JPH07139982A - Ultrasonic flowmeter - Google Patents

Ultrasonic flowmeter

Info

Publication number
JPH07139982A
JPH07139982A JP5289099A JP28909993A JPH07139982A JP H07139982 A JPH07139982 A JP H07139982A JP 5289099 A JP5289099 A JP 5289099A JP 28909993 A JP28909993 A JP 28909993A JP H07139982 A JPH07139982 A JP H07139982A
Authority
JP
Japan
Prior art keywords
ultrasonic
fluid
temperature
sensor
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5289099A
Other languages
Japanese (ja)
Inventor
Fusatarou Tsuri
房太郎 釣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP5289099A priority Critical patent/JPH07139982A/en
Publication of JPH07139982A publication Critical patent/JPH07139982A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To achieve a device eliminating the need for mounting a temperature sensor such as a thermistor to a piping and a device for processing the output signal. CONSTITUTION:A propagation time difference measurement means 8 where the transmission and reception points of ultrasonic waves 4 and 5 which are propagated in a fluid by an ultrasonic flowmeter sensor 1 at an upstream side and an ultrasonic flowmeter sensor 2 at a downstream side outputs a propagation time difference and a piping temperature calculation means 7 where the transmission and reception points of surface waves 13 and 14 propagated in a piping 3 outputs the temperature of fluid. After flow-rate and flow calculation means 9 and 10 where the propagation time difference of the ultrasonic waves 4 and 5 and the temperature of fluid are input obtain the flow rate of fluid which is temperature-compensated, the flow of the fluid is calculated, thus eliminating the need for a temperature sensor, reducing the space for mounting sensor of the piping 3, and at the same time simplifying the output processing device of the sensor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高温用配管内を流れる
流体の流量を計測するための超音波流量計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic flow meter for measuring the flow rate of fluid flowing in high temperature piping.

【0002】[0002]

【従来の技術】従来の配管内の流体の流量を計測する超
音波流量計は、図5に示すように、配管3に配設された
サーミスタ11付きの上流側超音波流量計センサ1と下
流側超音波流量計センサ2、同センサ1,2が接続され
た伝播時間差計測部8、上記サーミスタ11が接続され
たサーミスタ温度計12、および同温度計12が補正計
算部9を介して接続された流量計算表示部10により構
成されていた。
2. Description of the Related Art As shown in FIG. 5, an ultrasonic flowmeter for measuring the flow rate of a fluid in a conventional pipe has an upstream ultrasonic flowmeter sensor 1 with a thermistor 11 arranged in a pipe 3 and a downstream flowmeter. The side ultrasonic flowmeter sensor 2, the propagation time difference measuring unit 8 to which the sensors 1 and 2 are connected, the thermistor thermometer 12 to which the thermistor 11 is connected, and the thermometer 12 are connected via the correction calculating unit 9. The flow rate calculation and display unit 10 was used.

【0003】上記において、サーミスタ温度計12に接
続されたサーミスタ11を配管に設けているのは、流体
の温度によって超音波伝播速度が変化するため、温度に
よる流速の補正を行って流量を算出することが必要なた
めである。
In the above, the thermistor 11 connected to the thermistor thermometer 12 is provided in the pipe. Since the ultrasonic wave propagation velocity changes depending on the temperature of the fluid, the flow velocity is calculated by correcting the flow velocity due to the temperature. This is because it is necessary.

【0004】[0004]

【発明が解決しようとする課題】従来の超音波流量計に
おいては、前記のように流速計測用の上流側超音波セン
サおよび下流側超音波センサの他に、温度計測用のサー
ミスタ等を設けなければならなかった。そのため、配管
にセンサを取付けるための広いスペースが必要となり、
また、超音波の信号処理とは異る処理回路が必要となる
という課題があった。本発明は上記の課題を解決しよう
とするものである。
In the conventional ultrasonic flowmeter, a thermistor or the like for temperature measurement must be provided in addition to the upstream ultrasonic sensor and the downstream ultrasonic sensor for measuring the flow velocity as described above. I had to do it. Therefore, a large space for mounting the sensor on the pipe is required,
There is also a problem that a processing circuit different from the ultrasonic signal processing is required. The present invention is intended to solve the above problems.

【0005】[0005]

【課題を解決するための手段】本発明の超音波流量計
は、内部を流体が流れる配管の表面に設けられ流体の流
れ方向に間隔をあけて設置された2つの超音波流量計セ
ンサと、同2つの超音波流量計センサのうちの配管内部
の流体の上流側に位置する超音波流量計センサから配管
内に発した超音波が下流側に位置する超音波流量計セン
サに伝播する時間と同下流側の超音波流量計センサから
配管内に発した超音波が前記上流側の超音波流量計セン
サに伝播する時間との差を計測する伝播時間差計測手段
と、前記2つの超音波流量計センサ間の配管の表面を超
音波が伝播する時間から同配管の温度を計算する手段
と、前記伝播時間差及び配管温度から配管内を流れる流
体の流速及び流量を計算する手段とを有することを特徴
としている。
An ultrasonic flowmeter according to the present invention comprises two ultrasonic flowmeter sensors, which are provided on the surface of a pipe through which a fluid flows and which are installed at intervals in the flow direction of the fluid. Of the two ultrasonic flowmeter sensors, the time period during which the ultrasonic wave generated from the ultrasonic flowmeter sensor located upstream of the fluid inside the pipe propagates to the ultrasonic flowmeter sensor located downstream Propagation time difference measuring means for measuring the difference between the time when ultrasonic waves emitted from the ultrasonic flowmeter sensor on the downstream side into the pipe propagate to the ultrasonic flowmeter sensor on the upstream side, and the two ultrasonic flowmeters. A means for calculating the temperature of the pipe from the time when the ultrasonic wave propagates on the surface of the pipe between the sensors, and a means for calculating the flow velocity and flow rate of the fluid flowing in the pipe from the propagation time difference and the pipe temperature. I am trying.

【0006】[0006]

【作用】上記において、上流側の超音波流量計センサと
下流側の超音波流量計センサは、それぞれ配管内を流れ
る流体中を伝播する超音波と配管そのものを伝播する超
音波を発受信するものであり、流体中を伝播する超音波
の発受信時点は伝播時間差計測手段に入力され、配管を
伝播する超音波の発受信時点は配管の温度を計算する手
段に入力される。
In the above, the upstream ultrasonic flowmeter sensor and the downstream ultrasonic flowmeter sensor respectively emit and receive ultrasonic waves propagating in the fluid flowing in the pipe and ultrasonic waves propagating in the pipe itself. The time of transmitting / receiving ultrasonic waves propagating in the fluid is input to the propagation time difference measuring means, and the time of transmitting / receiving ultrasonic waves propagating in the pipe is input to the means for calculating the temperature of the pipe.

【0007】上記超音波ビームの発受信時点が入力され
た伝播時間差計測手段は、上流側の超音波流量計センサ
より発信し流体中を伝播して下流側の超音波流量計セン
サに受信される超音波の伝播時間を求め、また下流側の
超音波流量計センサより発信し流体中を伝播して上流側
の超音波流量計センサに受信される超音波の伝播時間を
求めた後、両者の伝播時間差を求めて出力する。
The propagation time difference measuring means to which the time point of transmission / reception of the ultrasonic beam is input is transmitted from the ultrasonic flow meter sensor on the upstream side, propagates in the fluid, and is received by the ultrasonic flow meter sensor on the downstream side. After obtaining the propagation time of the ultrasonic wave, and the propagation time of the ultrasonic wave that is transmitted from the ultrasonic flow meter sensor on the downstream side and propagates in the fluid and is received by the ultrasonic flow meter sensor on the upstream side, Calculate and output the propagation time difference.

【0008】上記伝播時間差計測手段が出力する伝播時
間差は流速及び流量を計算する手段に入力され、同流速
及び流量計算手段はまずこの伝播時間差より上記流体の
流速を求める。なお、この流速は、超音波ビームの伝播
時間が流体の温度変化により変動するため、温度による
誤差を含んだものである。
The propagation time difference output from the propagation time difference measuring means is input to the means for calculating the flow velocity and the flow rate, and the flow velocity and flow rate calculating means first obtains the flow velocity of the fluid from the propagation time difference. It should be noted that this flow velocity contains an error due to temperature because the propagation time of the ultrasonic beam varies depending on the temperature change of the fluid.

【0009】一方、配管を伝播する超音波の発受信時点
を入力した上記配管温度計算手段は、これより上流側超
音波流量計センサと下流側流量計超音波センサ間の配管
中を伝播する超音波の伝播時間を求め、この超音波の伝
播速度を求める。
On the other hand, the above-mentioned pipe temperature calculation means, which inputs the time of transmitting and receiving the ultrasonic wave propagating through the pipe, transmits the ultrasonic wave propagating through the pipe between the upstream ultrasonic flowmeter sensor and the downstream flowmeter ultrasonic sensor. The propagation time of the sound wave is calculated, and the propagation speed of this ultrasonic wave is calculated.

【0010】超音波の伝播速度と超音波を伝播させる媒
体の温度との間には一定の関係があり、超音波の伝播速
度から配管の温度(これは内部の流体の温度とはほゞ等
しい)を求めることができるため、上記配管温度計算手
段は上記関係を利用して配管を伝播する超音波の伝播速
度から流体の温度を求めて流速及び流量計算手段に入力
する。
There is a constant relationship between the propagation velocity of ultrasonic waves and the temperature of the medium in which the ultrasonic waves propagate, and from the propagation velocity of ultrasonic waves to the temperature of the pipe (this is approximately equal to the temperature of the fluid inside). ) Can be obtained, the pipe temperature calculation means obtains the temperature of the fluid from the propagation velocity of the ultrasonic waves propagating through the pipe by utilizing the above relationship, and inputs the temperature to the flow velocity and flow rate calculation means.

【0011】上記流体の温度を入力した流速及び流量計
算手段は、これを用いて上記温度による誤差を含んだ流
体の流速を補正した後、補正された流体の流速を用いて
流体の流量を計算する。
The flow velocity and flow rate calculating means, which inputs the temperature of the fluid, corrects the flow velocity of the fluid including the error due to the temperature by using this, and then calculates the flow rate of the fluid using the corrected flow velocity of the fluid. To do.

【0012】上記のように、流体中を伝播する超音波の
伝播時間差より求められ温度による誤差を含んだ流体の
流速は、配管を伝播する超音波の伝播時間より求めた温
度による補正を可能としたため、従来の装置において用
いられていた温度センサが不要となり、配管のセンサ取
付スペースの減少を可能にするとともに、センサの出力
処理装置の簡素化を可能とする。
As described above, the flow velocity of the fluid including the error due to the temperature, which is obtained from the propagation time difference of the ultrasonic waves propagating in the fluid, can be corrected by the temperature obtained from the propagation time of the ultrasonic wave propagating in the pipe. Therefore, the temperature sensor used in the conventional device becomes unnecessary, the sensor mounting space of the pipe can be reduced, and the output processing device of the sensor can be simplified.

【0013】[0013]

【実施例】本発明の一実施例を図1により説明する。図
1において、1,2はそれぞれ流体が流れる配管3に配
設された上流側超音波流量計センサと下流側超音波流量
計センサであり、両者を組み合わせて流体計測用の超音
波ビーム4,5、および温度計測用の超音波(表面波)
13,14の送受をするものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIG. In FIG. 1, reference numerals 1 and 2 denote an upstream ultrasonic flowmeter sensor and a downstream ultrasonic flowmeter sensor, respectively, which are arranged in a pipe 3 through which a fluid flows. 5, and ultrasonic waves (surface waves) for temperature measurement
It sends and receives 13,14.

【0014】6は上記センサ1,2からそれぞれの出力
信号を入力する超音波流量計処理回路部で、温度計算部
7と伝播時間差(ΔT)を求める伝播時間差計測部8が
設けられている。
Reference numeral 6 denotes an ultrasonic flow meter processing circuit section for inputting respective output signals from the sensors 1 and 2, which is provided with a temperature calculation section 7 and a propagation time difference measuring section 8 for obtaining a propagation time difference (ΔT).

【0015】9は伝播時間差計測部8で求められた伝播
時間から流体の流速を計算し、それを温度計算部7で求
められた温度により補正を行う補正計算部である。10
は補正計算部9で計算された流速に配管断面積を乗算し
て流量を求め、これを表示する流量計算表示部である。
Reference numeral 9 denotes a correction calculation unit which calculates the flow velocity of the fluid from the propagation time calculated by the propagation time difference measuring unit 8 and corrects it by the temperature calculated by the temperature calculation unit 7. 10
Is a flow rate calculation and display section for calculating the flow rate by multiplying the flow velocity calculated by the correction calculation section 9 by the pipe cross-sectional area and displaying the flow rate.

【0016】上記において、上流側超音波流量計センサ
1が超音波を発生すると、図2に示すように超音波ビー
ム5が流体中を通過し、表面波13が配管3を伝播して
いずれも下流側超音波流量計センサ2に到達する。ま
た、下流側超音波流量計センサ2が超音波を発生した場
合も同様に、超音波ビーム4と表面波14がそれぞれ流
体中と配管を通過して上流側超音波流量計センサ2に到
達する。
In the above, when the upstream ultrasonic flowmeter sensor 1 generates ultrasonic waves, the ultrasonic beam 5 passes through the fluid and the surface wave 13 propagates through the pipe 3 as shown in FIG. The downstream ultrasonic flowmeter sensor 2 is reached. Similarly, when the downstream ultrasonic flow meter sensor 2 generates ultrasonic waves, the ultrasonic beam 4 and the surface wave 14 reach the upstream ultrasonic flow meter sensor 2 through the fluid and the pipe, respectively. .

【0017】上記センサ1,2の超音波ビーム4,5の
発受信時点はそれぞれのセンサ1,2の出力信号により
伝播時間差計測部8に入力され、同計測部8は超音波ビ
ーム4,5について伝播時間を求めた後、更に超音波ビ
ーム4,5間の伝播時間差ΔTを求めて補正計算部9へ
出力し、同計算部9はこの伝播時間差ΔTから流体の流
速を求める。一方、上記センサ1,2の表面波13,1
4の発受信時点はそれぞれのセンサ1,2の出力信号に
より温度計算部7に入力される。
The time points at which the ultrasonic beams 4 and 5 of the sensors 1 and 2 are transmitted and received are input to the propagation time difference measuring section 8 by the output signals of the sensors 1 and 2, and the measuring section 8 receives the ultrasonic beams 4 and 5. After calculating the propagation time, the difference in propagation time ΔT between the ultrasonic beams 4 and 5 is further output to the correction calculation unit 9, and the calculation unit 9 calculates the flow velocity of the fluid from the difference in propagation time ΔT. On the other hand, the surface waves 13, 1 of the sensors 1, 2
The output and reception times of 4 are input to the temperature calculation unit 7 by the output signals of the sensors 1 and 2.

【0018】図3は、超音波のエコーのレベルと時間の
関係を図示したものであり、21は上記センサ1が発生
する超音波送信波のエコーであり、22,24はそれぞ
れ流体中を通過して上記センサ2により受信された超音
波エコーと、配管3の面を伝播して上記センサ2により
受信された表面波エコーである。
FIG. 3 is a diagram showing the relationship between the level of ultrasonic echo and time, 21 is the echo of the ultrasonic transmission wave generated by the sensor 1, and 22 and 24 pass through the fluid. The ultrasonic wave echo received by the sensor 2 and the surface wave echo propagated through the surface of the pipe 3 and received by the sensor 2.

【0019】媒体中を伝播する超音波は、温度によって
その伝播速度が変化し、目標物に到達する時間が変る。
この超音波の伝播特性を図示したものが図4であり、低
い温度t1 において超音波の伝播速度がυ1 であった場
合、温度が上昇してt2 になると、この速度はυ1 より
遅いυ2 となることを示している。この場合、図3に示
す表面エコー22は遅れを生じるため、点線で示す表面
波エコー23となる。
The ultrasonic wave propagating in the medium changes its propagation speed depending on the temperature, and the time it takes to reach the target changes.
FIG. 4 shows the propagation characteristics of this ultrasonic wave. When the ultrasonic wave propagation velocity is υ 1 at a low temperature t 1 , when the temperature rises to t 2 , this velocity is greater than υ 1 . It shows that it becomes late υ 2 . In this case, since the surface echo 22 shown in FIG. 3 is delayed, it becomes a surface wave echo 23 shown by a dotted line.

【0020】図4に示すように、超音波伝播時間と温度
の間には一定の関係があるために、温度計算部7は、上
記センサ1,2間の表面波13の伝播時間より表面波1
3の伝播速度を求め、この伝播速度より配管3内の流体
の温度を求めることができる。
As shown in FIG. 4, since there is a constant relationship between the ultrasonic wave propagation time and the temperature, the temperature calculation unit 7 calculates the surface wave 13 from the propagation time of the surface wave 13 between the sensors 1 and 2. 1
It is possible to determine the temperature of the fluid in the pipe 3 from the propagation velocity of the pipe 3 and the propagation velocity.

【0021】そのため、伝播時間差計測部8より超音波
ビーム4,5の伝播時間差ΔTを入力して流体の速度を
求めた補正計算部9は、上記温度計算部7より表面波1
3,14の伝播速度より求めた現時点の温度を入力して
上記流体の流速を補正し、温度により超音波ビーム4,
5の伝播速度が変ることによる誤差が補正された流体の
流速とする。
For this reason, the correction calculation unit 9 which receives the propagation time difference ΔT between the ultrasonic beams 4 and 5 from the propagation time difference measurement unit 8 to obtain the velocity of the fluid has the surface wave 1 calculated by the temperature calculation unit 7.
The current temperature calculated from the propagation velocities of 3 and 14 is input to correct the flow velocity of the fluid, and the ultrasonic beam
The flow velocity of the fluid is the error corrected by the change in the propagation velocity of No. 5.

【0022】上記補正された流体の流速は流量計算表示
部10に入力され、同表示部10は上記流速に配管断面
積を乗算して流量を求めた後、これを表示する。
The corrected flow velocity of the fluid is input to the flow rate calculation display unit 10, and the display unit 10 multiplies the flow velocity by the pipe cross-sectional area to obtain the flow rate, and then displays it.

【0023】上記のように、配管内を流れる流体の温度
は配管を伝播する表面波より求められるため、従来の装
置のように温度センサを配管に配設する必要がなく、配
管のセンサ取付スペースを小さくすることができるとと
もに、センサの出力処理回路も超音波のみを処理する回
路となるため、簡素化することができる。
As described above, since the temperature of the fluid flowing in the pipe is obtained from the surface wave propagating in the pipe, it is not necessary to dispose a temperature sensor in the pipe as in the conventional device, and the sensor mounting space of the pipe is not required. Can be made small, and the output processing circuit of the sensor can be simplified because it becomes a circuit that processes only ultrasonic waves.

【0024】[0024]

【発明の効果】本発明の超音波流量計は、上流側の超音
波流量計センサと下流側の超音波流量計センサより流体
中を伝播する超音波の発受信時点を入力した伝播時間差
計測手段が伝播時間差を出力し、配管を伝播する表面波
の発受信時点を入力した配管温度計算手段が流体の温度
を出力し、上記超音波の伝播時間差と流体の温度を入力
した流速及び流量計算手段が温度補正された流体の流速
を求めた後、流体の流量を計算することによって、従来
の装置において用いられていた温度センサが不要とな
り、配管のセンサ取付スペースの減少を可能にするとと
もに、センサの出力処理装置の簡素化を可能とする。
According to the ultrasonic flowmeter of the present invention, the time difference measuring means for transmitting the ultrasonic waves propagating in the fluid is inputted from the ultrasonic flowmeter sensor on the upstream side and the ultrasonic flowmeter sensor on the downstream side. Outputs the propagation time difference, and the pipe temperature calculation means that inputs the time of transmitting and receiving surface waves propagating in the pipe outputs the fluid temperature, and the flow velocity and flow rate calculation means that inputs the ultrasonic propagation time difference and the fluid temperature. After calculating the temperature-corrected flow velocity of the fluid, calculating the flow rate of the fluid eliminates the need for the temperature sensor used in conventional devices, and reduces the sensor mounting space for piping. The output processing device can be simplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る超音波流量計の説明図
である。
FIG. 1 is an explanatory diagram of an ultrasonic flowmeter according to an embodiment of the present invention.

【図2】上記一実施例に係る超音波の作用説明図であ
る。
FIG. 2 is an explanatory view of the action of ultrasonic waves according to the above-mentioned embodiment.

【図3】上記一実施例に係る超音波のエコーの説明図で
ある。
FIG. 3 is an explanatory diagram of echoes of ultrasonic waves according to the above embodiment.

【図4】上記一実施例に係る超音波の伝播速度−温度特
性図である。
FIG. 4 is a propagation velocity-temperature characteristic diagram of ultrasonic waves according to the embodiment.

【図5】従来の超音波流量計の説明図である。FIG. 5 is an explanatory diagram of a conventional ultrasonic flow meter.

【符号の説明】[Explanation of symbols]

1 上流側超音波流量計センサ 2 下流側超音波流量計センサ 3 配管 4 下流側からの超音波ビーム 5 上流側からの超音波ビーム 6 超音波流量計処理回路部 7 温度計算部 8 伝播時間差計測部 9 補正計算部 10 流量計算表示部 1 upstream ultrasonic flow meter sensor 2 downstream ultrasonic flow meter sensor 3 piping 4 ultrasonic beam from downstream 5 ultrasonic beam from upstream 6 ultrasonic flow meter processing circuit section 7 temperature calculation section 8 propagation time difference measurement Part 9 Correction calculation part 10 Flow rate calculation display part

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 内部を流体が流れる配管の表面に設けら
れ流体の流れ方向に間隔をあけて設置された2つの超音
波流量計センサと、同2つの超音波流量計センサのうち
の配管内部の流体の上流側に位置する超音波流量計セン
サから配管内に発した超音波が下流側に位置する超音波
流量計センサに伝播する時間と同下流側の超音波流量計
センサから配管内に発した超音波が前記上流側の超音波
流量計センサに伝播する時間との差を計測する伝播時間
差計測手段と、前記2つの超音波流量計センサ間の配管
の表面を超音波が伝播する時間から同配管の温度を計算
する手段と、前記伝播時間差及び配管温度から配管内を
流れる流体の流速及び流量を計算する手段とを有するこ
とを特徴とする超音波流量計。
1. An ultrasonic flowmeter sensor, which is provided on a surface of a pipe through which a fluid flows, and is installed at intervals in a flow direction of the fluid, and an inside of the pipe of the two ultrasonic flowmeter sensors. The time when the ultrasonic wave emitted from the ultrasonic flow meter sensor located on the upstream side of the fluid propagates to the ultrasonic flow meter sensor located on the downstream side and from the ultrasonic flow meter sensor located on the downstream side to the inside of the piping Propagation time difference measuring means for measuring the difference between the time when the emitted ultrasonic wave propagates to the upstream ultrasonic flow meter sensor and the time when the ultrasonic wave propagates on the surface of the pipe between the two ultrasonic flow meter sensors. From the same, and means for calculating the flow velocity and flow rate of the fluid flowing in the pipe from the propagation time difference and the pipe temperature.
JP5289099A 1993-11-18 1993-11-18 Ultrasonic flowmeter Withdrawn JPH07139982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5289099A JPH07139982A (en) 1993-11-18 1993-11-18 Ultrasonic flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5289099A JPH07139982A (en) 1993-11-18 1993-11-18 Ultrasonic flowmeter

Publications (1)

Publication Number Publication Date
JPH07139982A true JPH07139982A (en) 1995-06-02

Family

ID=17738791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5289099A Withdrawn JPH07139982A (en) 1993-11-18 1993-11-18 Ultrasonic flowmeter

Country Status (1)

Country Link
JP (1) JPH07139982A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003042638A1 (en) * 2001-11-13 2003-05-22 Kazumasa Ohnishi Method of measuring flow of fluid moving in pipe or groove-like flow passage
CN103424152A (en) * 2013-08-06 2013-12-04 浙江大学 Auxiliary sound track type ultrasonic flow meter measuring block
US10704941B2 (en) 2016-07-13 2020-07-07 Gwf Messsysteme Ag Flow meter with measuring channel
CN117191139A (en) * 2023-11-07 2023-12-08 青岛鼎信通讯科技有限公司 Ultrasonic water meter
WO2024191607A1 (en) * 2023-03-13 2024-09-19 Badger Meter, Inc. Acoustic rail for clamp on ultrasonic flow meter

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003042638A1 (en) * 2001-11-13 2003-05-22 Kazumasa Ohnishi Method of measuring flow of fluid moving in pipe or groove-like flow passage
US6907792B2 (en) 2001-11-13 2005-06-21 Kazumasa Ohnishi Method for measuring flow of fluid moving in pipe or groove-like flow passage
CN103424152A (en) * 2013-08-06 2013-12-04 浙江大学 Auxiliary sound track type ultrasonic flow meter measuring block
CN103424152B (en) * 2013-08-06 2015-09-16 浙江大学 A kind of auxiliary sound track type ultrasonic flow rate measurement gauge block
US10704941B2 (en) 2016-07-13 2020-07-07 Gwf Messsysteme Ag Flow meter with measuring channel
US10746580B2 (en) 2016-07-13 2020-08-18 Gwf Messsysteme Ag Flow meter with measuring channel
WO2024191607A1 (en) * 2023-03-13 2024-09-19 Badger Meter, Inc. Acoustic rail for clamp on ultrasonic flow meter
CN117191139A (en) * 2023-11-07 2023-12-08 青岛鼎信通讯科技有限公司 Ultrasonic water meter

Similar Documents

Publication Publication Date Title
US7806003B2 (en) Doppler type ultrasonic flow meter
JP2006078362A (en) Coaxial-type doppler ultrasonic current meter
JP2002340644A (en) Ultrasonic flow and flow velocity-measuring instrument and ultrasonic flow and flow velocity-measuring method
JPH07139982A (en) Ultrasonic flowmeter
JPH0447770B2 (en)
JPH1090028A (en) Ultrasonic wave mass flowmeter
JPH11351929A (en) Flowmeter and flow rate measuring method
JP2004245586A (en) Ultrasonic flowmeter and method for measuring flow rate by ultrasonic wave
JP3103264B2 (en) Ultrasonic flow meter
JP3469405B2 (en) Temperature measurement device
JPH063384B2 (en) Ultrasonic flow meter
JPH0612278B2 (en) Two-phase flow ultrasonic type flow rate measuring method and measuring apparatus
JP2001183200A (en) Flowmeter and flow-rate measuring method
RU9955U1 (en) VICHREACOUSTIC FLOW CONVERTER
JP4212374B2 (en) Ultrasonic flow meter
JP2005300244A (en) Ultrasonic flow meter
JPS6040916A (en) Correcting method of temperature-change error of ultrasonic wave flow speed and flow rate meter
JP4827008B2 (en) Ultrasonic flow meter, ultrasonic transducer, ultrasonic transmission / reception unit, and flow measurement method using ultrasonic flow meter
JPH088417Y2 (en) Ultrasonic flowmeter calibration device
JP7246021B2 (en) ultrasonic flow meter
JPH01134213A (en) Flowmeter
JP3465100B2 (en) Vortex flow meter
JPH0791996A (en) Ultrasonic flowmeter
JP3672997B2 (en) Correlation flowmeter and vortex flowmeter
KR20100007215A (en) Ultrasonic transducer control method of a ultrasonic flowmeter and ultrasonic flowmeter to applying the method

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010130