JP4008741B2 - Ultrasonic flow velocity measuring method and apparatus - Google Patents

Ultrasonic flow velocity measuring method and apparatus Download PDF

Info

Publication number
JP4008741B2
JP4008741B2 JP2002105594A JP2002105594A JP4008741B2 JP 4008741 B2 JP4008741 B2 JP 4008741B2 JP 2002105594 A JP2002105594 A JP 2002105594A JP 2002105594 A JP2002105594 A JP 2002105594A JP 4008741 B2 JP4008741 B2 JP 4008741B2
Authority
JP
Japan
Prior art keywords
ultrasonic
wave
transmitted
received
flow velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002105594A
Other languages
Japanese (ja)
Other versions
JP2003302270A (en
Inventor
明夫 河野
英司 中村
和雄 江下
哲也 保田
茂行 伊藤
真司 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Elemex Corp
Original Assignee
Ricoh Elemex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Elemex Corp filed Critical Ricoh Elemex Corp
Priority to JP2002105594A priority Critical patent/JP4008741B2/en
Publication of JP2003302270A publication Critical patent/JP2003302270A/en
Application granted granted Critical
Publication of JP4008741B2 publication Critical patent/JP4008741B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、超音波を利用してガスその他流体の流速を測定する超音波流速測定方法に関する。
【0002】
【従来の技術】
ガスその他の流体の流量を求めるに際し、まず流体の流速を連続的ないし定期的に測定し、これに基いて流量を演算することが行われている。そして、このような流体の流速測定方法の一つとして、超音波を利用した方法が知られている。
【0003】
かかる超音波流速測定方法の原理を、図4にて説明すると次のとおりである。図4において、(1)は内部をガス等の流体が流れる超音波流速測定管である。この超音波流速測定管(1)内には、流れ方向の上流側及び下流側に、所定距離を隔てて超音波振動子(2)(3)が配置されている。この超音波振動子(2)(3)は、駆動パルス発生回路(4)からの駆動パルスにより駆動されて振動し、超音波を発生送信する一方、送信されてきた超音波を受信するもので、その超音波振動子(3)(2)が振動したときの受信波が受信増幅回路(5)から出力されるものとなされている。
【0004】
そして、上流側の超音波振動子(2)から流れに対して順方向に送信された超音波が下流側の超音波振動子(3)で受波されるまでの伝搬時間と、下流側の超音波振動子(3)から流れに対して逆方向に送信された超音波が上流側の超音波振動子(2)で受信されるまでの伝搬時間との差は、流速に関係することから、この伝搬時間差を前記受信波を用いて求めることにより流体の流速を測定するものとなされている。
【0005】
なお、図4において、(6)は各超音波振動子(2)(3)と駆動パルス発生回路(4)及び受信増幅回路(5)の接続を切替える切替回路であり、まず駆動パルス発生回路(4)と上流側の超音波振動子(2)、下流側の超音波振動子(3)と受信増幅回路(5)を接続して、上流側から下流側への伝搬時間を測定したのち、該切替回路(6)の作動により駆動パルス発生回路(4)と下流側の超音波振動子(3)、上流側の超音波振動子(2)と受信増幅回路(5)とが接続されるように切替えて、下流側から上流側への伝搬時間を測定するものとなされている。
【0006】
ところで、超音波の伝搬時間のばらつきによる誤差を軽減するために、シングアラウンド法という超音波流速測定方法が知られている。このシングアラウンド法は、図5に示すように、送信側の超音波振動子(2)(3)から送信された超音波が受信側の超音波振動子(3)(2)に受信されると同時に、再び送信側の超音波振動子(2)(3)から超音波を送信することを連続して複数回(n回)繰り返す。そして、第1回目の超音波送信時から第n回目の超音波受信時までの伝搬時間和を求め、その伝搬時間和を超音波の送信回数で除算することにより超音波の伝搬時間τを求める。
【0007】
ところが、送信側の超音波振動子(2)(3)から送信された超音波の一部は、受信側の超音波振動子(3)(2)で反射して送信側の超音波振動子(2)(3)に向かい、さらに送信側の超音波振動子(2)(3)で反射して受信側の超音波振動子(3)(2)に向かう。即ち、送信側の超音波振動子(2)(3)から3回目に送信された超音波と、送信側の超音波振動子(2)(3)から1回目に送信された上述の反射超音波は、ほぼ同時に超音波振動子(2)(3)から出て、ほぼ同時に受信側の超音波振動子(3)(2)に受信される。このため、送信側の超音波振動子(2)(3)から3回目に送信された超音波を検出するにあたり、1回目に送信された上述の反射超音波がノイズとなり、超音波の伝搬時間の測定に誤差が生じるという難点があった。
【0008】
【発明が解決しようとする課題】
そこで、上記難点を解消するために、図2に示すように、受信側の超音波振動子(3)(2)により超音波を受信してから、次に送信側の超音波振動子(2)(3)から超音波を送信するまでに一定の遅延時間tをおく方法が知られている。これによれば、送信側の超音波振動子(2)(3)から3回目に送信された超音波と、送信側の超音波振動子(2)(3)から1回目に送信された上述の反射超音波とが重なることを防止することができる。
【0009】
しかしながら、従来の上記方法では、受信側の超音波振動子(3)(2)で超音波を受信してから送信側の超音波振動子(2)(3)で超音波を送信するまでの遅延時間tを計測するのに、高価な水晶等からなる電子回路によるタイマーを利用していたため、汎用的な流量計に適用するには経済的ではないという問題があった。
【0010】
この発明は、上述の問題に鑑みてなされたものであって、高価な電子部品を用いることなくシングアラウンド法における遅延時間を精度良く計測することができ、ひいては経済的な超音波流速測定方法の提供を目的とする。
【0011】
【課題を解決するための手段】
この発明は、上記目的を達成するために、超音波流速測定管を流れる計測流体の上流側と下流側にそれぞれ超音波振動子を配置し、前記各超音波振動子から相互に超音波を発生送信するとともに、送信された超音波を相互に受信し、それら超音波の伝搬時間の差に基づいて流速を測定する超音波流速測定方法であって、
送信側の超音波振動子から送信された超音波を受信側の超音波振動子で受信した時から一定の遅延時間の経過後に、再び送信側の超音波振動子から超音波を送信することを連続して複数回繰り返し、最初に送信側の超音波振動子から超音波が送信されてから、所定回数の送信後に受信側の超音波振動子に超音波が受信されるまでの全時間を測定し、その全時間に基づいて超音波の伝搬時間を求めるに際して、
受信側の超音波振動子に受信された超音波に対応する受信波の波数をカウントすることにより前記遅延時間を計測することを特徴とする。
【0012】
これによれば、シングアラウンド法における遅延時間の計測は受信波の波数をカウントすることにより行うので、高価な電子部品を用いることなくシングアラウンド法における遅延時間を精度良く計測することができる。このため超音波の伝搬時間を低コストで精度良く測定することができ、ひいては当該方法を汎用の流量計にきわめて経済的に適用することが可能となる。
【0013】
また、この発明は、超音波流速測定管を流れる計測流体の上流側と下流側にそれぞれ超音波振動子が配置され、前記各超音波振動子から相互に超音波を発生送信するとともに、送信された超音波を相互に受信し、それら超音波の伝搬時間の差に基づいて流速を測定する超音波流速測定装置であって、
送信側の超音波振動子から送信された超音波を受信側の超音波振動子で受信した時から一定の遅延時間の経過後に、再び送信側の超音波振動子から超音波を送信することを連続して複数回繰り返し、最初に送信側の超音波振動子から超音波が送信されてから、所定回数の送信後に受信側の超音波振動子に超音波が受信されるまでの全時間を測定し、その全時間に基づいて超音波の伝搬時間を求めるものとなされ、
受信側の超音波振動子に受信された超音波に対応する受信波の波数をカウントすることにより前記遅延時間を計測する計測手段が設けられていることを特徴する。
【0014】
これによれば上記超音波流速測定方法を簡単かつ確実に実現することができる。
【0015】
【発明の実施の形態】
次にこの発明の一実施形態について説明する。
【0016】
図1は、この発明を実施するための超音波流速測定装置を示すものである。図1において、(1)は流速測定管、(2)(3)は流れ方向の上流側および下流側に所定距離を隔てて配置された超音波振動子、(4)は駆動パルスを発生する駆動パルス発生回路、(5)は超音波振動子(2)(3)で超音波を受信したときに受信波を出力する受信増幅回路、(6)は超音波振動子(2)(3)と駆動パルス発生回路(4)および増幅回路(5)の接続を切り替える切替回路であり、これらは図4に示したものと同じである。
【0017】
この実施形態では、受信増幅回路(5)の出力側にゼロクロス検知回路(7)が設けられている。このゼロクロス検知回路(7)は、図3に示すように、受信回路(5)から出力される受信波の各ゼロクロスす時点を検知して、各ゼロクロス時点ごとに後述の遅延時間計測用カウンタ(8)および伝搬時間測定用カウンタ(9)にゼロクロス信号を送信する回路である。
【0018】
また、ゼロクロス検知回路(7)の一方の出力側には遅延時間計測用カウンタ(8)が設けられ、さらに遅延時間計測用カウンタ(8)の出力側には前記駆動パルス発生回路(4)が設けられ、帰還ループを構成している。
【0019】
この遅延時間計測用カウンタ(8)は、図3に示すように、ゼロクロス検知回路(7)から送信されてくる各ゼロクロス信号に基づいて、受信波が出力を開始した時点から受信波の波数をカウントし、所定の波数をカウントしたところで駆動パルス発生回路(4)に駆動信号を送信する回路である。即ち、遅延時間計測用カウンタ(8)は、受信波において所定の波数をカウントすれば、受信波の周期2T0が一定であることから、(所定の波数)×(受信波の1/2周期T0)からなる遅延時間tを計測したことになる。このため、受信側の超音波振動子(3)(2)に超音波が受信された時点から、送信側の超音波振動子(2)(3)より超音波を送信するまでに一定の遅延時間tをおくことができる。
