JPS63173920A - Ultrasonic gas current meter - Google Patents

Ultrasonic gas current meter

Info

Publication number
JPS63173920A
JPS63173920A JP62005760A JP576087A JPS63173920A JP S63173920 A JPS63173920 A JP S63173920A JP 62005760 A JP62005760 A JP 62005760A JP 576087 A JP576087 A JP 576087A JP S63173920 A JPS63173920 A JP S63173920A
Authority
JP
Japan
Prior art keywords
circuit
ultrasonic
receiving
circuits
ultrasonic waves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62005760A
Other languages
Japanese (ja)
Other versions
JPH0584849B2 (en
Inventor
Yukio Yoshida
幸男 吉田
Shusuke Suzuki
秀典 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiki Inc
Original Assignee
Tokyo Keiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Keiki Co Ltd filed Critical Tokyo Keiki Co Ltd
Priority to JP62005760A priority Critical patent/JPS63173920A/en
Publication of JPS63173920A publication Critical patent/JPS63173920A/en
Publication of JPH0584849B2 publication Critical patent/JPH0584849B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To perform accurate measurement with good accuracy, by calculating a flow speed on the basis of the difference between the propagation times of an ultrasonic wave in forward and reverse directions. CONSTITUTION:Transmitter-receivers P1, P2 simultaneously emit ultrasonic waves in the gas flowing through a flow pipe 10 and the ultrasonic waves propagated so as to go across the gas are received by the transmitter-receivers P2, P1 opposed to each other Coupling circuits 21, 22 receive the receiving wave signals from the transmitter-receivers P1, P2 to input the same to receiving circuits 41, 42 through a change-over circuit 30. Receiving wave signal detection circuits 43, 44 compare the outputs from the receiving circuits 41, 42 with a reference signal to issue outputs to FF circuits 51, 2. Counters 61, 62 count a clock pulse during a time when the outputs of the FF circuits 51, 52 are at an H-level. An operation circuit 100 multiplies the difference between the count values of the counters 61, 62 by a predetermined constant to calculate the flow speed of the gas.

Description

【発明の詳細な説明】 a、産業上の利用分野 本発明は、超音波を利用して管内を流れる気体の流速を
測定するための超音波気体流速計に関する。
DETAILED DESCRIPTION OF THE INVENTION a. Field of Industrial Application The present invention relates to an ultrasonic gas flow meter for measuring the flow velocity of gas flowing inside a pipe using ultrasonic waves.

b、従来の技術 管内を流れる気体中に超音波を伝搬させて、その伝搬速
度の変化を利用して管内気体の流速または流量を測定す
る装置は従来から知られている。例えば、流管の周壁に
互いに斜めに対向して、一対の超音波送受波用のプロー
ブを配置し、このプローブで流れに対して順方向および
逆方向に交互に超音波の送受信を行ない、それぞれの流
管内をよぎって伝搬する超音波の順、逆両方向における
伝搬時間(若しくはその逆数)の差を求めることにより
管内気体の流速を測定するものがある。
b. Prior Art Devices that propagate ultrasonic waves in gas flowing inside a pipe and measure the flow rate or flow rate of the gas inside the pipe by utilizing changes in the propagation speed are conventionally known. For example, a pair of probes for transmitting and receiving ultrasonic waves are placed diagonally opposite each other on the peripheral wall of a flow tube, and the probes transmit and receive ultrasonic waves alternately in the forward and reverse directions relative to the flow. There is a method that measures the flow velocity of the gas in the tube by determining the difference in the propagation time (or its reciprocal) in both the forward and reverse directions of the ultrasonic wave propagating across the flow tube.

C0発明が解決しようとする問題点 しかしながら、気体中における超音波の伝搬は、気体の
成分、温度、粉塵などによりその減衰量が変化し、流速
分布(例えば渦など)、温度分布その他の不均一性によ
り伝搬経路上での反射、屈折が行なわれ、それらが液体
に比べて著しい影響を与える。
Problems to be solved by the C0 invention However, when ultrasonic waves propagate in gas, the amount of attenuation changes depending on the gas components, temperature, dust, etc. Due to its nature, reflection and refraction occur on the propagation path, and these have a significant effect compared to liquids.

従って、前記従来例にあるように超音波の送受信を交互
に切替えて行なったのでは、順、逆方向における超音波
の伝搬経路の対称性が損なわれ、すなわち超音波受信波
の振幅および位相が変化することになり、正確な流速測
定が困難であるという問題点があった。
Therefore, if the transmission and reception of ultrasonic waves are alternately switched as in the conventional example, the symmetry of the propagation path of the ultrasonic waves in the forward and reverse directions is lost, that is, the amplitude and phase of the received ultrasonic waves are changed. This poses a problem in that it is difficult to accurately measure the flow velocity.

本発明はかかる点に鑑みなされたもので、その目的は前
記の問題点を解消し、気体の流速測定に際し、前記順、
逆方向における超音波の伝搬経路の時間経過に伴う非対
称性を回避し、かつ受信系に付随する非対称性、例えば
、受信回路系のゲインおよびオフセットの変動、ドリフ
トなどの影響を除去すると共に、安定かつ測定精度のよ
い超音波気体流速計を提供することにある。
The present invention has been made in view of the above-mentioned problems, and its purpose is to solve the above-mentioned problems and, when measuring the flow velocity of gas, to
It avoids the asymmetry of the ultrasonic propagation path in the reverse direction over time, eliminates the effects of asymmetry associated with the receiving system, such as fluctuations in gain and offset of the receiving circuit system, and drift, and stabilizes it. Another object of the present invention is to provide an ultrasonic gas flow meter with high measurement accuracy.

d0問題点を解決するための手段 前記目的を達成するための本発明の構成は、気体の流通
路の壁面に、該流通路の長軸方向に対して斜め方向に、
または斜め方向から超音波を対向して送受する一対の超
音波送受波器を配設し、気体の流れに順方向および逆方
向に超音波を伝搬させて、流通路内を伝搬する超音波の
順、逆両方向におけるそれぞれの伝搬時間若しくはそれ
ぞれの逆数の差に基づいて気体の流速を測定する流速計
において、ひとつの送信回路からの送信信号を前記一対
のそれぞれの超音波送受波器側のみに、かつ同時に該両
送受波器を駆動するために導通させると共に、前記それ
ぞれの送受波器からの受信信号を受信回路側のみに導通
させる2組の結合手段と、 前記それぞれの送受波器から受信信号を2uの受信回路
にそれぞれ交互に切替えて入力する2組の切替手段と、 該2組の切替手段を前記送信信号の繰返し周期より長い
周期で切替える手段とを備えたことを特徴とする。
Means for Solving the d0 Problem The structure of the present invention for achieving the above-mentioned object is such that the wall surface of the gas flow path is provided with a structure that is diagonal to the longitudinal direction of the flow path.
Alternatively, a pair of ultrasonic transducers that face each other to transmit and receive ultrasonic waves from diagonal directions is installed, and the ultrasonic waves propagate in the forward and reverse directions of the gas flow, thereby reducing the ultrasonic waves propagating in the flow path. In a current meter that measures the gas flow velocity based on the difference between the respective propagation times in both forward and reverse directions or the respective reciprocals, the transmission signal from one transmission circuit is sent only to the ultrasonic transducer side of each of the pair. , and at the same time, two sets of coupling means that connect the two transducers to drive them and conduct the received signals from the respective transducers only to the receiving circuit side; It is characterized by comprising two sets of switching means for alternately switching and inputting signals to the 2u receiving circuits, and means for switching the two sets of switching means at a cycle longer than the repetition cycle of the transmission signal.

e、 作用 単一の送信回路からの送信信号により、前記一対の超音
波送受波器を同時に駆動して、超音波を同時に発射させ
、超音波を気体の流れに対しそれぞれ順および逆方向に
同一経路を伝搬させて、それぞれの伝搬時間若しくはそ
れぞれの逆数の差により、気体の流速分布、温度分布そ
の他の不均一性による影響を受けないようにする。更に
、受信系に2組の受信回路を設は前記送信信号の繰返し
周期より長い周期により、前記それぞれの送受波器から
の受信信号を交互に切替えて入力し、同回路のゲイン、
オフセットの変動およびドリフトなどの影響を除去する
e. Operation The pair of ultrasonic transducers are simultaneously driven by a transmission signal from a single transmission circuit to simultaneously emit ultrasonic waves, and the ultrasonic waves are transmitted in the same forward and reverse directions with respect to the gas flow. The paths are propagated so that they are not influenced by gas flow velocity distribution, temperature distribution, or other non-uniformities due to differences in their respective propagation times or their reciprocals. Furthermore, two sets of receiving circuits are provided in the receiving system, and the received signals from the respective transducers are alternately switched and inputted with a cycle longer than the repetition cycle of the transmitted signal, and the gain of the circuit is
Eliminate effects such as offset variations and drift.

f、実施例 以下、図面に基づいて本発明の好適な実施例を例示的に
詳しく説明する。
f. Examples Hereinafter, preferred embodiments of the present invention will be described in detail by way of example based on the drawings.

第1図は本発明の一実施例を示す超音波気体流速計のブ
ロック図である。同図において、気体が矢印方向に流れ
る流管10の壁面に、該流管10の長軸方向に対して斜
め方向に、または斜め方向から超音波を対向して送受す
る一対の超音波送受波器P+、Pzが配設されている。
FIG. 1 is a block diagram of an ultrasonic gas flow meter showing an embodiment of the present invention. In the figure, a pair of ultrasonic transmitting/receiving waves are mounted on the wall surface of a flow tube 10 through which gas flows in the direction of the arrow, and transmit and receive ultrasonic waves in a diagonal direction with respect to the long axis direction of the flow tube 10 or oppositely from an oblique direction. vessels P+ and Pz are arranged.

タイマ(TIM)70は、超音波が流管10内を流れる
気体をよぎって伝搬する伝搬時間より充分長い周期をも
つ繰返しパルスT、を発生し、ひとつの送信回路(PL
S)20へ供給する。
The timer (TIM) 70 generates a repetitive pulse T having a period sufficiently longer than the propagation time for the ultrasonic wave to propagate through the gas flowing in the flow tube 10, and
S) Supply to 20.

該送信回路(PLS) 20は前記繰返しパルスT、の
信号に基づき送信パルス(TX)を発生し、2組の結合
回路(NETI)21. (NETり22を経て、同時
に前記それぞれの送受波器P+、hへ送出する。送受波
器Pl+hは流管10を流れる気体中に同時に超音波を
発射し、それぞれ対向する送受波器p、、 p、により
気体中をよぎって伝搬した超音波を受波する。
The transmitting circuit (PLS) 20 generates a transmitting pulse (TX) based on the signal of the repetitive pulse T, and connects two sets of coupling circuits (NETI) 21. (Through the NET 22, they are simultaneously transmitted to the respective transducers P+, h. The transducer Pl+h simultaneously emits ultrasonic waves into the gas flowing through the flow tube 10, and the transducers p, , The ultrasonic wave propagated through the gas is received by p.

結合回路(Nil!T、)21. (NIE’h)22
は送受波器p、、ptからの受信波信号を受け、切替回
路(SW) 30を介し受信波信号RX、、RX、とし
て受信回路(RECI)41. (RECI)42へ入
力する。受信回路(RHCυ41. (RECz)42
は受信波信号RX1.RX2を受けて、所定のレベルま
で増幅する。
Coupling circuit (Nil!T,)21. (NIE'h)22
receive the received wave signals from the transducers p, , pt, and output them as received wave signals RX, RX through the switching circuit (SW) 30 to the receiving circuit (RECI) 41 . (RECI) 42. Receiving circuit (RHCυ41. (RECz)42
is the received wave signal RX1. It receives RX2 and amplifies it to a predetermined level.

前記結合回路(NETI)21. (NETz)22は
リミッタおよび減衰器から構成されており、送信パルス
TXに対しては効率よく送受波器P、、P、へ導通し、
かつ、切替回路(SW) 30を介して受信回路(RE
CI)41. (RECz)42への混入を防止すると
共に、送受波器p、、p2からの受信波信号に対しては
効率よく、切替回路(SW) 30を介して受信回路(
RECI)41. (RECz)42へ導通し、かつ、
前記送信回路(PLS) 20への混入を阻止するよう
になっている。
The coupling circuit (NETI) 21. (NETz) 22 is composed of a limiter and an attenuator, and efficiently conducts the transmission pulse TX to the transducer P, , P,
In addition, the receiving circuit (RE) is connected to the receiving circuit (RE) via the switching circuit (SW) 30.
CI)41. (RECz) 42, and efficiently transfer the received wave signals from the transducers p, p2 to the receiving circuit (RECz) 42 via the switching circuit (SW) 30.
RECI)41. (RECz) 42, and
It is designed to prevent contamination from entering the transmitting circuit (PLS) 20.

切替回路(SW) 30は2mの切替スイッチを有し、
タイマ(TIM)TOより出力される信号T2により駆
動され切替動作する。該信号T!は繰返しパルスT1の
繰返し周期より更に長い周期をもつ方形波信号である。
The switching circuit (SW) 30 has a 2m changeover switch,
It is driven by the signal T2 output from the timer (TIM) TO and performs a switching operation. The signal T! is a square wave signal having a period longer than the repetition period of the repetition pulse T1.

切替回路(SW) 30は前記信号T2により受信側送
受波器pg。
A switching circuit (SW) 30 is a receiving side transducer pg in response to the signal T2.

Plと受信回路(RECI)41. (RECり42と
の組み合せ接続を2組のa、b接点により交互に一定周
期ごとに切替える。例えば、信号rzがHレベルの間は
、送受波器P1からの受信信号を受信回路(RECI)
41へ、一方の送受波器P2からの受信信号を受信回路
(RECt)42へ接続し、信号T2がLレベルの間は
、送受波器P、からの受信信号を受信回路(RtECg
)42へ、一方の送受波器Pgからの受信信号を受信回
路(RECI)41へ接続する。
Pl and receiving circuit (RECI) 41. (The combination connection with the REC circuit 42 is switched alternately at regular intervals using two sets of a and b contacts. For example, while the signal rz is at H level, the received signal from the transducer P1 is connected to the receiving circuit (RECI).
41, the received signal from one transducer P2 is connected to the receiving circuit (RECt) 42, and while the signal T2 is at L level, the received signal from the transducer P is connected to the receiving circuit (RtECg).
) 42, and the received signal from one transducer Pg is connected to the receiving circuit (RECI) 41.

次に、受信波信号検出回路(DETI)43. (DE
Tz)44は前記受信回路(RECυ41. (REC
t)42からの出力を内蔵する基準電圧と比較し、その
出力が基準電圧を超えたときの受信波信号の到達(また
はその波の次のゼロクロス点)をもって受信波信号の到
達時刻とし、その時点で出力パルスをフリップフロップ
回路(FFI)51、 (FF2)52へ送出する。
Next, the received wave signal detection circuit (DETI) 43. (D.E.
Tz) 44 is the receiving circuit (RECυ41. (REC
t) Compare the output from 42 with the built-in reference voltage, and determine the arrival time of the received wave signal when the output exceeds the reference voltage (or the next zero-crossing point of that wave). At this point, output pulses are sent to flip-flop circuits (FFI) 51 and (FF2) 52.

フリップフロップ回路(FFI)51. (FFZ)5
2はタイマ(TIM)70からの繰返しパルスTいすな
わち送信パルスTXの送出時刻にセットされ、検出回路
(DETI)43゜(DET2)44の出力パルスによ
りリセットされる。このため、切替回路(SW)30内
の切替スイッチがa接点に接続されて、フリップフロッ
プ回路(FFI)51が例えば下流側の送受波器P1か
らの受信波信号を増幅した信号によりリセットされるも
のとすると、該フリップフロップ回路(FFI)51は
気体の流れに対し順方向に伝搬する超音波の伝搬時間の
間Hレベルに保持される。同様に、フリップフロップ回
路(FF2)52は、この場合上流側の送受波器P2か
らの受信波信号によりリセットされ、フリップフロップ
回路(ppz)52は流れに対し逆方向に伝搬する超音
波の伝搬時間の間Hレベルに保持される。また、切替ス
イッチがb接点に接続されたときも、第1図により相互
の接続は切替るが各回路は同様な動作を行なう。
Flip-flop circuit (FFI)51. (FFZ)5
2 is set at the sending time of the repetition pulse T from the timer (TIM) 70, that is, the transmission pulse TX, and is reset by the output pulse of the detection circuit (DETI) 43° (DET2) 44. Therefore, the changeover switch in the changeover circuit (SW) 30 is connected to the a contact, and the flip-flop circuit (FFI) 51 is reset by, for example, a signal obtained by amplifying the received wave signal from the downstream transducer P1. In this case, the flip-flop circuit (FFI) 51 is held at the H level during the propagation time of the ultrasonic wave propagating in the forward direction with respect to the gas flow. Similarly, the flip-flop circuit (FF2) 52 is reset by the received wave signal from the upstream transducer P2 in this case, and the flip-flop circuit (ppz) 52 is reset by the received wave signal from the upstream transducer P2, and the flip-flop circuit (ppz) 52 is reset by the reception wave signal from the upstream transducer P2. It is held at H level for a period of time. Also, when the selector switch is connected to the b contact, the mutual connections are switched as shown in FIG. 1, but each circuit operates in the same way.

カウンタ(CNTI)61. (CNTZ)62の計数
値は、前記フリップフロップ回路(FF、)51. (
pFz)52の出力がHレベルの間、ゲー)53.54
を介してクロックパルス発生回路(CPG)50からの
クロックパルスが与えられ、計数を行なう。これらのカ
ウンタ(CNTI)61. (cN’rz)62の計数
値は、それぞれのインターフェイス(IP)80を介し
て演算回路(CPU) 100に入力される。
Counter (CNTI)61. (CNTZ) 62 is the count value of the flip-flop circuit (FF) 51. (
While the output of pFz) 52 is at H level, 53.54
A clock pulse from a clock pulse generation circuit (CPG) 50 is applied via the clock pulse generating circuit (CPG) for counting. These counters (CNTI)61. The count value of (cN'rz) 62 is input to the arithmetic circuit (CPU) 100 via each interface (IP) 80.

該演算回路(CPU) 100はカウンタ(CNTI)
61. (cN’rz)62の計数値の差に、あらかじ
め決められた定数を乗することにより気体の流速を算出
する。また、この流速値に、気体が流れる流管10の断
面積を乗することにより、その流路lOを通過する流量
を算出し、流量計としての用途を満すことも可能である
The arithmetic circuit (CPU) 100 is a counter (CNTI)
61. The gas flow velocity is calculated by multiplying the difference between the count values of (cN'rz)62 by a predetermined constant. Furthermore, by multiplying this flow velocity value by the cross-sectional area of the flow tube 10 through which the gas flows, it is possible to calculate the flow rate passing through the flow path IO, thereby satisfying the purpose of the flow meter.

演算回路(CPU) 100により得られた流速値(ま
たはその対応値)をインターフェイス(IF)80を介
して出力回路(OIJT) 90に出力する。この出力
回路(OUT) 90は演算回路(CPU) 100か
らの出力データを表示する表示器のほか、該出力データ
をアナログに変換して出力するD/A変換回路などから
構成される。
The flow velocity value (or its corresponding value) obtained by the arithmetic circuit (CPU) 100 is output to the output circuit (OIJT) 90 via the interface (IF) 80. This output circuit (OUT) 90 includes a display that displays output data from the arithmetic circuit (CPU) 100, a D/A conversion circuit that converts the output data into analog, and outputs the converted data.

以上の説明は、超音波の順、逆方向における伝搬遂時間
の差を基に流速を算出する例を示したが、それぞれの伝
搬時間の逆数の差、あるいは伝搬時間のそれぞれに比例
した周波数に変換し、それらの差から流速を算出するこ
とも可能である。また前記演算回路(CPU) 100
はマイクロコンピュータで実行することも可能である。
The above explanation shows an example of calculating the flow velocity based on the difference in the propagation time in the forward and reverse directions of the ultrasonic wave. It is also possible to convert and calculate the flow velocity from the difference between them. Further, the arithmetic circuit (CPU) 100
can also be executed on a microcomputer.

以上のように送受波器P+、hは同一時刻に同一送信パ
ルスによって駆動され、送受波器PI+P!から同時に
発射される超音波は同−伝搬経路上を互に逆方向に伝搬
し、対向配置されている送受波器P!、P、で受波され
る。従って、伝搬経路上における減衰1反射、屈折は同
様な影響をうける。しかし、流れる気体の状態により超
音波の減衰量が増大したとすると、受信波信号RX、、
RX2は同様に減衰し、検出回路(DET l >43
、 (DETz)44からの出力パルスが遅延し、見掛
は上超音波の伝搬時間が増加するが、超音波伝搬時間の
差には相殺されるので影響されることはない。
As described above, the transducers P+ and h are driven by the same transmission pulse at the same time, and the transducers PI+P! The ultrasonic waves simultaneously emitted from P! propagate in opposite directions on the same propagation path, and the transducers P! and P! , P, is received. Therefore, attenuation 1 reflection and refraction on the propagation path are similarly affected. However, if the amount of attenuation of the ultrasonic wave increases depending on the state of the flowing gas, the received wave signal RX,
RX2 is similarly attenuated and the detection circuit (DET l >43
, (DETz) 44 is delayed, and the propagation time of the ultrasonic wave appears to increase, but the difference in ultrasonic propagation time is canceled out and is not affected.

更に、受信回路(R[IC+、 RECt) 、検出回
路(DETI、 DETz) 。
Furthermore, a receiving circuit (R[IC+, RECt) and a detection circuit (DETI, DETz).

カウンタ(CNT1. CNTZ)は、超音波の順、逆
方向において、それぞれ別個のハードウェアを使用して
いるため、順、逆方向について同一伝搬時間であっても
カウンタ(CNT+、 CN’h)の計数値は厳密には
一致しない。これを防ぐためあらかじめ補正を施す手段
もあるが、前記ハードウェアのドリフトによる影響まで
除去できない。本実施例は前記ハードウェアを二組設け
、前記タイマ(TIM)70からの信号T2と切替回路
(SW) 30とで一定周期ごとに切替えることにより
、オフセット ドリフトなどのハードウェアに起因する
誤差を除去することができる。すなわち、送受波器P、
〜(RECI)41. pg〜(RECり42の組合せ
で、その演算結果がV+ΔV(Δ■は前記ハードウェア
に基づく誤差)であったとすると、P、〜(RECg)
42. Pg〜(REC1)41の組合せでは■−Δ■
となるので、前記二つの演算結果の平均をとれば正しい
流速値■を得ることができる。また、演算回路(CPU
) 100を前記出力の平均を出力するように構成して
おけば、前記ハードウェアの変動の影響をうけずに正確
な流速を測定することができる。
The counters (CNT1.CNTZ) use separate hardware for the forward and reverse directions of the ultrasound, so even if the propagation time is the same for the forward and reverse directions, the counters (CNT+, CN'h) The counted values do not exactly match. Although there are means to perform correction in advance to prevent this, the influence of the hardware drift cannot be removed. In this embodiment, two sets of the hardware are provided, and the signal T2 from the timer (TIM) 70 and the switching circuit (SW) 30 are switched at regular intervals to eliminate errors caused by the hardware such as offset drift. Can be removed. That is, the transducer P,
~(RECI)41. If the calculation result is V + ΔV (Δ■ is the error based on the hardware) for the combination of pg ~ (REC 42), then P, ~ (RECg)
42. In the combination of Pg~(REC1)41, ■−Δ■
Therefore, by taking the average of the above two calculation results, the correct flow velocity value (■) can be obtained. In addition, the arithmetic circuit (CPU
) 100 so as to output the average of the outputs, it is possible to accurately measure the flow velocity without being affected by variations in the hardware.

なお、本発明の技術は前記実施例における技術に限定さ
れるものではなく、同様な機能を果す他の態様の手段に
よってもよ(、また本発明の技術は前記構成の範囲内に
おいて種々の変更、付加が可能である。
Note that the technology of the present invention is not limited to the technology in the above-mentioned embodiments, but may also be implemented by means of other modes that achieve the same function (also, the technology of the present invention may be modified in various ways within the scope of the above-mentioned configuration). , can be added.

g0発明の効果 以上の説明から明らかなように本発明によれば、気体の
流速測定に際し、一定の超音波送受波器から同時に発射
された超音波は、気体の流れに対しそれぞれ順および逆
方向に同一経路を伝搬し、該伝搬経路上における超音波
の減衰1反射、屈折は同じ影響を受けるが、それぞれの
超音波伝搬時間若しくはそれぞれの逆数の差はこれらに
影響されることはない。
g0 Effect of the Invention As is clear from the above explanation, according to the present invention, when measuring the gas flow velocity, the ultrasonic waves emitted simultaneously from a certain ultrasonic transducer are directed in the forward and reverse directions relative to the gas flow, respectively. The ultrasonic waves propagate along the same path, and the attenuation, reflection, and refraction of the ultrasonic waves on the propagation path are affected by the same effects, but the difference in the respective ultrasonic propagation times or their reciprocals is not affected by these.

また、流速計内に2組の受信回路を設け、送信信号の繰
返し周期より長い周期ごとに、前記それぞれの送受波器
からの受信信号を交互に切替えて入力することにより、
同回路のゲイン、オフセットの変動。
Furthermore, by providing two sets of receiving circuits within the current meter and alternately switching and inputting the received signals from the respective transducers at intervals longer than the repetition period of the transmitted signal,
Changes in gain and offset of the same circuit.

ドリフトなどの影響を除去し、それらの出力の平均を出
力するようにしたので、前記受信回路系に基づく変動、
影響を受けることはない。
Since the effects of drift and the like are removed and the average of these outputs is output, fluctuations due to the receiving circuit system,
It will not be affected.

これらの結果、本発明による超音波気体流速計は、安定
かつ精度よく気体の流速を測定することができる。
As a result, the ultrasonic gas flow meter according to the present invention can measure gas flow velocity stably and accurately.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す超音波気体流速計のブ
ロック図である。 p、、pg・・・送受波器、     10・・・流管
、20・・・送受回路(PLS)、 21.22・・・結合回路(NET、、NET、)、3
0・・・切替回路(SW)、 41.42・・・受信回路(RECI、 RECt)、
43.44・・・検出回路(DIET、、DETt)、
50・・・クロックパルス発生回路(CPG)、51.
52・・・フリップフロップ回路(pp、、FFz)、
53.54  ・・・ゲート、 61.62・・・カウンタ(CNT+、 CNh)、7
0・・・タイマ(T I M)、 80・・・インターフェイス(IF)、 90・・・出
力回路(OUT)、100・・・演算回路(CPU)。
FIG. 1 is a block diagram of an ultrasonic gas flow meter showing an embodiment of the present invention. p, pg...Transducer/receiver, 10...Flow tube, 20...Transmit/receive circuit (PLS), 21.22...Coupling circuit (NET,, NET,), 3
0...Switching circuit (SW), 41.42...Receiving circuit (RECI, RECt),
43.44...Detection circuit (DIET,, DETt),
50... Clock pulse generation circuit (CPG), 51.
52...Flip-flop circuit (pp, FFz),
53.54...Gate, 61.62...Counter (CNT+, CNh), 7
0...Timer (TIM), 80...Interface (IF), 90...Output circuit (OUT), 100...Arithmetic circuit (CPU).

Claims (1)

【特許請求の範囲】 気体の流通路の壁面に、該流通路の長軸方向に対して斜
め方向に、または斜め方向から超音波を対向して送受す
る一対の超音波送受波器を配設し、気体の流れに順方向
および逆方向に超音波を伝搬させて、流通路内を伝搬す
る超音波の順、逆両方向におけるそれぞれの伝搬時間若
しくはそれぞれの逆数の差に基づいて気体の流速を測定
する流速計において、送信回路からの送信信号を前記一
対のそれぞれの超音波送受波器側のみに、かつ同時に該
両送受波器を駆動するために導通させると共に、前記そ
れぞれの送受波器からの受信信号を受信回路側のみに導
通させる2組の結合手段と、 前記それぞれの送受波器からの受信信号を2組の受信回
路にそれぞれ交互に切替えて入力する2組の切替手段と
、 該2組の切替手段を前記送信信号の繰返し周期より長い
周期で切替える手段とを 備えたことを特徴とする超音波気体流速計。
[Scope of Claims] A pair of ultrasonic transducers are disposed on the wall surface of the gas flow path for transmitting and receiving ultrasonic waves in a diagonal direction with respect to the long axis of the gas flow path or facing each other from an oblique direction. Then, the ultrasonic waves are propagated in the forward and reverse directions of the gas flow, and the gas flow velocity is determined based on the difference in the propagation time or the reciprocal of the ultrasonic waves propagating in the flow path in both the forward and reverse directions. In the current meter to be measured, the transmitting signal from the transmitting circuit is conducted only to the ultrasonic transducer side of each of the pair and at the same time to drive both transducers, and from the respective transducer. two sets of coupling means for conducting the received signals from the respective transducers only to the receiving circuit side; two sets of switching means for alternately switching and inputting the received signals from the respective transducers to the two sets of receiving circuits; An ultrasonic gas flow meter comprising: means for switching the two sets of switching means at a cycle longer than the repetition cycle of the transmission signal.
JP62005760A 1987-01-13 1987-01-13 Ultrasonic gas current meter Granted JPS63173920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62005760A JPS63173920A (en) 1987-01-13 1987-01-13 Ultrasonic gas current meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62005760A JPS63173920A (en) 1987-01-13 1987-01-13 Ultrasonic gas current meter

Publications (2)

Publication Number Publication Date
JPS63173920A true JPS63173920A (en) 1988-07-18
JPH0584849B2 JPH0584849B2 (en) 1993-12-03

Family

ID=11620078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62005760A Granted JPS63173920A (en) 1987-01-13 1987-01-13 Ultrasonic gas current meter

Country Status (1)

Country Link
JP (1) JPS63173920A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0762086A2 (en) * 1995-08-16 1997-03-12 Hydrometer GmbH Method for the ultrasonic measurement of flowrate of flowing fluids
JP2005257360A (en) * 2004-03-10 2005-09-22 Matsushita Electric Ind Co Ltd Ultrasonic fluid measuring device
JP2009031137A (en) * 2007-07-27 2009-02-12 Kaijo Sonic Corp Ultrasonic wind measurement system
JP2010159973A (en) * 2009-01-06 2010-07-22 Panasonic Corp Flow rate measuring device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0762086A2 (en) * 1995-08-16 1997-03-12 Hydrometer GmbH Method for the ultrasonic measurement of flowrate of flowing fluids
EP0762086A3 (en) * 1995-08-16 1997-05-28 Hydrometer Gmbh Method for the ultrasonic measurement of flowrate of flowing fluids
JP2005257360A (en) * 2004-03-10 2005-09-22 Matsushita Electric Ind Co Ltd Ultrasonic fluid measuring device
JP4572547B2 (en) * 2004-03-10 2010-11-04 パナソニック株式会社 Ultrasonic fluid measuring device
JP2009031137A (en) * 2007-07-27 2009-02-12 Kaijo Sonic Corp Ultrasonic wind measurement system
JP2010159973A (en) * 2009-01-06 2010-07-22 Panasonic Corp Flow rate measuring device

Also Published As

Publication number Publication date
JPH0584849B2 (en) 1993-12-03

Similar Documents

Publication Publication Date Title
US4885942A (en) Ultrasound flow rate meter using a phase difference method and apparatus
US4011753A (en) Method and device for measuring the flow velocity of media by means of ultrasound
JP2002131105A (en) Ultrasonic flow rate measuring method
JPS63173920A (en) Ultrasonic gas current meter
JP3427762B2 (en) Ultrasonic flow meter
JP4688253B2 (en) Ultrasonic flow meter
JPH088417Y2 (en) Ultrasonic flowmeter calibration device
JPH09189589A (en) Flow rate measuring apparatus
JP2000338123A (en) Ultrasonic floe speed measuring method
JP4531426B2 (en) Ultrasonic flow meter
JP4485641B2 (en) Ultrasonic flow meter
JP4008741B2 (en) Ultrasonic flow velocity measuring method and apparatus
JPH1090029A (en) Ultrasonic wave flowmeter
JPS63131027A (en) Ultrasonic gas flowmeter
JP2000329597A (en) Ultrasonic flowmeter
JPH07139982A (en) Ultrasonic flowmeter
JPH10197302A (en) Ultrasonic flowmeter
JP6767628B2 (en) Flow measuring device
JPH0117090B2 (en)
JP3672997B2 (en) Correlation flowmeter and vortex flowmeter
JPS5817217Y2 (en) ultrasonic flow meter
JPH0926341A (en) Ultrasonic flowmeter
JPH04328423A (en) Ultrasonic wave gas flowmeter
JPH04328424A (en) Ultrasonic wave gas flowmeter
JPH09145438A (en) Current meter