JP4212374B2 - Ultrasonic flow meter - Google Patents

Ultrasonic flow meter Download PDF

Info

Publication number
JP4212374B2
JP4212374B2 JP2003031978A JP2003031978A JP4212374B2 JP 4212374 B2 JP4212374 B2 JP 4212374B2 JP 2003031978 A JP2003031978 A JP 2003031978A JP 2003031978 A JP2003031978 A JP 2003031978A JP 4212374 B2 JP4212374 B2 JP 4212374B2
Authority
JP
Japan
Prior art keywords
reception
ultrasonic
vibrator
transmission
reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003031978A
Other languages
Japanese (ja)
Other versions
JP2004239868A (en
Inventor
真司 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Elemex Corp
Original Assignee
Ricoh Elemex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Elemex Corp filed Critical Ricoh Elemex Corp
Priority to JP2003031978A priority Critical patent/JP4212374B2/en
Publication of JP2004239868A publication Critical patent/JP2004239868A/en
Application granted granted Critical
Publication of JP4212374B2 publication Critical patent/JP4212374B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、超音波流量計に関する。
【0002】
【従来の技術】
従来、都市ガス、水などの流体の流量を計測する流量計測装置として、超音波を利用して流速を測定する超音波流量計が知られている。その際の測定原理として、一般には「伝搬時間差法」が用いられる。これは、流路の流体流れ方向上手側及び下手側に一対の超音波送受信部を設け、超音波信号の送受信を交互に切り替えて、流れ方向上手側の超音波送信部(送信側振動子)から流れ方向下手側の超音波受信部(受信側振動子)に到達するまでの時間(以下、順方向到達時間という)と、流れ方向下手側の超音波送信部(送信側振動子)から流れ方向上手側の超音波受信部(受信側振動子)に到達するまでの時間(以下、逆方向到達時間という)とを計測して、両者の時間差から流路を流れる流体の平均流速及び流量を求める方法である。
【0003】
そして、超音波受信信号波形は受信初期においてはノイズ混入等の影響により十分な振幅レベルを有しない不規則波形部分を有するので、順方向到達時間(又は逆方向到達時間)を計測するためのトリガー波(例えば第3波)を適切に定め、測定精度を向上させるための種々の試みがなされている。例えば、特許文献1には、トリガーレベル(比較レベル)の最適化を行うことにより、測定精度を向上させる技術が開示されている。
【0004】
【特許文献1】
特開2002−13958号公報
【0005】
【発明が解決しようとする課題】
しかし、特許文献1等に開示された改良は与えられた超音波受信信号波形に対する信号処理に留まり、受信開始からトリガー波までに経過した時間(トリガー波が第3波の場合には1.5周期分)は、以前と同様に計測された順方向到達時間(又は逆方向到達時間)から減算補正しなければならない。ところが、超音波振動子の発振周波数(固有振動数)は温度依存性を有するため、周囲の環境温度変化に伴って補正値を修正し直す必要があり、根本的な測定精度の向上には至っていなかった。また、信号処理の複雑化に伴って、測定スピードが遅くなったり測定用電池の消耗が激しくなったりするおそれもあった。
【0006】
そこで本発明の課題は、測定スピードを低下させたり測定用電池を著しく消耗させたりすることなく、測定精度の大幅な向上を図ることのできる超音波流量計を提供することにある。
【0007】
【課題を解決するための手段及び発明の効果】
上記課題を解決するために本発明に係る超音波流量計は、
流体を通過させるための流路と、
その流路に、流体の流れ方向上手側又は下手側に向けて超音波を発振した後、流れ方向上手側又は下手側から到来する超音波を受信する送受信振動子が取り付けられた超音波送受信部と、
その超音波送受信部の流れ方向上手側又は下手側の前記流路に、前記送受信振動子から発振された超音波を受信し、かつ少なくともその超音波の一部を前記送受信振動子に向けて反射する受信反射振動子が取り付けられた超音波受信反射部と、
前記送受信振動子が超音波を発振してから前記受信反射振動子がその超音波を受信するまでの直接到達時間を計測するとともに、その受信反射振動子に超音波が到達した時点から当該受信反射振動子で反射された超音波を前記送受信振動子が受信するまでの反射到達時間を計測する時間計測手段と、
を備えることを特徴とする。
【0008】
この超音波流量計によれば、反射到達時間は、受信反射振動子に超音波が到達して受信した時点から受信反射振動子で反射された超音波を送受信振動子が受信するまでの時間であるから、受信開始からトリガー波までに経過した時間を減算補正する必要がなくなり、測定精度の大幅な向上を図ることができる。また、超音波受信信号波形に対して複雑な信号処理を要しないので、測定スピードが遅くなったり測定用電池が消耗したりすることを防止できる。
【0009】
なお、従来の超音波流量計(例えば上記特許文献1参照)においても、超音波受信部において超音波を受信する際、受信側振動子では超音波送信部(送信側振動子)へ向けて超音波の反射が必然的に発生している。しかしながら、これまで反射波はノイズ成分として取り扱われ、測定精度を向上させるためには除外すべきものと考えられるのが一般的であった。これに対して、本発明では、超音波受信信号波形そのものから誤差・補正の要素を取り除き、時間計測手段での反射到達時間の測定精度を向上させるために、超音波流量計において反射超音波を積極的に活用することとしている。
【0010】
また、上記課題を解決するために本発明に係る超音波流量計を反射型V字配列に適用した場合、
流体を通過させるための流路と、
その流路の壁に、流体の流れ方向上手側又は下手側に向けて超音波を発振した後、流れ方向上手側又は下手側から到来する超音波を受信する送受信振動子が取り付けられた超音波送受信部と、
流体の流れ方向軸線と前記送受信振動子とを含む流路断面において、流れ方向上手側又は下手側の前記流路の壁に、前記送受信振動子から発振され当該流路の内壁面で少なくとも1回反射された超音波を受信し、かつ少なくともその超音波の一部を前記送受信振動子に向けて反射する受信反射振動子が取り付けられた超音波受信反射部と、
前記送受信振動子が超音波を発振してから前記受信反射振動子がその超音波を受信するまでの直接到達時間を計測するとともに、その受信反射振動子に超音波が到達した時点から当該受信反射振動子で反射された超音波を前記送受信振動子が受信するまでの反射到達時間を計測する時間計測手段と、
を備えることを特徴とする。
【0011】
反射型V字配列の超音波流量計に用いた場合にも、上記と同様に反射到達時間に減算補正する必要がないので、測定精度の大幅な向上を図ることができる。しかも、送受信振動子から超音波を発振するのみで、受信反射振動子からは超音波を発振しなくてすむので、超音波受信信号波形に対して複雑な信号処理を要しないこととあわせて、コストの低減、測定スピードの向上及び測定用電池の消耗防止に効果を発揮する。加えて、反射型V字配列では相対的に伝搬距離を長くできるので、時間計測手段での反射到達時間の測定精度をさらに向上させることができる。
【0012】
したがって、流路が流体の流れ方向に直交する断面において矩形状に形成されるとともに、流路の流れ方向直交断面のうち短辺の一方を形成する壁面に送受信振動子及び受信反射振動子が流れ方向に所定距離を隔てて取り付けられ、かつ他方の短辺を形成する壁面を反射面とすることにより、流路に配置される超音波測線が反射型V字配列に構成される。このように、矩形断面流路の短辺側壁面を振動子取付面及び反射面に形成することによって、薄型の小型コンパクトな計測部を有する超音波流量計とすることができる。
【0013】
さらに、上記課題を解決するために本発明に係る超音波流量計を透過型Z配列に適用した場合、
流体を通過させるための流路と、
その流路の壁に、流体の流れ方向上手側又は下手側に向けて超音波を発振した後、流れ方向上手側又は下手側から到来する超音波を受信する送受信振動子が取り付けられた超音波送受信部と、
流体の流れ方向軸線と前記送受信振動子とを含む流路断面において、流れ方向上手側又は下手側の前記超音波送受信部の設置側と対向する前記流路の壁に、前記超音波送受信部から発振された超音波を受信し、かつ少なくともその超音波の一部を前記送受信振動子に向けて反射する受信反射振動子が取り付けられた超音波受信反射部と、
前記送受信振動子が超音波を発振してから前記受信反射振動子がその超音波を受信するまでの直接到達時間を計測するとともに、その受信反射振動子に超音波が到達した時点から当該受信反射振動子で反射された超音波を前記送受信振動子が受信するまでの反射到達時間を計測する時間計測手段と、
を備えることを特徴とする。
【0014】
透過型Z配列の超音波流量計に用いた場合にも、反射型V字配列と同様に反射到達時間に減算補正する必要がないので、測定精度の大幅な向上を図ることができる。しかも、送受信振動子から超音波を発振するのみで、受信反射振動子からは超音波を発振しなくてすむので、超音波受信信号波形に対して複雑な信号処理を要しないこととあわせて、コストの低減、測定スピードの向上及び測定用電池の消耗防止に効果を発揮する。加えて、透過型Z配列では相対的に伝搬距離を短くできるので、反射波での減衰を気にせずに実施することができる。
【0015】
そして、これらの超音波流量計において、超音波送受信部が超音波受信反射部よりも流れ方向下手側に配置され、送受信振動子は流れ方向上手側に配置された受信反射振動子に向け超音波を発振するように構成するのが好ましい。一般に、流路内に流体の流れがある場合に、流れに沿う方向(流れ方向下手側)に超音波が発振されると超音波出力が減少し、流れに逆らう方向(流れ方向上手側)に超音波が発振されると超音波出力が増加することが知られている。そこで、上記のように送受信振動子が受信反射振動子に向け超音波を発振することによって超音波出力が増加するので、受信反射振動子から送受信振動子に向う反射波の出力減少分を補って受信レベルの低下及び測定精度の低下を抑制することができる。
【0016】
さらに、これらの超音波流量計において、時間計測手段により直接到達時間及び反射到達時間を計測するために、送受信振動子から発振され受信反射振動子で受信された直接受信信号、及び受信反射振動子で反射され送受信振動子で受信された反射受信信号を増幅する増幅手段を設け、増幅手段では、直接受信信号の増幅率よりも反射受信信号の増幅率を大に設定するとよい。送受信振動子を流れ方向下手側、受信反射振動子を流れ方向上手側に配置した場合でも、通常、反射受信信号のレベルは直接受信信号のレベルより低下する傾向にある。そこで、到達時間の計測を実行する前に反射受信信号を相対的に大なる増幅率で信号増幅しておくことにより、反射受信信号のレベル低下及び測定精度の低下をさらに抑制することができる。
【0017】
そのために、超音波送受信部及び超音波受信反射部と増幅手段との間には、増幅手段に対して直接受信信号又は反射受信信号を切り替えて供給するための受信信号切替手段を設け、受信信号切替手段は、直接受信信号と反射受信信号との信号切替に伴い増幅手段に対して増幅率の変更指令を発するように構成することができる。これにより、反射受信信号に対して相対的に大なる増幅率で安定した信号増幅が実行される。
【0018】
また、流路を流れる流体の流れ方向を検出する流れ検出手段を設け、流れ検出手段が、流体流れ方向の変化を検出したときに受信信号切替手段に対して直接受信信号と反射受信信号との信号切替のタイミング変更指令を発するように構成してもよい。これにより、流路内を流体が逆流する事態が発生したときにも、素早く検知して受信信号レベルの調整が行われるので、信号レベルや測定精度が低下したりするのを抑制できる。なお、流れ検出手段として、本発明の構成要件である時間計測手段(の計測データ)を用いたり、超音波流量計とは別個に差圧式、面積式、渦式等の周知の流量計(又は流速計)を用いたりしてもよい。また、逆流を検出したときに、受信信号切替手段を用いて直接受信信号と反射受信信号とを切り替える手法(第一手法)に代えてあるいは加えて、計測切替手段を用いて超音波送受信部と超音波受信反射部とを切り替える手法(第二手法)を採用してもよい。その際、逆流流量小のときには第一手法を実施しつつ警告表示、逆流流量大のときにはまず第二手法の実施、さらに流量増加で遮断弁作動、のように使い分けることもできる。
【0019】
次に、上記課題を解決するために本発明に係る超音波流量計は、
流体を通過させるための流路と、
流れ方向上手側又は下手側に向けて超音波を発振する機能と、流れ方向上手側又は下手側から到来する超音波を受信する機能と、少なくとも到来した超音波の一部を流れ方向上手側又は下手側に向けて反射する機能とを有する送受信反射振動子を具備し、相互に超音波の発振・受信・反射が行えるように、前記流路の流れ方向上手側と下手側とに配置された一対の超音波送受信反射部と、
前記一対の送受信反射振動子のうち一方の前記送受信反射振動子(以下、第一振動子という)を発振・受信側とし他方の前記送受信反射振動子(以下、第二振動子という)を受信・反射側とする第一回計測と、前記第二振動子を発振・受信側とし前記第一振動子を受信・反射側とする第二回計測とを切り替える計測切替手段と、
前記第一回計測において、前記第二振動子に超音波が到達した時点から当該第二振動子で反射された超音波を前記第一振動子が受信するまでの第一回反射到達時間を計測するとともに、前記第二回計測において、前記第一振動子に超音波が到達した時点から当該第一振動子で反射された超音波を前記第二振動子が受信するまでの第二回反射到達時間を計測する時間計測手段と、
を備えることを特徴とする。
【0020】
この超音波流量計によれば、第一回計測において第一回反射到達時間は、第二振動子に超音波が到達して受信した時点から第二振動子で反射された超音波を第一振動子が受信するまでの時間である。一方、第二回計測において第二回反射到達時間は、第一振動子に超音波が到達して受信した時点から第一振動子で反射された超音波を第二振動子が受信するまでの時間である。したがって、順方向到達時間と逆方向到達時間とに第一回反射到達時間及び第二回反射到達時間を当てはめれば、順方向到達時間と逆方向到達時間の計測値のいずれにおいても、受信開始からトリガー波までに経過した時間を減算補正する必要がなくなり、測定精度はさらに大幅に向上する。また、超音波受信信号波形に対して複雑な信号処理を要しないので、測定スピードが遅くなったり測定用電池が消耗したりすることを防止できる。
【0021】
【発明の実施の形態】
(実施例1)
次に、本発明の実施の形態を図面を用いて説明する。図1は、一般住宅用ガスメータ等として用いられる超音波流量計の一実施例の基本構成を示す。この超音波流量計100の流量測定用の流路1には、流量測定用ガス(流体)が流れ方向軸線Oに沿って図示の流れ方向に流通(平均流速v)している。流路1の壁10には、流れ方向下手側の超音波送受信部2と流れ方向上手側の超音波受信反射部3とが取り付けられ、図1に示すように、流れ方向軸線Oと超音波送受信部2とを含む流路断面において、超音波受信反射部3は超音波送信部2設置側の壁10に位置している。
【0022】
測定用の流路1は、少なくとも超音波送受信部2―超音波受信反射部3間において流れ方向軸線Oが直線状であり、軸断面の形状及び断面積が流れ方向において同一に形成されている。測定対象がガスの場合、測定用流路1の軸断面形状は壁10により閉鎖された空間を形成するものであればよく、例えば、円形状、楕円形状、正方形状、矩形状等のいずれを採用してもよい。図1に示す流路1は矩形状に形成され、流路1の流れ方向直交断面のうち一方の短辺11aを形成する壁面(取付面)に送受信振動子21及び受信反射振動子31が流れ方向に所定距離を隔てて取り付けられ、かつ他方の短辺11bを形成する壁面を反射面とすることにより、流路1に配置される超音波測線Mが反射型V字配列に構成される。なお、測定対象が水等の液体であれば、測定用流路1の軸断面形状として壁10の天頂部が大気中に開放されたオープン形状(例えば半円形状等)を採用できる場合がある。
【0023】
超音波送受信部2は、流路1の壁10に固定され、圧電素子、振動板、電極板等から構成される送受信振動子21と、この送受信振動子21を発振させるための駆動電圧回路等から構成される送信手段22とを備えている。送受信振動子21は、流体の流れ方向上手側(超音波受信反射部3側)に向けて超音波を発振した後、後述する受信反射振動子31で反射され流れ方向上手側から到来する超音波を受信する。
【0024】
超音波受信反射部3は、超音波送受信部2(送受信振動子21)よりも流れ方向上手側の壁10に固定され、圧電素子、振動板、電極板等から構成される受信反射振動子31と、この受信反射振動子31又は送受信振動子21の発生電圧を検出するための電圧検出回路等から構成される受信手段32とを備えている。受信反射振動子31は、送受信振動子21から発振され流路1の内壁面(反射面12)で1回反射された超音波を受信し、かつ少なくともその超音波の一部を送受信振動子21に向けて反射する。受信反射振動子31で反射された超音波は測線Mに沿ってもと来た径路を逆戻りし、送受信振動子21で受信される。
【0025】
図1において、ガスの平均流速をv、ガス中を伝搬する音速をc、超音波の進行方向(測線M)とガスの流れ方向(流れ方向軸線O)とのなす角をθ(以下、測線角という)、超音波の伝搬距離をL(=D/cosθ)とすると、順方向到達時間Td及び逆方向到達時間Tuはそれぞれ次のように表わされる。
Td=L/(c+v・cosθ) (1)
Tu=L/(c−v・cosθ) (2)
(1)、(2)式の逆数をとり、その差をとれば次式が得られる。
1/Td−1/Tu=2v・cosθ/L (3)
したがって、順方向到達時間Tdと逆方向到達時間Tuの測定から、ガスの平均流速vと流量Qが次式により求められる。ただし、Aは流路1の断面積である。
v=(1/Td−1/Tu)L/2cosθ (4)
Q=v・A (5)
このように、ガスの温度・含有成分等に依存する音速cを(4)式から消去することで、測定値(到達時間Td,Tu)と一定値(伝搬距離L,測線角θ)とから流速vが得られる利点を有している。
【0026】
そこで、図1に示すように、超音波流量計100には、計測部として、受信反射振動子31又は送受信振動子21により得られる受信側振動子出力を増幅する増幅手段4と、後述する「ゼロクロス法」により出力波形から超音波到達時点を検出するゼロクロスポイント検出手段5と、超音波到達時間を測定する時間計測手段6と、受信手段32で処理すべき信号を切り替える受信信号切替手段71(切替手段7)とが備えられている。
【0027】
増幅手段4は、送受信振動子21から発振され受信反射振動子31で受信された直接受信信号、及び受信反射振動子31で反射され送受信振動子21で受信された反射受信信号を増幅する。そして、直接受信信号の増幅率よりも反射受信信号の増幅率が大となるように設定されている(図3参照)。
【0028】
受信信号切替手段71(切替手段7)は、超音波送受信部2及び超音波受信反射部3と増幅手段4との間に設けられ、増幅手段4に対して、受信反射振動子31で受信された直接受信信号又は送受信振動子21で受信された反射受信信号を受信手段32で切り替えて供給する。また、受信信号切替手段71は、これら直接受信信号と反射受信信号との信号切替に伴い増幅手段4に対して増幅率の変更指令を発する。
【0029】
時間計測手段6は、送受信振動子21が超音波を発振してから受信反射振動子31がその超音波を受信するまでの直接到達時間(図1では上記式(2)の逆方向到達時間Tuに相当する)を計測する。また、時間計測手段6は、受信反射振動子31に超音波が到達した時点から受信反射振動子31で反射された超音波を送受信振動子21が受信するまでの反射到達時間(図1では上記式(1)の順方向到達時間Tdに相当する)を計測する。
【0030】
ところで、前述の式(1),(2)からも明らかな通り、時間計測手段6で計測される順方向到達時間Tdは逆方向到達時間Tuよりも小さくなる。したがって、時間計測手段6は、流路1を流れる流体の流れ方向を検出する流れ検出手段としての機能をも有することができる。つまり、流れ検出手段6は、流体流れ方向の変化を検出したときに受信信号切替手段71に対して直接受信信号と反射受信信号との信号切替のタイミング変更指令を発することにより、以後の信号処理が流体の流れ方向に沿って行われるように修正する。