【0020】
例えば、遅延時間を受信波8波分の時間に設定した場合、遅延時間計測用カウンタ(8)は、ゼロクロス検知回路(7)からのゼロクロス信号を受信する毎に受信波の波数を一つずつカウントしていき、受信波の波数(8波)をカウントした時点で駆動信号を駆動パルス発生回路(4)に送信すれば、(8波)×(受信波の1/2周期T0)=8T0の遅延時間を計測したことになる。
【0021】
このようにシングアラウンド法における遅延時間tの計測は受信波の波数をカウントすることにより行うので、高価な電子部品を用いることなくシングアラウンド法における遅延時間tを精度良く計測することができる。このため後述のように超音波の伝搬時間τを低コストで精度良く測定することができ、ひいては当該方法を汎用の流量計にきわめて経済的に適用することが可能となる。
【0022】
一方、駆動パルス発生回路(4)の出力側にはクロック回路(9)が設けられている。このクロック回路(9)は、最初に超音波振動子(2)(3)から超音波が送信された時点と同期して、一定周期のクロック波を連続して出力する回路である。
【0023】
また、クロック回路(9)およびゼロクロス検知回路(7)の出力側には伝搬時間測定用カウンタ(10)が設けられている。この伝搬時間測定用カウンタ(10)は、超音波振動子(2)(3)から第1回目の超音波が送信された時点から、超音波振動子(3)(2)に第n回目の超音波が受信されるまでの時点までに、前記クロック回路(9)から出力されたクロック波をカウントする回路である。このクロック波のカウント値Nは、後述の演算回路(11)に送信される。なお、伝搬時間測定用カウンタ(10)は、前記ゼロクロス検知回路(7)から送信されてくるゼロクロス信号に基づいて、超音波振動子(3)(2)に第n回目の超音波が受信される時点を特定する。
【0024】
また、伝搬時間測定用カウンタ(10)の出力側には演算回路(11)が設けられている。この演算回路(11)は、前記カウンタ(10)から送信されてきたカウント値Nに基づいて超音波の伝搬時間を求める回路で、下式[1][2]の演算を実行する。
T=Ts×N…[1]
T:第1回目の超音波が送信されてから第n回目の超音波が受信されるまでの全時間
Ts:クロック波の周期
N:クロック波のカウント値
この上式[1]において、カウント値は第1回目の超音波が送信されてから第n回目の超音波が受信されるまでにクロック回路(9)から出力されたクロック波の波数であるから、このカウント値にクロック波の周期Tsを乗算することによって、第1回目の超音波が送信されてから第n回目の超音波が受信されるまでの全時間を求めることができる。
【0025】
τ={T−(n−1)×t}/n…[2]
τ:超音波の伝搬時間
t:遅延時間
n:超音波の送信回数
この上式[2]において、n回の超音波の送信のうち、第1回目の超音波の送信を除いた(n−1)回の各超音波の送信時にはそれぞれ遅延時間tが生じているで、上式[1]により求めた全時間Tから遅延時間和(n−1)×tを減算することによって、超音波の伝搬時間和{T−(n−1)×t}を求め、さらに超音波の伝搬時間和{T−(n−1)×t}を超音波の送信回数nで除算することによって、超音波の伝搬時間τを求めることができる。
【0026】
次に図1に示した装置を用いた超音波流速測定方法について説明する。
【0027】
まず、駆動パルス発生回路(4)から駆動パルスを駆動し、上流側の超音波振動子(2)から超音波を送信するとともに、その送信と同期してクロック回路(9)から一定周期Tsのクロック波を連続して出力する。
【0028】
そして、上流側の超音波振動子(2)から送信された超音波が下流側の超音波振動子(3)に受信されると、受信増幅回路(5)からその超音波に対応する受信波が出力されるので、ゼロクロス検知回路(7)において受信波の各ゼロクロス時点を検知して、各ゼロクロス時点ごとに遅延時間計測用カウンタ(8)および伝搬時間測定用カウンタ(9)にゼロクロス信号を送信する。
【0029】
遅延時間計測用カウンタ(8)は、図 に示すように、ゼロクロス検知回路(7)から送信されてくる各ゼロクロス信号に基づいて、受信波が出力を開始した時点から受信波の波数(例えば8波)をカウントし、その所定の波数をカウントしたところで駆動パルス発生回路(4)に駆動信号を送信することによって、(所定の波数)×(受信波の1/2周期T0)からなる遅延時間tを計測する。このため、受信側の超音波振動子(3)(2)に超音波が受信された時点から、送信側の超音波振動子(2)(3)より超音波を送信するまでに一定の遅延時間tをおくことができる。
【0030】
一方、伝搬時間測定用カウンタ(10)は、ゼロクロス検知回路(7)から送信されてくるゼロクロス信号に基づいて、超音波振動子(3)(2)に第n回目の超音波が受信されるまでの時点を特定する。そして、伝搬時間測定用カウンタ(10)は、超音波振動子(2)(3)から第1回目の超音波が送信された時点から、超音波振動子(3)(2)に第n回目の超音波が受信されるまでの時点までに、前記クロック回路(9)から出力されたクロック波をカウントし、そのカウント値Nを演算回路(11)に送信する。
【0031】
演算回路(11)は、伝搬時間測定用カウンタ(10)から送信されてきたカウント値Nに基づいて超音波の伝搬時間τを求める。即ち、演算回路(11)は、上式[1]により、第1回目の超音波が送信されてから第n回目の超音波が受信されるまでの全時間Tを求める。そして、演算回路(11)は、上式[2]において、上式[1]により求めた全時間Tから遅延時間和(n−1)×tを減算することによって、超音波の伝搬時間和{T−(n−1)×t}を求め、さらに超音波の伝搬時間和{T−(n−1)×t}を超音波の送信回数nで除算することによって、超音波の伝搬時間τを求める。
【0032】
こうして順方向の超音波の伝搬時間τを求めたあとは、切替回路(6)の作動により下流側の超音波振動子(3)と駆動パルス発生回路(4)、上流側の超音波振動子(2)と受信増幅回路(5)をそれぞれ接続して、上述と同様にして逆方向の超音波の伝搬時間τ’を求める。あとは、これら順方向および逆方向の超音波の伝搬時間差(τ’−τ)に基づいて流体の流速を求め、さらに必要に応じて流体の流量を求める。
【0033】
なお、この実施形態では、受信波の周期が一定の場合について説明したが、送信側および受信側の超音波振動子の固有振動数により受信波の周期が一定でない場合でも適用可能である。即ち、受信波の周期が一定でなくとも、各回の受信波の波形はほぼ一定であるので、各回の受信波において所定の波数をカウントすれば常に同一の遅延時間を計測することができる。
【0034】
【発明の効果】
請求項1に係る発明によれば、シングアラウンド法における遅延時間の計測は受信波の波数をカウントすることにより行うので、高価な電子部品を用いることなくシングアラウンド法における遅延時間を精度良く計測することができる。このため超音波の伝搬時間を低コストで精度良く測定することができ、ひいては当該方法を汎用の流量計にきわめて経済的に適用することが可能となる。
【0035】
請求項2に係る発明によれば、によれば上記超音波流速測定方法を簡単かつ確実に実現することができる。
【図面の簡単な説明】
【図1】この発明を実施するための超音波流速測定装置の一例を示すブロック図である。
【図2】各超音波の受信波の相対関係を示す図である。
【図3】超音波の受信波を示す拡大図である。
【図4】従来の超音波流速測定装置を示すブロック図である。
【図5】従来の各超音波の受信波の相対関係を示す図である。
【符号の説明】
1・・・流速測定管
2、3・・・超音波振動子
4・・・駆動パルス発生回路
5・・・受信増幅回路
6・・・切替回路
7・・・ゼロクロス検知回路
8・・・遅延時間計測用カウンタ
9・・・クロック回路
10・・・伝搬時間測定用カウンタ
11・・・演算回路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ultrasonic flow velocity measuring method for measuring the flow velocity of a gas or other fluid using ultrasonic waves.
[0002]
[Prior art]
When determining the flow rate of gas or other fluids, first, the flow rate of the fluid is measured continuously or periodically, and the flow rate is calculated based on this. A method using ultrasonic waves is known as one of the fluid flow velocity measurement methods.
[0003]
The principle of this ultrasonic flow velocity measuring method will be described with reference to FIG. In FIG. 4, (1) is an ultrasonic flow velocity measuring tube through which a fluid such as gas flows. In this ultrasonic flow velocity measuring tube (1), ultrasonic transducers (2) and (3) are arranged at a predetermined distance on the upstream side and the downstream side in the flow direction. The ultrasonic transducers (2) and (3) are driven by drive pulses from the drive pulse generation circuit (4) to vibrate, generate and transmit ultrasonic waves, and receive transmitted ultrasonic waves. The received wave when the ultrasonic transducers (3) and (2) vibrate is output from the reception amplification circuit (5).
[0004]
Then, the propagation time until the ultrasonic wave transmitted in the forward direction from the upstream ultrasonic transducer (2) is received by the downstream ultrasonic transducer (3), and the downstream side The difference from the propagation time until the ultrasonic wave transmitted from the ultrasonic transducer (3) in the opposite direction to the flow is received by the upstream ultrasonic transducer (2) is related to the flow velocity. The flow velocity of the fluid is measured by obtaining the propagation time difference using the received wave.
[0005]
In FIG. 4, (6) is a switching circuit for switching the connection between the ultrasonic transducers (2), (3), the drive pulse generation circuit (4), and the reception amplification circuit (5). First, the drive pulse generation circuit After connecting the upstream ultrasonic transducer (2) and the downstream ultrasonic transducer (3) to the reception amplification circuit (5) and measuring the propagation time from the upstream side to the downstream side, The operation of the switching circuit (6) connects the drive pulse generation circuit (4) to the downstream ultrasonic transducer (3), and the upstream ultrasonic transducer (2) to the reception amplification circuit (5). Thus, the propagation time from the downstream side to the upstream side is measured.
[0006]
By the way, in order to reduce an error due to variations in ultrasonic propagation time, an ultrasonic flow velocity measurement method called a single-around method is known. In this sing-around method, as shown in FIG. 5, the ultrasonic waves transmitted from the transmitting ultrasonic transducers (2) and (3) are received by the receiving ultrasonic transducers (3) and (2). At the same time, the transmission of ultrasonic waves from the ultrasonic transducers (2) and (3) on the transmission side is repeated continuously a plurality of times (n times). Then, a propagation time sum from the first ultrasonic transmission to the nth ultrasonic reception is obtained, and the ultrasonic propagation time τ is obtained by dividing the propagation time sum by the number of ultrasonic transmissions. .
[0007]
However, a part of ultrasonic waves transmitted from the ultrasonic transducers (2) and (3) on the transmission side is reflected by the ultrasonic transducers (3) and (2) on the reception side to transmit the ultrasonic transducers on the transmission side. (2) Go to (3), and further reflect by the ultrasonic transducers (2) and (3) on the transmission side and go to the ultrasonic transducers (3) and (2) on the reception side. That is, the ultrasonic wave transmitted from the transmitting-side ultrasonic transducers (2) and (3) for the third time and the above-described reflected ultrasonic wave transmitted from the transmitting-side ultrasonic transducers (2) and (3) for the first time. Sound waves exit from the ultrasonic transducers (2) and (3) almost simultaneously and are received by the ultrasonic transducers (3) and (2) on the receiving side almost simultaneously. For this reason, in detecting the ultrasonic wave transmitted for the third time from the ultrasonic transducers (2) and (3) on the transmission side, the reflected ultrasonic wave transmitted for the first time becomes noise, and the propagation time of the ultrasonic wave There was a problem that an error occurred in the measurement.
[0008]
[Problems to be solved by the invention]
Therefore, in order to eliminate the above difficulty, as shown in FIG. 2, after receiving ultrasonic waves by the ultrasonic transducers (3) and (2) on the reception side, the ultrasonic transducers (2) on the transmission side next. ) A method of setting a certain delay time t from (3) to transmitting an ultrasonic wave is known. According to this, the ultrasonic wave transmitted from the transmitting-side ultrasonic transducers (2) and (3) for the third time and the above-described ultrasonic wave transmitted for the first time from the transmitting-side ultrasonic transducers (2) and (3). It is possible to prevent the reflected ultrasonic waves from overlapping.
[0009]
However, in the above-described conventional method, the period from reception of ultrasonic waves by the ultrasonic transducers (3) and (2) on the reception side to transmission of ultrasonic waves by the ultrasonic transducers (2) and (3) on the transmission side In order to measure the delay time t, a timer using an electronic circuit made of an expensive crystal or the like is used, so that there is a problem that it is not economical to apply to a general-purpose flow meter.
[0010]
The present invention has been made in view of the above-mentioned problems, and can accurately measure the delay time in the sing-around method without using expensive electronic components. For the purpose of provision.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the present invention arranges ultrasonic transducers on the upstream side and downstream side of the measurement fluid flowing through the ultrasonic flow velocity measuring tube, and generates ultrasonic waves from the respective ultrasonic transducers. An ultrasonic flow velocity measuring method for transmitting and receiving transmitted ultrasonic waves to each other and measuring a flow velocity based on a difference in propagation times of the ultrasonic waves,
After a certain delay time has elapsed since the ultrasonic wave transmitted from the ultrasonic transducer on the transmission side was received by the ultrasonic transducer on the reception side, the ultrasonic wave is transmitted from the ultrasonic transducer on the transmission side again. Repeated several times in succession, and measures the total time from when an ultrasonic wave is first transmitted from the transmitting ultrasonic transducer to when the ultrasonic wave is received by the receiving ultrasonic transducer after a predetermined number of transmissions. However, when obtaining the propagation time of the ultrasonic wave based on the total time,
The delay time is measured by counting the wave number of the received wave corresponding to the ultrasonic wave received by the ultrasonic transducer on the receiving side.
[0012]
According to this, since the delay time in the sing-around method is measured by counting the number of received waves, the delay time in the sing-around method can be accurately measured without using expensive electronic components. For this reason, it is possible to accurately measure the propagation time of ultrasonic waves at low cost, and as a result, the method can be applied to a general-purpose flow meter very economically.
[0013]
Further, according to the present invention, ultrasonic transducers are arranged on the upstream side and the downstream side of the measurement fluid flowing in the ultrasonic flow velocity measuring tube, and the ultrasonic transducers generate and transmit ultrasonic waves to and from each ultrasonic transducer. An ultrasonic flow velocity measuring apparatus that receives ultrasonic waves from each other and measures a flow velocity based on a difference in propagation times of the ultrasonic waves,
After a certain delay time has elapsed since the ultrasonic wave transmitted from the ultrasonic transducer on the transmission side was received by the ultrasonic transducer on the reception side, the ultrasonic wave is transmitted from the ultrasonic transducer on the transmission side again. Repeated several times in succession, and measures the total time from when an ultrasonic wave is first transmitted from the transmitting ultrasonic transducer to when the ultrasonic wave is received by the receiving ultrasonic transducer after a predetermined number of transmissions. Then, the propagation time of the ultrasonic wave is obtained based on the total time,
The receiving-side ultrasonic transducer is provided with measuring means for measuring the delay time by counting the number of received waves corresponding to the received ultrasonic waves.
[0014]
According to this, the ultrasonic flow velocity measuring method can be realized easily and reliably.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of the present invention will be described.
[0016]
FIG. 1 shows an ultrasonic flow velocity measuring apparatus for carrying out the present invention. In FIG. 1, (1) is a flow velocity measuring tube, (2) and (3) are ultrasonic transducers arranged at a predetermined distance upstream and downstream in the flow direction, and (4) generates a drive pulse. Drive pulse generation circuit, (5) is a reception amplification circuit that outputs a reception wave when ultrasonic waves are received by the ultrasonic transducers (2) and (3), and (6) is an ultrasonic transducer (2) (3) And a switching circuit for switching the connection between the drive pulse generating circuit (4) and the amplifier circuit (5), which are the same as those shown in FIG.
[0017]
In this embodiment, a zero cross detection circuit (7) is provided on the output side of the reception amplifier circuit (5). As shown in FIG. 3, the zero-cross detection circuit (7) detects each zero-crossing time point of the received wave output from the receiving circuit (5), and a delay time measurement counter (described later) at each zero-crossing time point. 8) and a circuit for transmitting a zero cross signal to the propagation time measurement counter (9).
[0018]
A delay time measuring counter (8) is provided on one output side of the zero cross detection circuit (7), and the drive pulse generating circuit (4) is provided on the output side of the delay time measuring counter (8). Provided, and constitutes a feedback loop.
[0019]
As shown in FIG. 3, the delay time measuring counter (8) calculates the wave number of the received wave from the time when the received wave starts output based on each zero cross signal transmitted from the zero cross detection circuit (7). This circuit counts and transmits a drive signal to the drive pulse generation circuit (4) when a predetermined wave number is counted. That is, since the delay time measuring counter (8) counts a predetermined wave number in the received wave, the period 2T0 of the received wave is constant, so (predetermined wave number) × (1/2 period T0 of the received wave). ) Is measured. Therefore, there is a certain delay from the time when the ultrasonic wave is received by the ultrasonic transducers (3) and (2) on the reception side until the ultrasonic wave is transmitted from the ultrasonic transducers (2) and (3) on the transmission side. Time t can be set.
[0020]
For example, when the delay time is set to a time corresponding to eight received waves, the delay time measuring counter (8) sets the wave number of the received wave one by one every time a zero cross signal is received from the zero cross detection circuit (7). If the drive signal is transmitted to the drive pulse generation circuit (4) at the time of counting and the number of received waves (8 waves) is counted, (8 waves) × (1/2 period T0 of received waves) = 8T0 This means that the delay time is measured.
[0021]
Thus, since the delay time t in the sing-around method is measured by counting the number of received waves, the delay time t in the sing-around method can be accurately measured without using expensive electronic components. Therefore, as described later, it is possible to accurately measure the propagation time τ of ultrasonic waves at a low cost, and it becomes possible to apply the method to a general-purpose flow meter very economically.
[0022]
On the other hand, a clock circuit (9) is provided on the output side of the drive pulse generation circuit (4). This clock circuit (9) is a circuit that continuously outputs a clock wave having a constant period in synchronization with the time point when the ultrasonic waves are first transmitted from the ultrasonic transducers (2) and (3).
[0023]
A propagation time measurement counter (10) is provided on the output side of the clock circuit (9) and the zero cross detection circuit (7). This propagation time measurement counter (10) starts from the time when the first ultrasonic wave is transmitted from the ultrasonic transducer (2) (3) to the ultrasonic transducer (3) (2). This is a circuit that counts the clock wave output from the clock circuit (9) until the time point when the ultrasonic wave is received. The count value N of this clock wave is transmitted to the arithmetic circuit (11) described later. The propagation time measurement counter (10) receives the nth ultrasonic wave from the ultrasonic transducers (3) and (2) based on the zero cross signal transmitted from the zero cross detection circuit (7). Specify the point in time.
[0024]
An arithmetic circuit (11) is provided on the output side of the propagation time measurement counter (10). The arithmetic circuit (11) is a circuit for obtaining the ultrasonic wave propagation time based on the count value N transmitted from the counter (10), and executes the calculations of the following equations [1] and [2].
T = Ts × N ... [1]
T: Total time from when the first ultrasonic wave is transmitted until the nth ultrasonic wave is received Ts: Clock wave cycle N: Clock wave count value In the above equation [1], the count value Is the wave number of the clock wave output from the clock circuit (9) from when the first ultrasonic wave is transmitted to when the nth ultrasonic wave is received, so the clock wave period Ts is included in this count value. Is multiplied by the total time from when the first ultrasonic wave is transmitted until the nth ultrasonic wave is received.
[0025]
[tau] = {T- (n-1) * t} / n [2]
τ: Ultrasonic propagation time t: Delay time n: Number of ultrasonic transmissions In the above equation [2], the first ultrasonic transmission is excluded from the n ultrasonic transmissions (n− 1) A delay time t is generated at each transmission of each ultrasonic wave, and the ultrasonic wave is obtained by subtracting the delay time sum (n−1) × t from the total time T obtained by the above equation [1]. By subtracting the ultrasonic propagation time sum {T− (n−1) × t} by the number of ultrasonic transmissions n, The propagation time τ of the sound wave can be obtained.
[0026]
Next, an ultrasonic flow velocity measuring method using the apparatus shown in FIG. 1 will be described.
[0027]
First, a drive pulse is driven from the drive pulse generation circuit (4), an ultrasonic wave is transmitted from the upstream ultrasonic transducer (2), and in synchronization with the transmission, the clock circuit (9) has a constant cycle Ts. The clock wave is output continuously.
[0028]
When the ultrasonic wave transmitted from the upstream ultrasonic transducer (2) is received by the downstream ultrasonic transducer (3), the received wave corresponding to the ultrasonic wave is received from the reception amplification circuit (5). Is output by the zero-cross detection circuit (7), and the zero-cross signal is sent to the delay time measurement counter (8) and the propagation time measurement counter (9) at each zero-cross time point. Send.
[0029]
As shown in the figure, the delay time measurement counter (8) is based on each zero cross signal transmitted from the zero cross detection circuit (7), and the wave number of the received wave (for example, 8 When the predetermined wave number is counted, a drive signal is transmitted to the drive pulse generation circuit (4) to thereby obtain a delay time of (predetermined wave number) × (1/2 period T0 of the received wave). t is measured. Therefore, there is a certain delay from the time when the ultrasonic wave is received by the ultrasonic transducers (3) and (2) on the reception side until the ultrasonic wave is transmitted from the ultrasonic transducers (2) and (3) on the transmission side. Time t can be set.
[0030]
On the other hand, the propagation time measurement counter (10) receives the nth ultrasonic wave at the ultrasonic transducers (3) and (2) based on the zero cross signal transmitted from the zero cross detection circuit (7). Specify the time point until. Then, the propagation time measurement counter (10) receives the n-th signal from the ultrasonic transducers (2) and (3) to the ultrasonic transducers (3) and (2) from the time when the first ultrasonic wave is transmitted. The clock wave output from the clock circuit (9) is counted by the time until the ultrasonic wave is received, and the count value N is transmitted to the arithmetic circuit (11).
[0031]
The arithmetic circuit (11) obtains the ultrasonic propagation time τ based on the count value N transmitted from the propagation time measurement counter (10). That is, the arithmetic circuit (11) obtains the total time T from when the first ultrasonic wave is transmitted until the nth ultrasonic wave is received by the above equation [1]. Then, the arithmetic circuit (11) subtracts the delay time sum (n−1) × t from the total time T obtained by the above equation [1] in the above equation [2], thereby obtaining the ultrasonic propagation time sum. {T− (n−1) × t} is obtained, and the ultrasonic propagation time is divided by dividing the ultrasonic propagation time sum {T− (n−1) × t} by the number of ultrasonic transmissions n. Find τ.
[0032]
After obtaining the forward ultrasonic propagation time τ in this way, the switching circuit (6) is operated to operate the downstream ultrasonic transducer (3), the drive pulse generation circuit (4), and the upstream ultrasonic transducer. (2) and the reception amplifier circuit (5) are connected to each other, and the ultrasonic propagation time τ ′ in the reverse direction is obtained in the same manner as described above. After that, the flow velocity of the fluid is obtained based on the difference in propagation time (τ′−τ) between the ultrasonic waves in the forward direction and the backward direction, and the flow rate of the fluid is further obtained as necessary.
[0033]
In this embodiment, the case where the period of the received wave is constant has been described. However, the present invention is applicable even when the period of the received wave is not constant due to the natural frequencies of the ultrasonic transducers on the transmission side and the reception side. That is, even if the period of the received wave is not constant, the waveform of the received wave at each time is substantially constant. Therefore, if the predetermined number of waves is counted in each received wave, the same delay time can always be measured.
[0034]
【The invention's effect】
According to the first aspect of the present invention, the delay time in the sing-around method is measured by counting the number of received waves, so that the delay time in the sing-around method is accurately measured without using expensive electronic components. be able to. For this reason, it is possible to accurately measure the propagation time of ultrasonic waves at low cost, and as a result, the method can be applied to a general-purpose flow meter very economically.
[0035]
According to the invention which concerns on Claim 2, according to the said ultrasonic flow velocity measuring method, it is realizable easily and reliably.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an example of an ultrasonic flow velocity measuring apparatus for carrying out the present invention.
FIG. 2 is a diagram illustrating a relative relationship between received waves of ultrasonic waves.
FIG. 3 is an enlarged view showing a received wave of ultrasonic waves.
FIG. 4 is a block diagram showing a conventional ultrasonic flow velocity measuring apparatus.
FIG. 5 is a diagram showing a relative relationship between reception waves of conventional ultrasonic waves.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Flow velocity measuring tube 2, 3 ... Ultrasonic vibrator 4 ... Drive pulse generation circuit 5 ... Reception amplification circuit 6 ... Switching circuit 7 ... Zero cross detection circuit 8 ... Delay Counter for time measurement 9... Clock circuit 10... Counter for propagation time measurement 11.

Claims (2)

超音波流速測定管を流れる計測流体の上流側と下流側にそれぞれ超音波振動子を配置し、前記各超音波振動子から相互に超音波を発生送信するとともに、送信された超音波を相互に受信し、それら超音波の伝搬時間の差に基づいて流速を測定する超音波流速測定方法であって、
送信側の超音波振動子から送信された超音波を受信側の超音波振動子で受信した時から一定の遅延時間の経過後に、再び送信側の超音波振動子から超音波を送信することを連続して複数回繰り返し、最初に送信側の超音波振動子から超音波が送信されてから、所定回数の送信後に受信側の超音波振動子に超音波が受信されるまでの全時間を測定し、その全時間に基づいて超音波の伝搬時間を求めるに際して、
受信側の超音波振動子に受信された超音波に対応する受信波の波数をカウントすることにより前記遅延時間を計測することを特徴とする超音波流速測定方法。
Ultrasonic transducers are arranged on the upstream and downstream sides of the measurement fluid flowing through the ultrasonic flow velocity measuring tube, respectively, and ultrasonic waves are generated and transmitted from the ultrasonic transducers, and the transmitted ultrasonic waves are mutually transmitted. An ultrasonic flow velocity measuring method for receiving and measuring a flow velocity based on a difference between propagation times of the ultrasonic waves,
After a certain delay time has elapsed since the ultrasonic wave transmitted from the ultrasonic transducer on the transmission side was received by the ultrasonic transducer on the reception side, the ultrasonic wave is transmitted from the ultrasonic transducer on the transmission side again. Repeated several times in succession, and measures the total time from when an ultrasonic wave is first transmitted from the transmitting ultrasonic transducer to when the ultrasonic wave is received by the receiving ultrasonic transducer after a predetermined number of transmissions. However, when obtaining the propagation time of the ultrasonic wave based on the total time,
An ultrasonic flow velocity measuring method, wherein the delay time is measured by counting the wave number of a received wave corresponding to an ultrasonic wave received by an ultrasonic transducer on a receiving side.
超音波流速測定管を流れる計測流体の上流側と下流側にそれぞれ超音波振動子が配置され、前記各超音波振動子から相互に超音波を発生送信するとともに、送信された超音波を相互に受信し、それら超音波の伝搬時間の差に基づいて流速を測定する超音波流速測定装置であって、
送信側の超音波振動子から送信された超音波を受信側の超音波振動子で受信した時から一定の遅延時間の経過後に、再び送信側の超音波振動子から超音波を送信することを連続して複数回繰り返し、最初に送信側の超音波振動子から超音波が送信されてから、所定回数の送信後に受信側の超音波振動子に超音波が受信されるまでの全時間を測定し、その全時間に基づいて超音波の伝搬時間を求めるものとなされ、
受信側の超音波振動子に受信された超音波に対応する受信波の波数をカウントすることにより前記遅延時間を計測する計測手段が設けられていることを特徴とする超音波流速測定方法。
Ultrasonic transducers are arranged on the upstream and downstream sides of the measurement fluid flowing through the ultrasonic flow velocity measurement tube, respectively, and generate and transmit ultrasonic waves from the ultrasonic transducers, and transmit the transmitted ultrasonic waves to each other. An ultrasonic flow velocity measuring device that receives and measures a flow velocity based on a difference in propagation time of the ultrasonic waves,
After a certain delay time has elapsed since the ultrasonic wave transmitted from the ultrasonic transducer on the transmission side was received by the ultrasonic transducer on the reception side, the ultrasonic wave is transmitted from the ultrasonic transducer on the transmission side again. Repeated several times in succession, and measures the total time from when an ultrasonic wave is first transmitted from the transmitting ultrasonic transducer to when the ultrasonic wave is received by the receiving ultrasonic transducer after a predetermined number of transmissions. Then, the propagation time of the ultrasonic wave is obtained based on the total time,
An ultrasonic flow velocity measuring method, comprising: a measuring means for measuring the delay time by counting the wave number of a received wave corresponding to an ultrasonic wave received by an ultrasonic transducer on a receiving side.
JP2002105594A 2002-04-08 2002-04-08 Ultrasonic flow velocity measuring method and apparatus Expired - Fee Related JP4008741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002105594A JP4008741B2 (en) 2002-04-08 2002-04-08 Ultrasonic flow velocity measuring method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002105594A JP4008741B2 (en) 2002-04-08 2002-04-08 Ultrasonic flow velocity measuring method and apparatus

Publications (2)

Publication Number Publication Date
JP2003302270A JP2003302270A (en) 2003-10-24
JP4008741B2 true JP4008741B2 (en) 2007-11-14

Family

ID=29390229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002105594A Expired - Fee Related JP4008741B2 (en) 2002-04-08 2002-04-08 Ultrasonic flow velocity measuring method and apparatus

Country Status (1)

Country Link
JP (1) JP4008741B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2641071B1 (en) 2010-11-18 2015-10-07 Belimo Holding AG Determining the heat flow emanating from a heat transporting fluid
JP5229349B2 (en) * 2011-04-13 2013-07-03 パナソニック株式会社 Fluid flow measuring device

Also Published As

Publication number Publication date
JP2003302270A (en) 2003-10-24

Similar Documents

Publication Publication Date Title
US11333676B2 (en) Beam shaping acoustic signal travel time flow meter
WO2012081195A1 (en) Flow volume measuring device
JP2002131105A (en) Ultrasonic flow rate measuring method
JP4008741B2 (en) Ultrasonic flow velocity measuring method and apparatus
JP2000338123A (en) Ultrasonic floe speed measuring method
JP4688253B2 (en) Ultrasonic flow meter
JP4797515B2 (en) Ultrasonic flow measuring device
JP5239876B2 (en) Flow measuring device
JP3422100B2 (en) Flow measurement device
JP4485641B2 (en) Ultrasonic flow meter
JP3720155B2 (en) Ultrasonic flow velocity measurement method
JPS63173920A (en) Ultrasonic gas current meter
JPH1090029A (en) Ultrasonic wave flowmeter
JP3915831B2 (en) Ultrasonic current meter
WO2012157261A1 (en) Ultrasonic flow meter
JP2001165764A (en) Method of measuring ultrasonic wave propagation time
JP2001099852A (en) Ultrasonic flow-velocity measuring method
JPH11211527A (en) Ultrasonic flow velocity measurement method
JP2002071410A (en) Ultrasonic flow velocity measurement method
JP2000241220A (en) Method and apparatus for measuring flowing velocity of ultrasonic wave
JP2001281032A (en) Apparatus for ultrasonically measuring flow rate
JP2003050145A (en) Method and apparatus for ultrasonic flow-velocity measurement
JPS59214714A (en) Ultrasonic wave flowmeter
JP2004028705A (en) Ultrasonic flowmeter
JP2000146643A (en) Ultrasonic flowmeter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees