記憶する。
In the flow rate calculation circuit (13), the flow rate Q of the fluid is calculated by the above equation [5], and the flow rate Q of the fluid is integratedly stored in a storage unit (not shown).

【0029】このように、前記受信波(W)の最大半波
(Wp)が基準電圧値Eに到達した時点を超音波の到達
タイミングに特定するが、受信波の最大半波または最大
半波付近の半波は振幅が最も大きく、装置の誤差による
振幅変動にほとんど影響を受けないので、超音波の到達
タイミングを精度良く特定することができ、ひいては十
分な測定精度を確保することが可能となる。
As described above, the point in time at which the maximum half-wave (Wp) of the received wave (W) reaches the reference voltage value E is specified as the arrival timing of the ultrasonic wave. Since the nearby half-wave has the largest amplitude and is hardly affected by amplitude fluctuations due to errors in the device, it is possible to specify the arrival timing of the ultrasonic wave with high accuracy, and thus it is possible to secure sufficient measurement accuracy. Become.

【0030】なお、この実施形態では、駆動パルス発生
回路(4)から3個の駆動パルスを発生させたが、2個
以下の駆動パルスを発生させてもよいし、あるいは4個
以上の複数の駆動パルスを発生させ、超音波振動子
(2)(3)から超音波を連続して複数発生送信しても
よい。特に4個以上の複数の駆動パルスを発生させた場
合は、受信波の最大半波の振幅は一層増大するので、超
音波の到達タイミングをより精度良く特定することがで
きる。
In this embodiment, three drive pulses are generated from the drive pulse generating circuit (4). However, two or less drive pulses may be generated, or four or more drive pulses may be generated. A drive pulse may be generated and a plurality of ultrasonic waves may be continuously generated and transmitted from the ultrasonic transducers (2) and (3). In particular, when four or more drive pulses are generated, the amplitude of the maximum half-wave of the received wave further increases, so that the arrival timing of the ultrasonic wave can be specified with higher accuracy.

【0031】また、前記受信波(W)の最大半波(W
p)が基準電圧値Eに到達した時点を超音波の到達タイ
ミングとしたが、前記受信波(W)の最大半波(Wp)
が基準電圧値Eに到達した直後に受信波(W)がゼロク
ロスした時点を超音波の到達タイミングとしてもよい。
The maximum half wave (W) of the received wave (W)
The time when p) reaches the reference voltage value E is defined as the arrival timing of the ultrasonic wave, but the maximum half wave (Wp) of the received wave (W) is obtained.
The point in time at which the received wave (W) crosses zero immediately after has reached the reference voltage value E may be the arrival timing of the ultrasonic wave.

【0032】また、超音波の到達タイミングを特定する
のに、受信波(W)の最大半波(Wp)を基準とした
が、最大半波(Wp)付近の半波を基準としてもよい。
Although the arrival timing of the ultrasonic wave is specified based on the maximum half-wave (Wp) of the received wave (W), it may be determined based on a half-wave near the maximum half-wave (Wp).

【0033】[0033]

【発明の効果】請求項1に係る発明によれば、受信波の
最大半波または最大半波付近の半波は振幅が大きく、装
置の誤差による振幅変動にほとんど影響を受けないの
で、超音波の到達タイミングを精度良く特定することが
でき、ひいては十分な測定精度を確保することが可能と
なる。
According to the first aspect of the present invention, the maximum half-wave of a received wave or a half-wave near the maximum half-wave has a large amplitude and is hardly affected by amplitude fluctuation due to an error of the apparatus. Can be specified with high accuracy, and sufficient measurement accuracy can be ensured.

【0034】請求項2に係る発明によれば、受信波の最
大半波または最大半波付近の半波の振幅は一層増大する
ので、超音波の到達タイミングをより精度良く特定する
ことができる。
According to the second aspect of the present invention, the amplitude of the maximum half-wave of the received wave or the half-wave near the maximum half-wave is further increased, so that the arrival timing of the ultrasonic wave can be specified more accurately.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明を実施するための超音波流速測定装置
の一例を示すブロック図である。
FIG. 1 is a block diagram showing an example of an ultrasonic flow velocity measuring device for carrying out the present invention.

【図2】駆動パルス、受信波、クロック波の相対関係を
示す図である。
FIG. 2 is a diagram illustrating a relative relationship among a driving pulse, a reception wave, and a clock wave.

【図3】従来の超音波流速測定装置を示すブロック図で
ある。
FIG. 3 is a block diagram showing a conventional ultrasonic flow velocity measuring device.

【符号の説明】[Explanation of symbols]

1・・・超音波流速測定管 2、3・・・超音波振動子 1 ... Ultrasonic flow velocity measuring tube 2, 3 ... Ultrasonic transducer

フロントページの続き (72)発明者 南 忠幸 大阪市中央区平野町四丁目1番2号 大阪 瓦斯株式会社内 (72)発明者 田川 滋 大阪市中央区平野町四丁目1番2号 大阪 瓦斯株式会社内 (72)発明者 河野 明夫 京都市下京区中堂寺鍵田町10 関西ガスメ ータ株式会社内 (72)発明者 中村 英司 京都市下京区中堂寺鍵田町10 関西ガスメ ータ株式会社内 (72)発明者 江下 和雄 京都市下京区中堂寺鍵田町10 関西ガスメ ータ株式会社内 (72)発明者 保田 哲也 京都市下京区中堂寺鍵田町10 関西ガスメ ータ株式会社内 Fターム(参考) 2F035 DA23 Continued on the front page (72) Inventor Tadayuki Minami 4-1-2, Hirano-cho, Chuo-ku, Osaka-shi Inside Osaka Gas Co., Ltd. (72) Inventor Shigeru Tagawa 4-1-2, Hirano-cho, Chuo-ku, Osaka-shi Osaka Gas stock Inside the company (72) Inventor Akio Kono 10 Kanodaji Kadamachi, Shimogyo-ku, Kyoto City Inside Kansai Gas Meter Co., Ltd. (72) Inventor Eiji Nakamura 10 Kanodaji Kidamachi, Shimogyo-ku, Kyoto Kansai Gas Meter Co., Ltd. (72 ) Inventor Kazuo Eshita 10 Kaneda-cho, Shimogyo-ku, Kyoto-shi Kansai Gas Meter Co., Ltd. (72) Inventor Tetsuya Yasuda 10-Kidoda-cho, Shimoda-ku, Kyoto-shi Kansai Gas Meter Co., Ltd. F-term (reference) 2F035 DA23

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 計測流体の上流側と下流側にそれぞれ超
音波振動子を対向状態に配置し、前記各超音波振動子か
ら相互に超音波を発生送信するとともに、送信した超音
波を相互に受信し、各受信波から求めた各超音波の伝搬
時間に基づいて流体の流速を測定する超音波流速測定方
法において、 前記受信波の最大半波または最大半波付近の半波が基準
値に到達した時点、あるいはその直後に受信波がゼロク
ロスした時点を超音波の到達タイミングとすることを特
徴とする超音波流速測定方法。
1. An ultrasonic transducer is disposed in an opposed state on an upstream side and a downstream side of a measurement fluid, respectively. Ultrasonic waves are generated and transmitted from the respective ultrasonic transducers, and the transmitted ultrasonic waves are mutually transmitted. Received, in the ultrasonic flow velocity measuring method for measuring the flow velocity of the fluid based on the propagation time of each ultrasonic wave obtained from each received wave, the maximum half-wave of the received wave or a half-wave near the maximum half-wave as a reference value An ultrasonic flow velocity measuring method characterized in that a point in time at which the received wave arrives or a point in time when the received wave crosses zero is set as an ultrasonic arrival timing.
【請求項2】 前記超音波振動子から超音波を連続して
複数発生送信する請求項1に記載の超音波流速測定方
法。
2. The ultrasonic flow velocity measuring method according to claim 1, wherein a plurality of ultrasonic waves are continuously generated and transmitted from said ultrasonic transducer.
JP2000326446A 2000-10-26 2000-10-26 Ultrasonic flow rate measuring method Pending JP2002131105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000326446A JP2002131105A (en) 2000-10-26 2000-10-26 Ultrasonic flow rate measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000326446A JP2002131105A (en) 2000-10-26 2000-10-26 Ultrasonic flow rate measuring method

Publications (1)

Publication Number Publication Date
JP2002131105A true JP2002131105A (en) 2002-05-09

Family

ID=18803631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000326446A Pending JP2002131105A (en) 2000-10-26 2000-10-26 Ultrasonic flow rate measuring method

Country Status (1)

Country Link
JP (1) JP2002131105A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010223658A (en) * 2009-03-23 2010-10-07 Panasonic Corp Device for measuring flow velocity or flow rate
JP2011064517A (en) * 2009-09-16 2011-03-31 Panasonic Corp Flow measuring device of fluid
US8857269B2 (en) 2010-08-05 2014-10-14 Hospira, Inc. Method of varying the flow rate of fluid from a medical pump and hybrid sensor system performing the same
US10022498B2 (en) 2011-12-16 2018-07-17 Icu Medical, Inc. System for monitoring and delivering medication to a patient and method of using the same to minimize the risks associated with automated therapy
US10166328B2 (en) 2013-05-29 2019-01-01 Icu Medical, Inc. Infusion system which utilizes one or more sensors and additional information to make an air determination regarding the infusion system
US10342917B2 (en) 2014-02-28 2019-07-09 Icu Medical, Inc. Infusion system and method which utilizes dual wavelength optical air-in-line detection
US10430761B2 (en) 2011-08-19 2019-10-01 Icu Medical, Inc. Systems and methods for a graphical interface including a graphical representation of medical data
US10463788B2 (en) 2012-07-31 2019-11-05 Icu Medical, Inc. Patient care system for critical medications
US10578474B2 (en) 2012-03-30 2020-03-03 Icu Medical, Inc. Air detection system and method for detecting air in a pump of an infusion system
US10596316B2 (en) 2013-05-29 2020-03-24 Icu Medical, Inc. Infusion system and method of use which prevents over-saturation of an analog-to-digital converter
US10635784B2 (en) 2007-12-18 2020-04-28 Icu Medical, Inc. User interface improvements for medical devices
US10656894B2 (en) 2017-12-27 2020-05-19 Icu Medical, Inc. Synchronized display of screen content on networked devices
US10850024B2 (en) 2015-03-02 2020-12-01 Icu Medical, Inc. Infusion system, device, and method having advanced infusion features
US10874793B2 (en) 2013-05-24 2020-12-29 Icu Medical, Inc. Multi-sensor infusion system for detecting air or an occlusion in the infusion system
US11135360B1 (en) 2020-12-07 2021-10-05 Icu Medical, Inc. Concurrent infusion with common line auto flush
US11246985B2 (en) 2016-05-13 2022-02-15 Icu Medical, Inc. Infusion pump system and method with common line auto flush
US11278671B2 (en) 2019-12-04 2022-03-22 Icu Medical, Inc. Infusion pump with safety sequence keypad
US11324888B2 (en) 2016-06-10 2022-05-10 Icu Medical, Inc. Acoustic flow sensor for continuous medication flow measurements and feedback control of infusion
US11344673B2 (en) 2014-05-29 2022-05-31 Icu Medical, Inc. Infusion system and pump with configurable closed loop delivery rate catch-up
US11344668B2 (en) 2014-12-19 2022-05-31 Icu Medical, Inc. Infusion system with concurrent TPN/insulin infusion
US11883361B2 (en) 2020-07-21 2024-01-30 Icu Medical, Inc. Fluid transfer devices and methods of use
US12048831B2 (en) 2020-12-28 2024-07-30 Icu Medical, Inc. Multi-sensor infusion system for detecting air or an occlusion in the infusion system

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10635784B2 (en) 2007-12-18 2020-04-28 Icu Medical, Inc. User interface improvements for medical devices
JP2010223658A (en) * 2009-03-23 2010-10-07 Panasonic Corp Device for measuring flow velocity or flow rate
JP2011064517A (en) * 2009-09-16 2011-03-31 Panasonic Corp Flow measuring device of fluid
US8857269B2 (en) 2010-08-05 2014-10-14 Hospira, Inc. Method of varying the flow rate of fluid from a medical pump and hybrid sensor system performing the same
US11004035B2 (en) 2011-08-19 2021-05-11 Icu Medical, Inc. Systems and methods for a graphical interface including a graphical representation of medical data
US11972395B2 (en) 2011-08-19 2024-04-30 Icu Medical, Inc. Systems and methods for a graphical interface including a graphical representation of medical data
US10430761B2 (en) 2011-08-19 2019-10-01 Icu Medical, Inc. Systems and methods for a graphical interface including a graphical representation of medical data
US11599854B2 (en) 2011-08-19 2023-03-07 Icu Medical, Inc. Systems and methods for a graphical interface including a graphical representation of medical data
US10022498B2 (en) 2011-12-16 2018-07-17 Icu Medical, Inc. System for monitoring and delivering medication to a patient and method of using the same to minimize the risks associated with automated therapy
US11376361B2 (en) 2011-12-16 2022-07-05 Icu Medical, Inc. System for monitoring and delivering medication to a patient and method of using the same to minimize the risks associated with automated therapy
US10578474B2 (en) 2012-03-30 2020-03-03 Icu Medical, Inc. Air detection system and method for detecting air in a pump of an infusion system
US11933650B2 (en) 2012-03-30 2024-03-19 Icu Medical, Inc. Air detection system and method for detecting air in a pump of an infusion system
US11623042B2 (en) 2012-07-31 2023-04-11 Icu Medical, Inc. Patient care system for critical medications
US10463788B2 (en) 2012-07-31 2019-11-05 Icu Medical, Inc. Patient care system for critical medications
US10874793B2 (en) 2013-05-24 2020-12-29 Icu Medical, Inc. Multi-sensor infusion system for detecting air or an occlusion in the infusion system
US11596737B2 (en) 2013-05-29 2023-03-07 Icu Medical, Inc. Infusion system and method of use which prevents over-saturation of an analog-to-digital converter
US11433177B2 (en) 2013-05-29 2022-09-06 Icu Medical, Inc. Infusion system which utilizes one or more sensors and additional information to make an air determination regarding the infusion system
US10166328B2 (en) 2013-05-29 2019-01-01 Icu Medical, Inc. Infusion system which utilizes one or more sensors and additional information to make an air determination regarding the infusion system
US10596316B2 (en) 2013-05-29 2020-03-24 Icu Medical, Inc. Infusion system and method of use which prevents over-saturation of an analog-to-digital converter
US10342917B2 (en) 2014-02-28 2019-07-09 Icu Medical, Inc. Infusion system and method which utilizes dual wavelength optical air-in-line detection
US11344673B2 (en) 2014-05-29 2022-05-31 Icu Medical, Inc. Infusion system and pump with configurable closed loop delivery rate catch-up
US11344668B2 (en) 2014-12-19 2022-05-31 Icu Medical, Inc. Infusion system with concurrent TPN/insulin infusion
US10850024B2 (en) 2015-03-02 2020-12-01 Icu Medical, Inc. Infusion system, device, and method having advanced infusion features
US11246985B2 (en) 2016-05-13 2022-02-15 Icu Medical, Inc. Infusion pump system and method with common line auto flush
US11324888B2 (en) 2016-06-10 2022-05-10 Icu Medical, Inc. Acoustic flow sensor for continuous medication flow measurements and feedback control of infusion
US11029911B2 (en) 2017-12-27 2021-06-08 Icu Medical, Inc. Synchronized display of screen content on networked devices
US10656894B2 (en) 2017-12-27 2020-05-19 Icu Medical, Inc. Synchronized display of screen content on networked devices
US11868161B2 (en) 2017-12-27 2024-01-09 Icu Medical, Inc. Synchronized display of screen content on networked devices
US11278671B2 (en) 2019-12-04 2022-03-22 Icu Medical, Inc. Infusion pump with safety sequence keypad
US11883361B2 (en) 2020-07-21 2024-01-30 Icu Medical, Inc. Fluid transfer devices and methods of use
US11135360B1 (en) 2020-12-07 2021-10-05 Icu Medical, Inc. Concurrent infusion with common line auto flush
US12048831B2 (en) 2020-12-28 2024-07-30 Icu Medical, Inc. Multi-sensor infusion system for detecting air or an occlusion in the infusion system

Similar Documents

Publication Publication Date Title
JP2002131105A (en) Ultrasonic flow rate measuring method
JP2003014515A (en) Ultrasonic flowmeter
JP2017187310A (en) Ultrasonic flowmeter
JPH09133562A (en) Ultrasonic flowmeter
JP2000338123A (en) Ultrasonic floe speed measuring method
JP2001317975A (en) Method and apparatus for ultrasonic flow velocity measurement
JPH1019619A (en) Method of ultrasonic measuring flow velocity
JP4008741B2 (en) Ultrasonic flow velocity measuring method and apparatus
JP2002131104A (en) Ultrasonic flow rate measuring system
JP2007064792A (en) Ultrasonic flow measuring instrument
JPH0915011A (en) Ultrasonic wave transmitter and receiver device
JP2002116072A (en) Ultrasonic method for measuring flow velocity
JP3427696B2 (en) Flow measurement device
JP2001324362A (en) Ultrasonic flow velocity measurement method
JP2002071410A (en) Ultrasonic flow velocity measurement method
JP2003050145A (en) Method and apparatus for ultrasonic flow-velocity measurement
JP2001099852A (en) Ultrasonic flow-velocity measuring method
JP4689903B2 (en) Ultrasonic flow velocity measurement method
JP2000275265A (en) Ultrasonic flow velocity measuring method
JPS6040916A (en) Correcting method of temperature-change error of ultrasonic wave flow speed and flow rate meter
JP2001083169A (en) Ultrasonic flow rate
JP2000221068A (en) Ultrasonic flow speed measuring method
JP2000241220A (en) Method and apparatus for measuring flowing velocity of ultrasonic wave
JPH1151726A (en) Propagation time measuring device, supersonic type flow meter, method for measuring propagation time and controlling supersonic type flow meter
SU964543A1 (en) Ultrasonic meter of gaseous media flow rate