【0031】
次に、図2に一例として示す計測部のブロック図と図3に示すタイミングチャートとに基づいて、超音波流量計100の作動を説明する。図2に示すように、受信側振動子出力(ここでは、送受信振動子21出力V0d又は受信反射振動子31出力V0u)は、増幅手段4を構成する増幅器41(例えばオペアンプ)で電圧増幅(例えば非反転増幅)され、増幅信号Vaがゼロクロスポイント検出手段5に入力される。ゼロクロスポイント検出手段5において、増幅信号Vaはゼロクロス型コンパレータ51(第一コンパレータ)に入力(例えば非反転入力)され、差動型コンパレータ52(第二コンパレータ)に入力(例えば反転入力)される。コンパレータ出力Vb,Vcは、RSフリップフロップ回路(以下、RSFF回路という)53のポート#S,#Rへ各々入力される。RSFF回路53のポート#Q出力Vdにより、単安定マルチバイブレータ等で構成されるゼロクロスポイントパルス発生回路54が出力波形Vaにおける超音波到達時点を検出し、ゼロクロスポイント検出信号Veを時間計測手段6に出力する。時間計測手段6では、ゼロクロスポイント検出信号Veに基づき、クロックパルス発生回路62(例えば水晶発振子、無安定マルチバイブレータ)からのクロックパルス数をパルスカウンタ回路61(例えばJKフリップフロップ回路)でカウントして到達時間検出信号Vfが出力される。なお、差動型コンパレータ52出力Vc,RSFF回路53のポート#Q出力Vd,ゼロクロスポイント検出信号Veの各出力は、受信信号切替出力Vgにより各々1回のみの出力で終了するように制御されている(図3参照)。
【0032】
(1)直接到達時間Tu(逆方向到達時間)の計測
図3において、受信手段32では受信信号切替手段71により、受信側振動子出力(図2参照)として、まず受信反射振動子31の出力V0uが選択される。
増幅信号Va(受信反射振動子31の直接受信信号)は、受信初期においてはノイズ混入等の影響により十分な振幅(発生電圧)レベルを有しない不規則波形信号であり、先頭から第n番目(図では第▲3▼番目)の波形部分においてようやく安定して測定可能な振幅レベルに達するのが通常である。そこで、超音波受信出力の増幅信号Vaにおいて精度のよい時間測定を可能にするために、以下に述べるゼロクロス法が一般に採用されている。つまり、「差動型コンパレータ52(図2参照)に入力設定された閾値VSを超える(又は下回る)に至る波形部分(図では第▲3▼波)をトリガー波とし、このトリガー波の振幅(又は位相)がゼロとなるゼロクロス点を、増幅信号Va(又はその派生信号)の波形上でゼロクロスポイントパルス発生回路54(図2参照)により検出する方法」である。
【0033】
具体的には、増幅信号Vaの波形に対してゼロクロス法は次のように適用される。増幅信号Vaが非反転入力されたゼロクロス型コンパレータ51では、増幅信号Vaの波形のうち振幅(発生電圧)が正の波形部分(第▲1▼波,第▲3▼波,第▲5▼波…)に対応してHとなるパルスが、第一コンパレータ出力Vbとして断続的に出力される。一方、負極性の増幅信号Vaと正極性の閾値VSとが入力された差動型コンパレータ52では、閾値VSを超える波形部分(第▲3▼波,第▲5▼波…の頂部)に対応してLとなるパルスが、第二コンパレータ出力Vcとして断続的に出力される。
【0034】
第二コンパレータ出力Vcで最初に閾値VSを超えるトリガー波(第▲3▼波)のパルス信号が入力されるまではRSFF回路53のポート#RにはHが継続して入力されるので、RSFF回路53のポート#Q出力VdはLに維持される。第一コンパレータ出力Vbから第▲3▼波の波形検出パルス信号がRSFF回路53のポート#Sに入力(H)されている状態において、第二コンパレータ出力Vcからトリガー波(第▲3▼波)の閾値VS検出パルス信号がポート#Rに入力(L)されたとき、ポート#Q出力VdはHに変化する。そして、第一コンパレータ出力Vbから第▲3▼波の波形検出パルス信号がRSFF回路53のポート#Sに入力されなくなるまでポート#Q出力VdはHに維持され、ポート#Sへの入力がLとなったときにポート#Q出力VdはLとなる。
【0035】
ゼロクロスポイントパルス発生回路54は、RSFF回路53のポート#Q出力Vdの立ち下がりエッジを検出し、ゼロクロス点に対応してHとなるパルスをゼロクロスポイント検出信号Veとして出力する。パルスカウンタ回路61は、ゼロクロスポイント検出パルス信号(Ve)と送信側振動子21(図1参照)の超音波送信パルス信号との間のクロックパルス数をカウントして、到達時間検出信号Vfを出力する。このようにして到達時間検出信号Vfで得られた直接到達時間Tu(逆方向到達時間)は、実際の(真の)到達時間より長くなっている。つまり、受信開始からトリガー波(第▲3▼波)のゼロクロス点までの間(第▲1▼波〜第▲3▼波の1.5周期分)の経過時間を補正値として、検出到達時間から差し引くと実際の到達時間が得られる。
【0036】
(2)反射到達時間Td(順方向到達時間)の計測
図3において、受信手段32では受信信号切替手段71により、受信側振動子出力(図2参照)として、次に送受信振動子21の出力V0d(反射受信信号)が選択される。そして、上述の直接到達時間Tu(逆方向到達時間)の計測と同様にして、反射到達時間Td(順方向到達時間)の計測が行われる。このようにして到達時間検出信号Vfで得られた反射到達時間Td(順方向到達時間)は、実際の(真の)到達時間と等価なものとなっている。つまり、ここでは受信開始からゼロクロス点までの経過時間を補正値として差し引かなくてもよいので、超音波振動子の温度依存性を排除することができる。
【0037】
(実施例2)
次に、図4は図1(実施例1)と同様に用いられる超音波流量計の他の実施例の基本構成を示す。この超音波流量計200では、送受信振動子21と受信反射振動子31とが流路1を挟んで対向配置された透過型Z配列に構成されている。すなわち、送受信振動子21は、流路1の壁10に固定され、流体の流れ方向上手側(超音波受信反射部3側)に向けて超音波を発振した後、後述する受信反射振動子31で反射され流れ方向上手側から到来する超音波を受信する。
【0038】
一方、受信反射振動子31は、超音波送受信部2(送受信振動子21)よりも流れ方向上手側の、超音波送受信部2(送受信振動子21)の設置側と対向する流路1の壁10に固定される。この受信反射振動子31は、送受信振動子21から発振された超音波を受信し、かつ少なくともその超音波の一部を送受信振動子21に向けて反射する。受信反射振動子31で反射された超音波は測線Mに沿ってもと来た径路を逆戻りし、送受信振動子21で受信される。
【0039】
そして、図4に示す超音波流量計200においても、図2及び図3(実施例1)と同様に作動する。なお、図4において図1と共通する機能を有する部分には同一符号を付して説明を省略する。
【0040】
(実施例3)
次に、図5は図1(実施例1)と同様に用いられる超音波流量計のさらに他の実施例の基本構成を示す。この超音波流量計300では、図3(実施例1)において、順方向到達時間として反射到達時間Tdが実際の(真の)到達時間と等価なものとして計測できることに着目し、さらに逆方向に超音波を発振させて、逆方向到達時間として反射到達時間Tuについても、同様に実際の到達時間と等価なものとして計測しようとするものである(図7参照)。
【0041】
図5において、計測部を図1と同様に反射型V字配列に配置している。具体的には、相互に超音波の発振・受信・反射が行えるように、流路1の流れ方向下手側と上手側とに一対の超音波送受信反射部12,13を配置している。流れ方向下手側に配置する超音波送受信反射部12は、流れ方向上手側に向けて超音波を発振する機能と、流れ方向上手側から到来する超音波を受信する機能と、少なくとも到来した超音波の一部を流れ方向上手側に向けて反射する機能とを有する送受信反射振動子121を具備している。一方、流れ方向上手側に配置する超音波送受信反射部13は、流れ方向下手側に向けて超音波を発振する機能と、流れ方向下手側から到来する超音波を受信する機能と、少なくとも到来した超音波の一部を流れ方向下手側に向けて反射する機能とを有する送受信反射振動子131を具備している。なお、図5において図1と共通する機能を有する部分には同一符号を付して説明を省略する。
【0042】
切替手段7には、受信信号切替手段71(図1参照)の他に、計測切替手段72が備えられている。計測切替手段72は、一対の送受信反射振動子121,131を用いた第一回計測と第二回計測とを切り替える機能を有する。具体的には、一対の送受信反射振動子121,131のうち一方を第一振動子121、他方を第二振動子131としたとき、
・第一回計測:第一振動子121を発振・受信側とし、第二振動子131を受信・反射側とする;
・第二回計測:第二振動子131を発振・受信側とし、第一振動子121を受信・反射側とする;
【0043】
時間計測手段6により、第一回計測において第一回反射到達時間Tdを計測し、第二回計測において第二回反射到達時間Tuを計測する。ただし、第一回反射到達時間Tdとは、第二振動子131に超音波が到達した時点から第二振動子131で反射された超音波を第一振動子121が受信するまでの時間であり、第二回反射到達時間Tuとは、第一振動子121に超音波が到達した時点から第一振動子121で反射された超音波を第二振動子131が受信するまでの時間である。
【0044】
次に、図6及び図7のフローチャートについて概要を説明する。まず、第一回計測において、第一振動子121を発振・受信側とし、第二振動子131を受信・反射側とすれば、図3(実施例1)と同様にして第一回反射到達時間Tdが実際の(真の)到達時間と等価なものとして計測できる(図6参照)。続いて、第二回計測において、第二振動子131を発振・受信側とし、第一振動子121を受信・反射側とすれば、図3(実施例1)と同様にして第二回反射到達時間Tuが実際の(真の)到達時間と等価なものとして計測できる(図7参照)。これによって、順方向到達時間と逆方向到達時間とに第一回反射到達時間Td及び第二回反射到達時間Tuを当てはめれば、順方向到達時間と逆方向到達時間の計測値のいずれにおいても、受信開始からトリガー波までに経過した時間を減算補正する必要がなくなり、測定精度が大幅に向上する。
【0045】
実施例1において、送受信振動子21で発振された超音波が流路の内壁面で1回反射して受信反射振動子31に到達する場合についてのみ説明したが、内壁面での反射回数は任意に設定できる。実施例3において、計測部を反射型V字配列に配置した場合についてのみ説明したが、透過型Z配列等の配置にも適用できる。
【図面の簡単な説明】
【図1】本発明に係る超音波流量計の一実施例の基本構成を示す説明図。
【図2】計測部のブロック図。
【図3】図2のタイミングチャート。
【図4】本発明に係る超音波流量計の他の実施例の基本構成を示す説明図。
【図5】本発明に係る超音波流量計のさらに他の実施例の基本構成を示す説明図。
【図6】図5において時間tまでのタイミングチャート。
【図7】図6に続いて時間t以降のタイミングチャート。
【符号の説明】
1 流路
10 壁
2 超音波送受信部
21 送受信振動子
3 超音波受信反射部
31 受信反射振動子
4 増幅手段
6 時間計測手段
71 受信信号切替手段(切替手段)
100,200 超音波流量計
12,13 超音波送受信反射部
121 第一振動子
131 第二振動子
72 計測切替手段(切替手段)
300 超音波流量計
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ultrasonic flow meter.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, an ultrasonic flowmeter that measures flow velocity using ultrasonic waves is known as a flow measurement device that measures the flow rate of a fluid such as city gas or water. In general, a “propagation time difference method” is used as a measurement principle at that time. This is provided with a pair of ultrasonic transmission / reception units on the upper and lower sides of the fluid flow direction of the flow path, and alternately switching the transmission / reception of ultrasonic signals, and the ultrasonic transmission unit (transmission-side transducer) on the upper side in the flow direction To the ultrasonic wave receiving unit (reception-side transducer) on the lower side in the flow direction (hereinafter referred to as the forward arrival time) and the flow from the ultrasonic transmission unit (transmission-side transducer) on the lower side in the flow direction Measure the time to reach the ultrasonic receiver (reception-side transducer) on the upper side of the direction (hereinafter referred to as reverse direction arrival time), and calculate the average flow velocity and flow rate of the fluid flowing through the flow path from the time difference between the two. It is a method to seek.
[0003]
In addition, since the ultrasonic reception signal waveform has an irregular waveform portion that does not have a sufficient amplitude level due to the influence of noise or the like in the initial reception, it is a trigger for measuring the forward arrival time (or reverse arrival time). Various attempts have been made to appropriately determine a wave (for example, the third wave) and improve measurement accuracy. For example, Patent Document 1 discloses a technique for improving measurement accuracy by optimizing a trigger level (comparison level).
[0004]
[Patent Document 1]
JP 2002-13958 A
[0005]
[Problems to be solved by the invention]
However, the improvement disclosed in Patent Document 1 and the like is limited to the signal processing for the given ultrasonic reception signal waveform, and the time elapsed from the start of reception to the trigger wave (1.5 when the trigger wave is the third wave). The period) must be subtracted from the forward arrival time (or reverse arrival time) measured as before. However, since the oscillation frequency (natural frequency) of an ultrasonic transducer is temperature-dependent, it is necessary to re-correct the correction value as the ambient temperature changes, leading to a fundamental improvement in measurement accuracy. It wasn't. Further, as the signal processing becomes complicated, there is a risk that the measurement speed becomes slow and the consumption of the measurement battery becomes intense.
[0006]
Accordingly, an object of the present invention is to provide an ultrasonic flowmeter that can greatly improve the measurement accuracy without reducing the measurement speed or significantly consuming the measurement battery.
[0007]
[Means for Solving the Problems and Effects of the Invention]
In order to solve the above problems, an ultrasonic flowmeter according to the present invention is:
A flow path for passing fluid;
An ultrasonic transmission / reception unit in which a transmission / reception transducer for receiving ultrasonic waves arriving from the upper side or lower side of the flow direction is attached to the flow path after oscillating ultrasonic waves toward the upper side or lower side of the fluid flow direction When,
The ultrasonic wave oscillated from the transmission / reception transducer is received in the flow path on the upper side or the lower side in the flow direction of the ultrasonic transmission / reception unit, and at least a part of the ultrasonic wave is reflected toward the transmission / reception transducer. An ultrasonic wave receiving / reflecting unit to which a receiving / reflecting vibrator is attached;
Measures the direct arrival time from when the transmitting / receiving transducer oscillates the ultrasonic wave until the receiving / reflecting transducer receives the ultrasonic wave, and receives and reflects the ultrasonic wave when the ultrasonic wave reaches the receiving / reflecting transducer. A time measuring means for measuring a reflection arrival time until the transmission / reception vibrator receives the ultrasonic wave reflected by the vibrator;
It is characterized by providing.
[0008]
According to this ultrasonic flowmeter, the reflection arrival time is the time from when the ultrasonic wave arrives at the reception reflective vibrator and received until the transmission / reception vibrator receives the ultrasonic wave reflected by the reception reflective vibrator. Therefore, it is not necessary to subtract and correct the time elapsed from the start of reception until the trigger wave, and the measurement accuracy can be greatly improved. In addition, since complicated signal processing is not required for the ultrasonic wave reception signal waveform, it is possible to prevent the measurement speed from being slow and the measurement battery from being consumed.
[0009]
Note that even in a conventional ultrasonic flowmeter (see, for example, Patent Document 1 above), when receiving an ultrasonic wave in the ultrasonic receiving unit, the receiving-side transducer is directed toward the ultrasonic transmitting unit (transmitting-side transducer). Acoustic reflections are inevitably generated. However, the reflected wave has been treated as a noise component so far, and it has generally been considered that it should be excluded in order to improve the measurement accuracy. On the other hand, in the present invention, in order to remove the error / correction element from the ultrasonic reception signal waveform itself and improve the measurement accuracy of the reflection arrival time by the time measuring means, the reflected ultrasonic waves are detected in the ultrasonic flowmeter. We are going to use it actively.
[0010]
In addition, when the ultrasonic flowmeter according to the present invention is applied to a reflective V-shaped array in order to solve the above problem,
A flow path for passing fluid;
Ultrasound with a transmission / reception transducer attached to the flow path wall that receives ultrasonic waves coming from the upper side or lower side in the flow direction after oscillating ultrasonic waves toward the upper or lower side in the fluid flow direction A transceiver unit;
In the cross section of the flow path including the fluid flow direction axis and the transmission / reception vibrator, the wall of the flow path on the upper or lower side in the flow direction is oscillated from the transmission / reception vibrator at least once on the inner wall surface of the flow path. An ultrasonic wave receiving / reflecting unit to which a reception reflection vibrator that receives reflected ultrasonic waves and reflects at least a part of the ultrasonic waves toward the transmission / reception vibrator is attached;
Measures the direct arrival time from when the transmitting / receiving transducer oscillates the ultrasonic wave until the receiving / reflecting transducer receives the ultrasonic wave, and receives and reflects the ultrasonic wave when the ultrasonic wave reaches the receiving / reflecting transducer. A time measuring means for measuring a reflection arrival time until the transmission / reception vibrator receives the ultrasonic wave reflected by the vibrator;
It is characterized by providing.
[0011]
Even when used in a reflection type V-shaped ultrasonic flowmeter, it is not necessary to perform subtraction correction on the reflection arrival time in the same manner as described above, so that the measurement accuracy can be greatly improved. In addition, since only the ultrasonic wave is oscillated from the transmission / reception vibrator and the ultrasonic wave is not oscillated from the reception reflection vibrator, the complicated signal processing is not required for the ultrasonic reception signal waveform. It is effective in reducing costs, improving measurement speed, and preventing battery consumption. In addition, since the propagation distance can be relatively increased in the reflective V-shaped arrangement, the measurement accuracy of the reflection arrival time by the time measuring means can be further improved.
[0012]
Therefore, the flow path is formed in a rectangular shape in a cross section perpendicular to the fluid flow direction, and the transmission / reception vibrator and the reception reflection vibrator flow on the wall surface forming one of the short sides of the cross section perpendicular to the flow direction of the flow path. The ultrasonic survey lines arranged in the flow path are configured in a reflective V-shaped array by using a wall surface that is attached at a predetermined distance in the direction and that forms the other short side as a reflection surface. Thus, by forming the short side wall surface of the rectangular cross-section flow path on the vibrator mounting surface and the reflection surface, an ultrasonic flowmeter having a thin, small and compact measuring unit can be obtained.
[0013]
Furthermore, when the ultrasonic flowmeter according to the present invention is applied to a transmissive Z array in order to solve the above problem,
A flow path for passing fluid;
Ultrasound with a transmission / reception transducer attached to the flow path wall that receives ultrasonic waves coming from the upper side or lower side in the flow direction after oscillating ultrasonic waves toward the upper or lower side in the fluid flow direction A transceiver unit;
In the cross section of the flow path including the flow direction axis of the fluid and the transmission / reception transducer, the ultrasonic transmission / reception unit is connected to the wall of the flow path facing the installation side of the ultrasonic transmission / reception unit on the upper side or lower side in the flow direction. An ultrasonic wave receiving / reflecting unit to which a receiving reflection vibrator that receives the oscillated ultrasonic wave and reflects at least a part of the ultrasonic wave toward the transmitting / receiving vibrator is attached;
Measures the direct arrival time from when the transmitting / receiving transducer oscillates the ultrasonic wave until the receiving / reflecting transducer receives the ultrasonic wave, and receives and reflects the ultrasonic wave when the ultrasonic wave reaches the receiving / reflecting transducer. A time measuring means for measuring a reflection arrival time until the transmission / reception vibrator receives the ultrasonic wave reflected by the vibrator;
It is characterized by providing.
[0014]
Even when used in an ultrasonic flowmeter with a transmissive Z array, it is not necessary to perform subtraction correction on the reflection arrival time as in the reflective V-shaped array, so that the measurement accuracy can be greatly improved. In addition, since only the ultrasonic wave is oscillated from the transmission / reception vibrator and the ultrasonic wave is not oscillated from the reception reflection vibrator, the complicated signal processing is not required for the ultrasonic reception signal waveform. It is effective in reducing costs, improving measurement speed, and preventing battery consumption. In addition, since the propagation distance can be relatively shortened in the transmission type Z array, the transmission can be carried out without worrying about attenuation by the reflected wave.
[0015]
In these ultrasonic flowmeters, the ultrasonic transmission / reception unit is arranged on the lower side in the flow direction than the ultrasonic reception reflection unit, and the transmission / reception transducer is ultrasonic waves toward the reception reflection transducer arranged on the upper side in the flow direction. Is preferably configured to oscillate. In general, when there is a fluid flow in the flow path, if ultrasonic waves are oscillated in the direction along the flow (lower side in the flow direction), the ultrasonic output decreases, and in the direction against the flow (upper side in the flow direction). It is known that the ultrasonic output increases when ultrasonic waves are oscillated. Therefore, as described above, the transmission / reception vibrator oscillates the ultrasonic wave toward the reception reflection vibrator to increase the ultrasonic output, so that the output decrease of the reflected wave from the reception reflection vibrator toward the transmission / reception vibrator is compensated. A decrease in reception level and a decrease in measurement accuracy can be suppressed.
[0016]
Further, in these ultrasonic flow meters, in order to measure the direct arrival time and the reflection arrival time by the time measuring means, the direct reception signal oscillated from the transmission / reception vibrator and received by the reception reflection vibrator, and the reception reflection vibrator Amplifying means for amplifying the reflected reception signal reflected by the transmitter / receiver transducer is provided, and the amplification means may set the amplification factor of the reflected reception signal to be larger than the amplification factor of the direct reception signal. Even when the transmission / reception transducer is disposed on the lower side in the flow direction and the reception reflection transducer is disposed on the upper side in the flow direction, the level of the reflected reception signal generally tends to be lower than the level of the direct reception signal. Therefore, by performing signal amplification of the reflected reception signal with a relatively large amplification factor before the arrival time is measured, it is possible to further suppress a decrease in the level of the reflected reception signal and a decrease in measurement accuracy.
[0017]
For this purpose, a reception signal switching means for switching and supplying a reception signal or a reflection reception signal directly to the amplification means is provided between the ultrasonic transmission / reception section and the ultrasonic reception reflection section and the amplification means. The switching means can be configured to issue an amplification factor change command to the amplifying means in accordance with signal switching between the direct reception signal and the reflected reception signal. Thereby, stable signal amplification is executed with a relatively large amplification factor with respect to the reflected reception signal.
[0018]
In addition, a flow detection means for detecting the flow direction of the fluid flowing through the flow path is provided, and when the flow detection means detects a change in the fluid flow direction, a direct reception signal and a reflected reception signal are transmitted to the reception signal switching means. A signal switching timing change command may be issued. As a result, even when a situation occurs in which the fluid flows backward in the flow path, the detection is quickly performed and the reception signal level is adjusted, so that it is possible to prevent the signal level and the measurement accuracy from being lowered. In addition, as the flow detection means, the time measurement means (measurement data) which is a constituent element of the present invention is used, or a well-known flowmeter (or differential pressure type, area type, vortex type, etc.) separately from the ultrasonic flowmeter (or An anemometer) may be used. Further, instead of or in addition to the method (first method) for switching the reception signal and the reflected reception signal directly using the reception signal switching means when the backflow is detected, the ultrasonic transmission / reception unit using the measurement switching means You may employ | adopt the method (2nd method) which switches an ultrasonic wave reception reflection part. At that time, when the back flow rate is small, the first method can be used for warning display, when the back flow rate is large, the second method can be used first, and the shutoff valve can be operated when the flow rate is increased.
[0019]
Next, in order to solve the above problems, an ultrasonic flowmeter according to the present invention is:
A flow path for passing fluid;
A function of oscillating ultrasonic waves toward the upper side or lower side of the flow direction, a function of receiving ultrasonic waves arriving from the upper side or lower side of the flow direction, and at least a part of the incoming ultrasonic waves A transmission / reception reflection vibrator having a function of reflecting toward the lower side is provided, and disposed on the upper and lower sides in the flow direction of the flow path so that ultrasonic waves can be oscillated, received, and reflected from each other. A pair of ultrasonic transmission / reception reflectors;
Of the pair of transmission / reception reflection vibrators, one of the transmission / reception reflection vibrators (hereinafter referred to as a first vibrator) is an oscillation / reception side, and the other transmission / reception reflection vibrator (hereinafter referred to as a second vibrator) is received / received. A measurement switching means for switching between the first measurement on the reflection side and the second measurement on the second transducer as the oscillation / reception side and the first transducer as the reception / reflection side;
In the first measurement, the first reflection arrival time from when the ultrasonic wave reaches the second vibrator until the first vibrator receives the ultrasonic wave reflected by the second vibrator is measured. In addition, in the second measurement, the second reflected arrival from the time when the ultrasonic wave reaches the first vibrator until the second vibrator receives the ultrasonic wave reflected by the first vibrator. A time measuring means for measuring time;
It is characterized by providing.
[0020]
According to this ultrasonic flowmeter, the first reflection arrival time in the first measurement is that the ultrasonic wave reflected by the second vibrator from the time when the ultrasonic wave reaches the second vibrator and is received is first. This is the time until the transducer receives. On the other hand, in the second measurement, the second reflection arrival time is the time from when the ultrasonic wave reaches the first transducer and is received until the second transducer receives the ultrasonic wave reflected by the first transducer. It's time. Therefore, if the first reflection arrival time and the second reflection arrival time are applied to the forward arrival time and the reverse arrival time, reception starts in both the forward arrival time and the backward arrival time measurement value. It is no longer necessary to subtract and correct the time elapsed from to the trigger wave, and the measurement accuracy is further greatly improved. In addition, since complicated signal processing is not required for the ultrasonic wave reception signal waveform, it is possible to prevent the measurement speed from being slow and the measurement battery from being consumed.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Example 1
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a basic configuration of an embodiment of an ultrasonic flow meter used as a general residential gas meter or the like. A flow measurement gas (fluid) flows along the flow direction axis O in the illustrated flow direction (average flow velocity v) in the flow rate measurement flow path 1 of the ultrasonic flowmeter 100. An ultrasonic transmission / reception unit 2 on the lower side in the flow direction and an ultrasonic wave receiving / reflecting unit 3 on the upper side in the flow direction are attached to the wall 10 of the flow path 1, and as shown in FIG. In the cross section of the flow path including the transmission / reception unit 2, the ultrasonic reception reflection unit 3 is located on the wall 10 on the ultrasonic transmission unit 2 installation side.
[0022]
The flow channel 1 for measurement has a flow direction axis O that is linear between at least the ultrasonic transmission / reception unit 2 and the ultrasonic reception / reflection unit 3, and the shape and cross-sectional area of the axial cross section are the same in the flow direction. . When the measurement target is a gas, the axial cross-sectional shape of the measurement channel 1 may be any shape that forms a space closed by the wall 10. For example, any of a circular shape, an elliptical shape, a square shape, a rectangular shape, etc. It may be adopted. The flow path 1 shown in FIG. 1 is formed in a rectangular shape, and the transmission / reception vibrator 21 and the reception reflection vibrator 31 flow on the wall surface (attachment surface) forming one short side 11a of the cross section orthogonal to the flow direction of the flow path 1. The ultrasonic measurement lines M arranged in the flow path 1 are configured in a reflective V-shaped arrangement by using the wall surface that is attached at a predetermined distance in the direction and that forms the other short side 11b as a reflection surface. If the measurement target is a liquid such as water, an open shape (for example, a semicircular shape) in which the zenith portion of the wall 10 is open to the atmosphere may be employed as the axial cross-sectional shape of the measurement channel 1. .
[0023]
The ultrasonic transmission / reception unit 2 is fixed to the wall 10 of the flow path 1, and includes a transmission / reception vibrator 21 including a piezoelectric element, a diaphragm, an electrode plate, and the like, a drive voltage circuit for causing the transmission / reception vibrator 21 to oscillate, and the like. The transmission means 22 comprised from these. The transmission / reception vibrator 21 oscillates an ultrasonic wave toward the upper side of the fluid flow direction (the ultrasonic wave receiving / reflecting unit 3 side), and then is reflected by a reception reflection vibrator 31 described later and arrives from the upper side of the flow direction. Receive.
[0024]
The ultrasonic wave receiving / reflecting unit 3 is fixed to the wall 10 on the upper side in the flow direction than the ultrasonic wave transmitting / receiving unit 2 (the transmitting / receiving transducer 21), and is a receiving reflective transducer 31 composed of a piezoelectric element, a diaphragm, an electrode plate, and the like. And a receiving means 32 including a voltage detection circuit for detecting a voltage generated by the reception reflection vibrator 31 or the transmission / reception vibrator 21. The reception reflection vibrator 31 receives the ultrasonic wave oscillated from the transmission / reception vibrator 21 and reflected once by the inner wall surface (reflection surface 12) of the flow channel 1, and at least a part of the ultrasonic wave is received by the transmission / reception vibrator 21. Reflect towards The ultrasonic wave reflected by the reception reflection vibrator 31 returns to the original path along the measurement line M and is received by the transmission / reception vibrator 21.
[0025]
In FIG. 1, the average flow velocity of gas is v, the speed of sound propagating in the gas is c, and the angle between the ultrasonic traveling direction (measurement line M) and the gas flow direction (flow direction axis O) is θ (hereinafter referred to as a measurement line). If the ultrasonic propagation distance is L (= D / cos θ), the forward arrival time Td and the reverse arrival time Tu are respectively expressed as follows.
Td = L / (c + v · cos θ) (1)
Tu = L / (cv · cos θ) (2)
Taking the reciprocal of equations (1) and (2) and taking the difference, the following equation is obtained.
1 / Td−1 / Tu = 2v · cos θ / L (3)
Therefore, from the measurement of the forward arrival time Td and the reverse arrival time Tu, the average gas flow velocity v and flow rate Q are obtained by the following equations. However, A is a cross-sectional area of the flow path 1.
v = (1 / Td−1 / Tu) L / 2 cos θ (4)
Q = v · A (5)
In this way, by eliminating the sound velocity c depending on the gas temperature, the contained component, etc. from the equation (4), from the measured values (arrival times Td, Tu) and the constant values (propagation distance L, line angle θ). There is an advantage that the flow velocity v can be obtained.
[0026]
Therefore, as shown in FIG. 1, the ultrasonic flowmeter 100 includes an amplification unit 4 that amplifies the reception-side transducer output obtained by the reception reflection transducer 31 or the transmission / reception transducer 21 as a measurement unit, and “ Zero cross point detecting means 5 for detecting the ultrasonic arrival time from the output waveform by the “zero cross method”, time measuring means 6 for measuring the ultrasonic arrival time, and reception signal switching means 71 (for switching signals to be processed by the receiving means 32) Switching means 7).
[0027]
The amplifying unit 4 amplifies the direct reception signal oscillated from the transmission / reception transducer 21 and received by the reception / reflection transducer 31 and the reflection reception signal reflected by the reception / reflection transducer 31 and received by the transmission / reception transducer 21. The amplification factor of the reflected reception signal is set to be larger than the amplification factor of the direct reception signal (see FIG. 3).
[0028]
The reception signal switching unit 71 (switching unit 7) is provided between the ultrasonic transmission / reception unit 2, the ultrasonic reception reflection unit 3, and the amplification unit 4, and is received by the reception reflection vibrator 31 with respect to the amplification unit 4. The direct reception signal or the reflection reception signal received by the transmission / reception transducer 21 is switched by the reception means 32 and supplied. The received signal switching means 71 issues an amplification factor change command to the amplifying means 4 in accordance with the signal switching between the direct received signal and the reflected received signal.
[0029]
The time measuring means 6 has a direct arrival time from when the transmission / reception transducer 21 oscillates an ultrasonic wave until the reception reflection transducer 31 receives the ultrasonic wave (reverse direction arrival time Tu in the above equation (2) in FIG. 1). Is equivalent). Further, the time measuring means 6 is the reflection arrival time from when the ultrasonic wave reaches the reception reflection vibrator 31 until the transmission / reception vibrator 21 receives the ultrasonic wave reflected by the reception reflection vibrator 31 (in FIG. (Corresponding to the forward direction arrival time Td in equation (1)).
[0030]
By the way, as is clear from the above formulas (1) and (2), the forward arrival time Td measured by the time measuring means 6 is smaller than the backward arrival time Tu. Therefore, the time measuring means 6 can also have a function as a flow detecting means for detecting the flow direction of the fluid flowing through the flow path 1. That is, the flow detection unit 6 issues a signal switching timing change command between the reception signal and the reflection reception signal directly to the reception signal switching unit 71 when detecting a change in the fluid flow direction, thereby performing subsequent signal processing. Is performed along the fluid flow direction.
[0031]
Next, the operation of the ultrasonic flowmeter 100 will be described based on the block diagram of the measurement unit shown as an example in FIG. 2 and the timing chart shown in FIG. As shown in FIG. 2, the receiving-side vibrator output (here, the transmitting / receiving vibrator 21 output V0d or the receiving reflection vibrator 31 output V0u) is amplified by an amplifier 41 (for example, an operational amplifier) constituting the amplifying means 4 (for example, an operational amplifier). Amplified signal Va is input to zero cross point detecting means 5. In the zero cross point detection means 5, the amplified signal Va is input (for example, non-inverted input) to the zero cross type comparator 51 (first comparator) and input (for example, inverted input) to the differential type comparator 52 (second comparator). The comparator outputs Vb and Vc are input to ports #S and #R of an RS flip-flop circuit (hereinafter referred to as RSFF circuit) 53, respectively. By the port #Q output Vd of the RSFF circuit 53, the zero cross point pulse generation circuit 54 constituted by a monostable multivibrator or the like detects the ultrasonic arrival time in the output waveform Va, and the zero cross point detection signal Ve is sent to the time measuring means 6. Output. Based on the zero cross point detection signal Ve, the time measuring means 6 counts the number of clock pulses from the clock pulse generation circuit 62 (for example, a crystal oscillator or an astable multivibrator) by a pulse counter circuit 61 (for example, a JK flip-flop circuit). The arrival time detection signal Vf is output. Each output of the differential comparator 52 output Vc, the port #Q output Vd of the RSFF circuit 53, and the zero cross point detection signal Ve is controlled by the reception signal switching output Vg so as to be terminated only once. (See FIG. 3).
[0032]
(1) Measurement of direct arrival time Tu (reverse direction arrival time)
In FIG. 3, in the receiving means 32, the output V0u of the reception reflecting vibrator 31 is first selected as the receiving-side vibrator output (see FIG. 2) by the reception signal switching means 71.
The amplified signal Va (direct reception signal of the reception reflection vibrator 31) is an irregular waveform signal that does not have a sufficient amplitude (generated voltage) level due to the influence of noise or the like in the initial reception, and is the nth ( In the figure, it is normal that the amplitude level finally reaches a stable measurement finally in the (3) waveform portion. Therefore, in order to enable accurate time measurement in the amplified signal Va of the ultrasonic reception output, the zero cross method described below is generally employed. That is, “the waveform portion (the third wave in the figure) that reaches (or falls below) the threshold value VS input and set in the differential comparator 52 (see FIG. 2) is set as the trigger wave, and the amplitude ( Alternatively, the zero cross point at which the phase) becomes zero is detected by the zero cross point pulse generation circuit 54 (see FIG. 2) on the waveform of the amplified signal Va (or a derivative signal thereof).
[0033]
Specifically, the zero cross method is applied to the waveform of the amplified signal Va as follows. In the zero cross type comparator 51 to which the amplified signal Va is input non-inverted, the amplitude (generated voltage) of the waveform of the amplified signal Va has a positive waveform portion (the first wave, the third wave, the fifth wave). ... Is intermittently output as the first comparator output Vb. On the other hand, in the differential comparator 52 to which the negative polarity amplification signal Va and the positive polarity threshold value VS are input, it corresponds to a waveform portion exceeding the threshold value VS (the third wave, the top of the fifth wave). Then, the pulse that becomes L is intermittently output as the second comparator output Vc.
[0034]
Until the pulse signal of the trigger wave ((3) wave) exceeding the threshold value VS is first input at the second comparator output Vc, H is continuously input to the port #R of the RSFF circuit 53. The port #Q output Vd of the circuit 53 is maintained at L. In the state where the waveform detection pulse signal of the third wave from the first comparator output Vb is input (H) to the port #S of the RSFF circuit 53, the trigger wave (third wave) is output from the second comparator output Vc. When the threshold VS detection pulse signal is input (L) to the port #R, the port #Q output Vd changes to H. The port #Q output Vd is maintained at H and the input to the port #S is L until the waveform detection pulse signal of the third wave from the first comparator output Vb is not input to the port #S of the RSFF circuit 53. The port #Q output Vd becomes L.
[0035]
The zero cross point pulse generation circuit 54 detects the falling edge of the port #Q output Vd of the RSFF circuit 53 and outputs a pulse that becomes H corresponding to the zero cross point as the zero cross point detection signal Ve. The pulse counter circuit 61 counts the number of clock pulses between the zero cross point detection pulse signal (Ve) and the ultrasonic transmission pulse signal of the transmission-side transducer 21 (see FIG. 1), and outputs the arrival time detection signal Vf. To do. The direct arrival time Tu (reverse arrival time) obtained by the arrival time detection signal Vf in this way is longer than the actual (true) arrival time. That is, the detection arrival time with the elapsed time from the start of reception to the zero cross point of the trigger wave ((3) wave) (1.5 cycles of (1) wave to (3) wave) as a correction value Subtract from to get the actual arrival time.
[0036]
(2) Measurement of reflection arrival time Td (forward arrival time)
In FIG. 3, in the receiving means 32, the output V0d (reflected received signal) of the transmitting / receiving vibrator 21 is next selected as the receiving-side vibrator output (see FIG. 2) by the received signal switching means 71. Then, the reflection arrival time Td (forward arrival time) is measured in the same manner as the measurement of the direct arrival time Tu (reverse arrival time). The reflection arrival time Td (forward arrival time) obtained by the arrival time detection signal Vf in this way is equivalent to the actual (true) arrival time. That is, here, since it is not necessary to subtract the elapsed time from the start of reception to the zero cross point as a correction value, it is possible to eliminate the temperature dependence of the ultrasonic transducer.
[0037]
(Example 2)
Next, FIG. 4 shows a basic configuration of another embodiment of the ultrasonic flowmeter used in the same manner as FIG. 1 (Embodiment 1). In the ultrasonic flowmeter 200, the transmission / reception vibrator 21 and the reception reflection vibrator 31 are configured in a transmission type Z array in which the flow path 1 is opposed to each other. That is, the transmission / reception vibrator 21 is fixed to the wall 10 of the flow path 1, oscillates an ultrasonic wave toward the upper side in the fluid flow direction (the ultrasonic wave reception / reflection part 3 side), and then a reception reflection vibrator 31 described later. The ultrasonic waves that are reflected by the light and arrive from the upper side in the flow direction are received.
[0038]
On the other hand, the reception reflection vibrator 31 is a wall of the flow path 1 facing the installation side of the ultrasonic transmission / reception unit 2 (transmission / reception transducer 21) on the upper side in the flow direction than the ultrasonic transmission / reception unit 2 (transmission / reception transducer 21). 10 is fixed. The reception reflection vibrator 31 receives the ultrasonic wave oscillated from the transmission / reception vibrator 21 and reflects at least a part of the ultrasonic wave toward the transmission / reception vibrator 21. The ultrasonic wave reflected by the reception reflection vibrator 31 returns to the original path along the measurement line M and is received by the transmission / reception vibrator 21.
[0039]
The ultrasonic flow meter 200 shown in FIG. 4 operates in the same manner as in FIGS. 2 and 3 (Example 1). In FIG. 4, parts having the same functions as those in FIG.
[0040]
(Example 3)
Next, FIG. 5 shows a basic configuration of still another embodiment of the ultrasonic flowmeter used in the same manner as FIG. 1 (Embodiment 1). In this ultrasonic flowmeter 300, in FIG. 3 (Example 1), attention is paid to the fact that the reflection arrival time Td can be measured as the forward arrival time equivalent to the actual (true) arrival time. The ultrasonic wave is oscillated, and the reflection arrival time Tu as the reverse arrival time is similarly measured as equivalent to the actual arrival time (see FIG. 7).
[0041]
In FIG. 5, the measurement units are arranged in a reflective V-shaped arrangement as in FIG. 1. Specifically, a pair of ultrasonic transmission / reception reflectors 12 and 13 are arranged on the lower side and the upper side in the flow direction of the flow path 1 so that ultrasonic waves can be oscillated, received, and reflected from each other. The ultrasonic transmission / reception reflection unit 12 disposed on the lower side in the flow direction has a function of oscillating ultrasonic waves toward the upper side in the flow direction, a function of receiving ultrasonic waves coming from the upper side in the flow direction, and at least an incoming ultrasonic wave. The transmission / reception reflection vibrator 121 having a function of reflecting a part of the sway toward the upper side in the flow direction is provided. On the other hand, the ultrasonic wave transmitting / receiving reflector 13 arranged on the upper side in the flow direction has at least a function of oscillating ultrasonic waves toward the lower side in the flow direction and a function of receiving ultrasonic waves coming from the lower side in the flow direction. A transmission / reception reflection vibrator 131 having a function of reflecting a part of ultrasonic waves toward the lower side in the flow direction is provided. In FIG. 5, parts having the same functions as those in FIG.
[0042]
The switching unit 7 includes a measurement switching unit 72 in addition to the reception signal switching unit 71 (see FIG. 1). The measurement switching means 72 has a function of switching between the first measurement and the second measurement using the pair of transmission / reception reflection vibrators 121 and 131. Specifically, when one of the pair of transmission / reception reflection vibrators 121 and 131 is the first vibrator 121 and the other is the second vibrator 131,
First measurement: the first vibrator 121 is on the oscillation / reception side, and the second vibrator 131 is on the reception / reflection side;
Second measurement: the second vibrator 131 is the oscillation / reception side, and the first vibrator 121 is the reception / reflection side;
[0043]
The time measurement means 6 measures the first reflection arrival time Td in the first measurement, and measures the second reflection arrival time Tu in the second measurement. However, the first reflection arrival time Td is the time from when the ultrasonic wave reaches the second vibrator 131 until the first vibrator 121 receives the ultrasonic wave reflected by the second vibrator 131. The second reflection arrival time Tu is the time from when the ultrasonic wave reaches the first vibrator 121 until the second vibrator 131 receives the ultrasonic wave reflected by the first vibrator 121.
[0044]
Next, an outline of the flowcharts of FIGS. 6 and 7 will be described. First, in the first measurement, if the first vibrator 121 is on the oscillation / reception side and the second vibrator 131 is on the reception / reflection side, the first reflection arrival is performed in the same manner as in FIG. 3 (Example 1). The time Td can be measured as equivalent to the actual (true) arrival time (see FIG. 6). Subsequently, in the second measurement, if the second vibrator 131 is set to the oscillation / reception side and the first vibrator 121 is set to the reception / reflection side, the second reflection is performed in the same manner as in FIG. 3 (Example 1). The arrival time Tu can be measured as equivalent to the actual (true) arrival time (see FIG. 7). Thus, if the first reflection arrival time Td and the second reflection arrival time Tu are applied to the forward arrival time and the reverse arrival time, both the forward arrival time and the reverse arrival time are measured. This eliminates the need to subtract and correct the time elapsed from the start of reception until the trigger wave, greatly improving measurement accuracy.
[0045]
In the first embodiment, only the case where the ultrasonic wave oscillated by the transmission / reception vibrator 21 is reflected once by the inner wall surface of the flow path and reaches the reception reflection vibrator 31 is described, but the number of reflections on the inner wall surface is arbitrary. Can be set. In the third embodiment, only the case where the measurement units are arranged in the reflective V-shaped array has been described, but the present invention can also be applied to an arrangement such as a transmissive Z array.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a basic configuration of an embodiment of an ultrasonic flowmeter according to the present invention.
FIG. 2 is a block diagram of a measurement unit.
3 is a timing chart of FIG.
FIG. 4 is an explanatory diagram showing a basic configuration of another embodiment of the ultrasonic flowmeter according to the present invention.
FIG. 5 is an explanatory diagram showing a basic configuration of still another embodiment of the ultrasonic flowmeter according to the present invention.
6 is a timing chart up to time t in FIG.
FIG. 7 is a timing chart after time t following FIG. 6;
[Explanation of symbols]
1 channel
10 walls
2 Ultrasonic transceiver
21 Transceiver
3 Ultrasonic wave reception reflector
31 Reception reflector
4 Amplification means
6 Time measurement means
71 Received signal switching means (switching means)
100,200 Ultrasonic flow meter
12, 13 Ultrasonic wave transmission / reception reflector
121 First vibrator
131 Second vibrator
72 Measurement switching means (switching means)
300 Ultrasonic flow meter

Claims (9)

流体を通過させるための流路と、
その流路に、流体の流れ方向上手側又は下手側に向けて超音波を発振した後、流れ方向上手側又は下手側から到来する超音波を受信する送受信振動子が取り付けられた超音波送受信部と、
その超音波送受信部の流れ方向上手側又は下手側の前記流路に、前記送受信振動子から発振された超音波を受信し、かつ少なくともその超音波の一部を前記送受信振動子に向けて反射する受信反射振動子が取り付けられた超音波受信反射部と、
前記送受信振動子が超音波を発振してから前記受信反射振動子がその超音波を受信するまでの直接到達時間を計測するとともに、その受信反射振動子に超音波が到達した時点から当該受信反射振動子で反射された超音波を前記送受信振動子が受信するまでの反射到達時間を計測する時間計測手段と、
を備えることを特徴とする超音波流量計。
A flow path for passing fluid;
An ultrasonic transmission / reception unit in which a transmission / reception transducer for receiving ultrasonic waves arriving from the upper side or lower side of the flow direction is attached to the flow path after oscillating ultrasonic waves toward the upper side or lower side of the fluid flow direction When,
The ultrasonic wave oscillated from the transmission / reception transducer is received in the flow path on the upper side or the lower side in the flow direction of the ultrasonic transmission / reception unit, and at least a part of the ultrasonic wave is reflected toward the transmission / reception transducer. An ultrasonic wave receiving / reflecting unit to which a receiving / reflecting vibrator is attached;
Measures the direct arrival time from when the transmitting / receiving transducer oscillates the ultrasonic wave until the receiving / reflecting transducer receives the ultrasonic wave, and receives and reflects the ultrasonic wave when the ultrasonic wave reaches the receiving / reflecting transducer. A time measuring means for measuring a reflection arrival time until the transmission / reception vibrator receives the ultrasonic wave reflected by the vibrator;
An ultrasonic flowmeter comprising:
流体を通過させるための流路と、
その流路の壁に、流体の流れ方向上手側又は下手側に向けて超音波を発振した後、流れ方向上手側又は下手側から到来する超音波を受信する送受信振動子が取り付けられた超音波送受信部と、
流体の流れ方向軸線と前記送受信振動子とを含む流路断面において、流れ方向上手側又は下手側の前記流路の壁に、前記送受信振動子から発振され当該流路の内壁面で少なくとも1回反射された超音波を受信し、かつ少なくともその超音波の一部を前記送受信振動子に向けて反射する受信反射振動子が取り付けられた超音波受信反射部と、
前記送受信振動子が超音波を発振してから前記受信反射振動子がその超音波を受信するまでの直接到達時間を計測するとともに、その受信反射振動子に超音波が到達した時点から当該受信反射振動子で反射された超音波を前記送受信振動子が受信するまでの反射到達時間を計測する時間計測手段と、
を備えることを特徴とする超音波流量計。
A flow path for passing fluid;
Ultrasound with a transmission / reception transducer attached to the flow path wall that receives ultrasonic waves coming from the upper side or lower side in the flow direction after oscillating ultrasonic waves toward the upper or lower side in the fluid flow direction A transceiver unit;
In the cross section of the flow path including the fluid flow direction axis and the transmission / reception vibrator, the wall of the flow path on the upper or lower side in the flow direction is oscillated from the transmission / reception vibrator at least once on the inner wall surface of the flow path. An ultrasonic wave receiving / reflecting unit to which a reception reflection vibrator that receives reflected ultrasonic waves and reflects at least a part of the ultrasonic waves toward the transmission / reception vibrator is attached;
Measures the direct arrival time from when the transmitting / receiving transducer oscillates the ultrasonic wave until the receiving / reflecting transducer receives the ultrasonic wave, and receives and reflects the ultrasonic wave when the ultrasonic wave reaches the receiving / reflecting transducer. A time measuring means for measuring a reflection arrival time until the transmission / reception vibrator receives the ultrasonic wave reflected by the vibrator;
An ultrasonic flowmeter comprising:
前記流路は、流体の流れ方向に直交する断面において矩形状に形成されるとともに、
前記流路の流れ方向直交断面のうち短辺の一方を形成する壁面に前記送受信振動子及び前記受信反射振動子が流れ方向に所定距離を隔てて取り付けられ、かつ他方の短辺を形成する壁面を反射面とすることにより、前記流路に配置される超音波測線が反射型V字配列に構成される請求項1又は2に記載の超音波流量計。
The flow path is formed in a rectangular shape in a cross section orthogonal to the fluid flow direction,
A wall surface on which the transmitting / receiving vibrator and the receiving reflection vibrator are attached to a wall surface forming one of the short sides of the cross section perpendicular to the flow direction of the flow path at a predetermined distance in the flow direction and forming the other short side The ultrasonic flowmeter according to claim 1 or 2, wherein an ultrasonic survey line arranged in the flow path is configured in a reflective V-shaped array by using a reflection surface.
流体を通過させるための流路と、
その流路の壁に、流体の流れ方向上手側又は下手側に向けて超音波を発振した後、流れ方向上手側又は下手側から到来する超音波を受信する送受信振動子が取り付けられた超音波送受信部と、
流体の流れ方向軸線と前記送受信振動子とを含む流路断面において、流れ方向上手側又は下手側の前記超音波送受信部の設置側と対向する前記流路の壁に、前記超音波送受信部から発振された超音波を受信し、かつ少なくともその超音波の一部を前記送受信振動子に向けて反射する受信反射振動子が取り付けられた超音波受信反射部と、
前記送受信振動子が超音波を発振してから前記受信反射振動子がその超音波を受信するまでの直接到達時間を計測するとともに、その受信反射振動子に超音波が到達した時点から当該受信反射振動子で反射された超音波を前記送受信振動子が受信するまでの反射到達時間を計測する時間計測手段と、
を備えることを特徴とする超音波流量計。
A flow path for passing fluid;
Ultrasound with a transmission / reception transducer attached to the flow path wall that receives ultrasonic waves coming from the upper side or lower side in the flow direction after oscillating ultrasonic waves toward the upper or lower side in the fluid flow direction A transceiver unit;
In the cross section of the flow path including the flow direction axis of the fluid and the transmission / reception transducer, the ultrasonic transmission / reception unit is connected to the wall of the flow path facing the installation side of the ultrasonic transmission / reception unit on the upper side or lower side in the flow direction. An ultrasonic wave receiving / reflecting unit to which a receiving reflection vibrator that receives the oscillated ultrasonic wave and reflects at least a part of the ultrasonic wave toward the transmitting / receiving vibrator is attached;
Measures the direct arrival time from when the transmitting / receiving transducer oscillates the ultrasonic wave until the receiving / reflecting transducer receives the ultrasonic wave, and receives and reflects the ultrasonic wave when the ultrasonic wave reaches the receiving / reflecting transducer. A time measuring means for measuring a reflection arrival time until the transmission / reception vibrator receives the ultrasonic wave reflected by the vibrator;
An ultrasonic flowmeter comprising:
前記超音波送受信部が前記超音波受信反射部よりも流れ方向下手側に配置され、前記送受信振動子は流れ方向上手側に配置された前記受信反射振動子に向け超音波を発振する請求項1ないし4のいずれか1項に記載の超音波流量計。The ultrasonic transmission / reception unit is arranged on the lower side in the flow direction than the ultrasonic reception / reflection unit, and the transmission / reception transducer oscillates an ultrasonic wave toward the reception / reflection transducer arranged on the upper side in the flow direction. 5. The ultrasonic flowmeter according to any one of items 4 to 4. 前記時間計測手段により前記直接到達時間及び前記反射到達時間を計測するために、前記送受信振動子から発振され前記受信反射振動子で受信された直接受信信号、及び前記受信反射振動子で反射され前記送受信振動子で受信された反射受信信号を増幅する増幅手段が設けられ、
その増幅手段では、前記直接受信信号の増幅率よりも前記反射受信信号の増幅率が大に設定されている請求項1ないし5のいずれか1項に記載の超音波流量計。
In order to measure the direct arrival time and the reflection arrival time by the time measuring means, a direct reception signal oscillated from the transmission / reception vibrator and received by the reception reflection vibrator, and reflected by the reception reflection vibrator, Amplifying means for amplifying the reflected reception signal received by the transmission / reception vibrator is provided,
6. The ultrasonic flowmeter according to claim 1, wherein the amplification means sets the amplification factor of the reflected reception signal to be larger than the amplification factor of the direct reception signal.
前記超音波送受信部及び前記超音波受信反射部と前記増幅手段との間には、その増幅手段に対して前記直接受信信号又は反射受信信号を切り替えて供給するための受信信号切替手段が設けられ、
その受信信号切替手段は、前記直接受信信号と反射受信信号との信号切替に伴い前記増幅手段に対して増幅率の変更指令を発する請求項6に記載の超音波流量計。
A reception signal switching means for switching and supplying the direct reception signal or the reflection reception signal to the amplification means is provided between the ultrasonic transmission / reception section and the ultrasonic reception reflection section and the amplification means. ,
The ultrasonic flowmeter according to claim 6, wherein the reception signal switching unit issues an amplification factor change command to the amplification unit in accordance with signal switching between the direct reception signal and the reflected reception signal.
前記流路を流れる流体の流れ方向を検出する流れ検出手段が設けられ、
その流れ検出手段は、流体流れ方向の変化を検出したときに前記受信信号切替手段に対して前記直接受信信号と反射受信信号との信号切替のタイミング変更指令を発する請求項7に記載の超音波流量計。
A flow detecting means for detecting a flow direction of the fluid flowing through the flow path is provided;
8. The ultrasonic wave according to claim 7, wherein the flow detection means issues a signal change timing change command between the direct reception signal and the reflected reception signal to the reception signal switching means when detecting a change in a fluid flow direction. Flowmeter.
流体を通過させるための流路と、
流れ方向上手側又は下手側に向けて超音波を発振する機能と、流れ方向上手側又は下手側から到来する超音波を受信する機能と、少なくとも到来した超音波の一部を流れ方向上手側又は下手側に向けて反射する機能とを有する送受信反射振動子を具備し、相互に超音波の発振・受信・反射が行えるように、前記流路の流れ方向上手側と下手側とに配置された一対の超音波送受信反射部と、
前記一対の送受信反射振動子のうち一方の前記送受信反射振動子(以下、第一振動子という)を発振・受信側とし他方の前記送受信反射振動子(以下、第二振動子という)を受信・反射側とする第一回計測と、前記第二振動子を発振・受信側とし前記第一振動子を受信・反射側とする第二回計測とを切り替える計測切替手段と、
前記第一回計測において、前記第二振動子に超音波が到達した時点から当該第二振動子で反射された超音波を前記第一振動子が受信するまでの第一回反射到達時間を計測するとともに、前記第二回計測において、前記第一振動子に超音波が到達した時点から当該第一振動子で反射された超音波を前記第二振動子が受信するまでの第二回反射到達時間を計測する時間計測手段と、
を備えることを特徴とする超音波流量計。
A flow path for passing fluid;
A function of oscillating ultrasonic waves toward the upper side or lower side of the flow direction, a function of receiving ultrasonic waves arriving from the upper side or lower side of the flow direction, and at least a part of the incoming ultrasonic waves A transmission / reception reflection vibrator having a function of reflecting toward the lower side is provided, and disposed on the upper and lower sides in the flow direction of the flow path so that ultrasonic waves can be oscillated, received, and reflected from each other. A pair of ultrasonic transmission / reception reflectors;
Of the pair of transmission / reception reflection vibrators, one of the transmission / reception reflection vibrators (hereinafter referred to as a first vibrator) is an oscillation / reception side, and the other transmission / reception reflection vibrator (hereinafter referred to as a second vibrator) is received / received. A measurement switching means for switching between the first measurement on the reflection side and the second measurement on the second transducer as the oscillation / reception side and the first transducer as the reception / reflection side;
In the first measurement, the first reflection arrival time from when the ultrasonic wave reaches the second vibrator until the first vibrator receives the ultrasonic wave reflected by the second vibrator is measured. In addition, in the second measurement, the second reflected arrival from the time when the ultrasonic wave reaches the first vibrator until the second vibrator receives the ultrasonic wave reflected by the first vibrator. A time measuring means for measuring time;
An ultrasonic flowmeter comprising:
JP2003031978A 2003-02-10 2003-02-10 Ultrasonic flow meter Expired - Fee Related JP4212374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003031978A JP4212374B2 (en) 2003-02-10 2003-02-10 Ultrasonic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003031978A JP4212374B2 (en) 2003-02-10 2003-02-10 Ultrasonic flow meter

Publications (2)

Publication Number Publication Date
JP2004239868A JP2004239868A (en) 2004-08-26
JP4212374B2 true JP4212374B2 (en) 2009-01-21

Family

ID=32958374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003031978A Expired - Fee Related JP4212374B2 (en) 2003-02-10 2003-02-10 Ultrasonic flow meter

Country Status (1)

Country Link
JP (1) JP4212374B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5070620B2 (en) * 2007-05-31 2012-11-14 リコーエレメックス株式会社 Ultrasonic flow meter and flow measurement method
JP6454982B2 (en) * 2014-05-22 2019-01-23 横河電機株式会社 Ultrasonic flow meter
JP2017145975A (en) * 2016-02-15 2017-08-24 三菱電機株式会社 Refrigeration cycle device, process of manufacture of refrigeration cycle device, drop-in method for refrigeration cycle device, and replace method for refrigeration cycle device

Also Published As

Publication number Publication date
JP2004239868A (en) 2004-08-26

Similar Documents

Publication Publication Date Title
JP2676321B2 (en) Ultrasonic flow measurement method and device
JP4851936B2 (en) Ultrasonic flow meter
JPH0771987A (en) Ultrasonic fluid vibration flowmeter
WO2004048902A1 (en) Ultrasonic flowmeter and ultrasonic flow rate measuring method
JP4822731B2 (en) Ultrasonic flow meter
JP4212374B2 (en) Ultrasonic flow meter
JPH1048009A (en) Ultrasound temperature current meter
AU2015249080A1 (en) Apparatus and a method for providing a time measurement
JP4266117B2 (en) Ultrasonic flow meter
JP3136002B2 (en) Ultrasonic flow meter
JP7151311B2 (en) ultrasonic flow meter
JP4368591B2 (en) Ultrasonic flow meter
JP4531426B2 (en) Ultrasonic flow meter
JP2007064792A (en) Ultrasonic flow measuring instrument
KR100482226B1 (en) Method and apparatus for measuring the amount of flowing in gas pipe using sonic waves
JPH07139982A (en) Ultrasonic flowmeter
JPH0915011A (en) Ultrasonic wave transmitter and receiver device
KR20100007215A (en) Ultrasonic transducer control method of a ultrasonic flowmeter and ultrasonic flowmeter to applying the method
CN114235112B (en) Flow field monitoring device applied to ultrasonic water meter
JP7246021B2 (en) ultrasonic flow meter
JPS61100616A (en) Apparatus for measuring flow amount
JP2006017639A (en) Ultrasonic flowmeter
JP2008026103A (en) Ultrasonic flow velocity meter
JPH01134213A (en) Flowmeter
JP3465100B2 (en) Vortex flow meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081028

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees