JP2005300244A - Ultrasonic flow meter - Google Patents

Ultrasonic flow meter Download PDF

Info

Publication number
JP2005300244A
JP2005300244A JP2004113798A JP2004113798A JP2005300244A JP 2005300244 A JP2005300244 A JP 2005300244A JP 2004113798 A JP2004113798 A JP 2004113798A JP 2004113798 A JP2004113798 A JP 2004113798A JP 2005300244 A JP2005300244 A JP 2005300244A
Authority
JP
Japan
Prior art keywords
fluid
measured
ultrasonic
propagation time
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004113798A
Other languages
Japanese (ja)
Inventor
Yasushi Fujii
裕史 藤井
Hirokuni Murakami
博邦 村上
Yukio Sakaguchi
幸夫 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004113798A priority Critical patent/JP2005300244A/en
Publication of JP2005300244A publication Critical patent/JP2005300244A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To enhance measurement accuracy by automatically determining a fluid under measurement to compensate the effect of sound propagation velocity and that of Reynolds number with respect to the fluid. <P>SOLUTION: This ultrasonic flow meter is equipped with a pair of ultrasonic vibrators 2 and 7 capable of transmitting/receiving ultrasonic signals, a propagation time measurement part 5 for measuring the propagation time of ultrasonic wave between the ultrasonic vibrators 2 and 7, a control part 4 for finding the flow volume of the fluid under measurement filling a space between the ultrasonic vibrators 2 and 7, a temperature sensor 11 for measuring the temperature of the fluid, a pressure sensor 12 for measuring the pressure of the fluid, a fluid-under-measurement determination part 13 for determining the kind of the fluid from a correlation between the amplitude of a reception wave voltage received by the vibrator 2 or 7 and the temperature and pressure of the fluid, and a flow correction part 14 for correcting a flow measurement value from the determined kind of a gas based on the Reynolds number, etc. of the gas. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、一対の送受信可能な超音波振動子を用いて超音波の伝搬時間を計測し、被測定流体の流量を計測する超音波流量計に関するものである。   The present invention relates to an ultrasonic flowmeter that measures the propagation time of ultrasonic waves using a pair of ultrasonic transducers capable of transmitting and receiving and measures the flow rate of a fluid to be measured.

従来の超音波流量計は、図5に示すようなものが一般的であった。この装置は被測定流体の流れる測定流路1の上流側と下流側に設置した送受信可能な一対の超音波振動子2、7と、超音波振動子2、7を駆動する駆動回路3と、駆動回路3にスタート信号を出力する制御部4と、超音波の伝搬時間を測定する伝搬時間測定部5と、伝搬時間測定部5から測定データを受け取る演算部6と、受信側の超音波振動子2、7の出力を増幅するアンプ8と、アンプ8の出力と基準電圧とを比較し大小関係が反転したときに伝搬時間測定部5を停止させる受信検知回路9と超音波の送受信を切り換える切り替えスイッチ10を有していた。   Conventional ultrasonic flowmeters are generally as shown in FIG. This apparatus includes a pair of ultrasonic transducers 2 and 7 that can be transmitted and received, and a drive circuit 3 that drives the ultrasonic transducers 2 and 7 installed on the upstream side and the downstream side of the measurement channel 1 through which the fluid to be measured flows. A control unit 4 that outputs a start signal to the drive circuit 3, a propagation time measurement unit 5 that measures the propagation time of ultrasonic waves, a calculation unit 6 that receives measurement data from the propagation time measurement unit 5, and ultrasonic vibration on the reception side The amplifier 8 that amplifies the outputs of the sub-elements 2 and 7 and the reception detection circuit 9 that stops the propagation time measurement unit 5 when the output of the amplifier 8 is compared with the reference voltage and the magnitude relationship is reversed and the transmission / reception of the ultrasonic wave is switched. The changeover switch 10 was provided.

そして、上記超音波流量計は、制御部4からスタート信号を受けた駆動回路3が上流側の超音波振動子7を一定時間パルス駆動を行うと同時に伝搬時間測定部5は制御部4からの信号によって時間を計測し始める。パルス駆動された超音波振動子7からは超音波が送信される。超音波振動子7から送信した超音波は被測定流体中を伝搬し超音波振動子2で受信される。超音波振動子2の受信出力は、アンプ8において制御部4が設定した増幅率によって増幅される。そしてアンプ8の出力を受けた受信検知回路9で超音波の受信を判定し伝搬時間測定部5を停止させる。このようにして流れ方向の超音波の伝搬時間t1を求める。同様の動作を切り替えスイッチで超音波の送受信を入れ替えた状態でも行い、流れと逆方向の超音波の伝搬時間t2も求める。そして演算部6では伝搬時間測定部5から得た時間情報t1、t2から(式1)によって流速を求める(但し、上流から下流への伝搬時間をt1、下流から上流の伝搬時間をt2、超音波振動子間の流れ方向の有効距離をL、被測定流体の流速をvとする)。   In the ultrasonic flowmeter, the drive circuit 3 that has received the start signal from the control unit 4 performs pulse driving of the ultrasonic transducer 7 on the upstream side for a certain period of time. Start measuring time by signal. Ultrasound is transmitted from the pulse-driven ultrasonic transducer 7. The ultrasonic wave transmitted from the ultrasonic vibrator 7 propagates through the fluid to be measured and is received by the ultrasonic vibrator 2. The reception output of the ultrasonic transducer 2 is amplified by the amplification factor set by the control unit 4 in the amplifier 8. Then, the reception detection circuit 9 receiving the output of the amplifier 8 determines reception of the ultrasonic wave and stops the propagation time measuring unit 5. In this way, the propagation time t1 of the ultrasonic wave in the flow direction is obtained. The same operation is performed in a state where the transmission / reception of ultrasonic waves is switched by the changeover switch, and the ultrasonic wave propagation time t2 in the direction opposite to the flow is obtained. Then, the calculation unit 6 obtains the flow velocity from the time information t1 and t2 obtained from the propagation time measurement unit 5 by (Equation 1) (however, the propagation time from upstream to downstream is t1, the propagation time from downstream to upstream is t2, L is the effective distance in the flow direction between the acoustic transducers, and v is the flow velocity of the fluid to be measured.

v=L/2((1/t1)−(1/t2))・・・(式1)
この方法によれば音速の変化の影響を受けずに流速を測定することが出来るので、流速、流量、距離などの測定に広く利用されている。
特開2001−183195号公報
v = L / 2 ((1 / t1)-(1 / t2)) (Formula 1)
According to this method, the flow velocity can be measured without being affected by the change in the sound velocity, and thus it is widely used for measuring the flow velocity, the flow rate, the distance, and the like.
JP 2001-183195 A

しかしながら、前記従来の超音波流量計では被測定流体の音の伝搬速度やレイノズル数の影響によって、被測定流体ごとに測定流量値が異なるという課題を有していた。   However, the conventional ultrasonic flowmeter has a problem that the measured flow rate value differs for each fluid to be measured due to the sound propagation speed of the fluid to be measured and the number of ray nozzles.

本発明は、前記従来の課題を解決するもので、被測定流体を判別し、流量測定値を気体ごとに自動で補正し、計測精度を向上させた超音波流量計を提供することを目的とする。   The present invention solves the above-described conventional problems, and an object thereof is to provide an ultrasonic flowmeter that determines a fluid to be measured, automatically corrects a flow rate measurement value for each gas, and improves measurement accuracy. To do.

前記従来の課題を解決するために、本発明の超音波流量計は、超音波信号を送受信可能な一対の超音波振動子と、一方の前記超音波振動子から送信され、被測定流体を伝搬した超音波信号を他方の超音波振動子が受信するまでの超音波の伝搬時間を計測する伝搬時間測定部と、前記伝搬時間から演算によって前記超音波振動子間を満たす被測定流体の流量を求める制御部と、被測定流体の温度を測定する温度センサと、被測定流体の圧力を測定する圧力センサと、前記伝搬時間と受信側の超音波振動子で受信する受信波電圧の振幅と被測定流体の温度と圧力の相関から被測定流体の種類を判別する被測定流体判別部と、判別した気体の種類から流量測定値を補正する流量補正部とを備えたものである。   In order to solve the above-described conventional problems, an ultrasonic flowmeter of the present invention includes a pair of ultrasonic transducers capable of transmitting and receiving an ultrasonic signal, and is transmitted from one of the ultrasonic transducers and propagates through a fluid to be measured. A propagation time measurement unit that measures the propagation time of the ultrasonic wave until the other ultrasonic transducer receives the ultrasonic signal, and the flow rate of the fluid to be measured that fills the space between the ultrasonic transducers by calculation from the propagation time. A control unit to be obtained; a temperature sensor for measuring the temperature of the fluid to be measured; a pressure sensor for measuring the pressure of the fluid to be measured; the propagation time; the amplitude of the received wave voltage received by the ultrasonic transducer on the receiving side; A fluid to be measured discriminating unit for discriminating the type of fluid to be measured from the correlation between the temperature and pressure of the fluid to be measured, and a flow rate correcting unit for correcting a flow rate measurement value from the discriminated gas type.

これによって、被測定流体が変化しても被測定流体の音の伝搬速度やレイノズル数の影響を受けることなく、常に正確な流量測定が可能となる。   As a result, even when the fluid to be measured changes, it is possible to always measure the flow rate accurately without being affected by the sound propagation speed of the fluid to be measured and the number of ray nozzles.

本発明の超音波流量計は、被測定流体が変化しても被測定流体の音の伝搬速度やレイノズル数の影響を受けることなく、常に正確な流量測定が可能となるため、被測定流体ごとに流量計を交換する必要が無いうえに、気体の種類を確認することができる。   The ultrasonic flowmeter of the present invention can always measure the flow rate accurately without being affected by the propagation speed of sound of the fluid to be measured and the number of ray nozzles even if the fluid to be measured changes. In addition, there is no need to replace the flow meter, and the type of gas can be confirmed.

第1の発明は、超音波信号を送受信可能な一対の超音波振動子と、一方の前記超音波振動子から送信され、被測定流体を伝搬した超音波信号を他方の前記超音波振動子が受信するまでの超音波の伝搬時間を計測する伝搬時間測定部と、前記伝搬時間から演算によって前記超音波振動子間を満たす被測定流体の流量を求める制御部と、被測定流体の温度を測定する温度センサと、被測定流体の圧力を測定する圧力センサと、前記伝搬時間と受信側の超音波振動子で受信する受信波電圧の振幅と被測定流体の温度と圧力の相関から被測定流体の種類を判別する被測定流体判別部と、判別した気体の種類から流量測定値を気体のレイノルズ数等を基に補正する流量補正部とを備えることにより、被測定流体が変化しても被測定流体の音の伝搬速度やレイノズル数の影響を受けることなく、常に正確な流量測定が可能となる。   According to a first aspect of the present invention, a pair of ultrasonic transducers capable of transmitting and receiving ultrasonic signals, and an ultrasonic signal transmitted from one ultrasonic transducer and propagated through a fluid to be measured are transmitted to the other ultrasonic transducer. A propagation time measurement unit that measures the propagation time of ultrasonic waves until reception, a control unit that obtains a flow rate of the fluid to be measured that satisfies the ultrasonic transducer from the propagation time, and measures the temperature of the fluid to be measured A fluid to be measured from the correlation between the propagation time, the amplitude of the received wave voltage received by the ultrasonic transducer on the receiving side, and the temperature and pressure of the fluid to be measured. A fluid to be measured discriminating unit for discriminating the type of gas, and a flow rate correcting unit for correcting the flow rate measurement value based on the discriminated gas type on the basis of the Reynolds number of the gas. The sound propagation speed of the measurement fluid, Without being affected by Inozuru number, it is possible to always accurate flow measurement.

第2の発明は、超音波信号を送受信可能な一対の超音波振動子と、一方の前記超音波振動子から送信され、被測定流体を伝搬した超音波信号を他方の前記超音波振動子が受信するまでの超音波の伝搬時間を計測する伝搬時間測定部と、前記伝搬時間から演算によって前記超音波振動子間を満たす被測定流体の流量を求める制御部と、被測定流体の温度を測定する温度センサと、被測定流体の圧力を測定する圧力センサと、受信側の前記超音波振動子で受信する受信波電圧を常に同じ振幅になるように増幅率を調整する増幅率調整部と、前記伝搬時間と前記受信波電圧の増幅率と被測定流体の温度と圧力の相関から被測定流体の種類を判別する被測定流体判別部と、判別した気体の種類から流量測定値を気体のレイノルズ数等を基に補正する流量補正部とを備えることにより、より正確に被測定流体の種類を判別できる。   According to a second aspect of the present invention, a pair of ultrasonic transducers capable of transmitting and receiving ultrasonic signals, and an ultrasonic signal transmitted from one ultrasonic transducer and propagated through a fluid to be measured are transmitted to the other ultrasonic transducer. A propagation time measurement unit that measures the propagation time of ultrasonic waves until reception, a control unit that obtains a flow rate of the fluid to be measured that satisfies the ultrasonic transducer from the propagation time, and measures the temperature of the fluid to be measured A pressure sensor that measures the pressure of the fluid to be measured, an amplification factor adjustment unit that adjusts the amplification factor so that the received wave voltage received by the ultrasonic transducer on the reception side always has the same amplitude, A fluid to be measured discriminating unit for discriminating the type of fluid to be measured from the correlation between the propagation time, the amplification factor of the received wave voltage, and the temperature and pressure of the fluid to be measured; Flow to be corrected based on number, etc. By providing a correction unit, it can determine more accurately the type of the fluid to be measured.

第3の発明は、超音波信号を送受信可能な一対の超音波振動子と、一方の前記超音波振動子から送信され、被測定流体を伝搬した超音波信号を他方の前記超音波振動子が受信するまでの超音波の伝搬時間を計測する伝搬時間測定部と、前記伝搬時間から演算によって前記超音波振動子間を満たす被測定流体の流量を求める制御部と、被測定流体の種類を設定する種類設定手段と、前記伝搬時間と受信側の前記超音波振動子で受信する受信波電圧の振幅と被測定流体の種類から被測定流体の温度を計算する温度算出部とを備えることにより、被測定流体の種類が判明している場合は、流量値と温度を同時に測定することができる。   According to a third aspect of the present invention, a pair of ultrasonic transducers capable of transmitting and receiving ultrasonic signals, and an ultrasonic signal transmitted from one ultrasonic transducer and propagated through a fluid to be measured are transmitted to the other ultrasonic transducer. Sets the propagation time measurement unit that measures the propagation time of ultrasonic waves until reception, the control unit that calculates the flow rate of the fluid to be measured that satisfies the ultrasonic transducer from the propagation time, and the type of fluid to be measured A type setting means, and a temperature calculation unit that calculates the temperature of the fluid to be measured from the propagation time, the amplitude of the received wave voltage received by the ultrasonic transducer on the receiving side, and the type of the fluid to be measured, When the type of fluid to be measured is known, the flow value and temperature can be measured simultaneously.

第4の発明は、特に第3の発明において、伝搬時間と受信側の超音波振動子で受信する受信波電圧の振幅と被測定流体の種類から被測定流体の圧力を計算する圧力算出部とを備えることにより、被測定流体の種類が判明している場合は、流量値と圧力を同時に測定することができる。   According to a fourth aspect of the present invention, in the third aspect of the invention, in the third aspect of the invention, the pressure calculating unit for calculating the pressure of the fluid to be measured from the propagation time, the amplitude of the received wave voltage received by the ultrasonic transducer on the receiving side, and the type of the fluid to be measured When the type of the fluid to be measured is known, the flow value and the pressure can be measured simultaneously.

第5の発明は、特に第1〜4のいずれか1つの発明において、被測定流体の種類及び流量、温度、圧力の内少なくとも1つを表示するための表示部を備えたもので、被測定流体の種類、流量、温度、圧力を視認することが出来る。   The fifth aspect of the invention includes a display unit for displaying at least one of the type and flow rate, temperature, and pressure of the fluid to be measured, particularly in any one of the first to fourth aspects of the invention. The type, flow rate, temperature, and pressure of the fluid can be visually confirmed.

第6の発明は、特に、第5の発明の表示部として、被測定流体の流れ方向及び流量の大きさを矢印の向きと大きさで表現するもので視覚的に被測定流体の状態を判り易くできる。   In the sixth invention, in particular, as the display part of the fifth invention, the flow direction and the flow rate of the fluid to be measured are expressed by the direction and size of the arrow, and the state of the fluid to be measured can be visually determined. Easy to do.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の第1の実施の形態における超音波流量計の構成図を示すものである。
(Embodiment 1)
FIG. 1 shows a configuration diagram of an ultrasonic flowmeter according to the first embodiment of the present invention.

図1のように、本発明の超音波流量計は超音波信号を送受信可能な一対の超音波振動子2、7と、一方の前記超音波振動子2、7から送信され、被測定流体を伝搬した超音波信号を他方の超音波振動子2、7が受信するまでの超音波の伝搬時間を計測する伝搬時間測定部5と、前記伝搬時間から演算によって前記超音波振動子2、7間を満たす被測定流体の流量を求める制御部4と、被測定流体の温度を測定する温度センサ11と、被測定流体の圧力を測定する圧力センサ12と、前記伝搬時間と受信側の超音波振動子2、7で受信する受信波電圧の振幅と被測定流体の温度と圧力の相関から被測定流体の種類を判別する被測定流体判別部13と、判別した気体の種類から流量測定値を気体のレイノルズ数等を基に補正する流量補正部14と、被測定流体の種類と測定時の流量を表示する表示部15を備えている。   As shown in FIG. 1, the ultrasonic flowmeter of the present invention transmits a pair of ultrasonic transducers 2 and 7 capable of transmitting and receiving an ultrasonic signal and one of the ultrasonic transducers 2 and 7 to transmit a fluid to be measured. A propagation time measurement unit 5 that measures the propagation time of the ultrasonic wave until the other ultrasonic transducers 2 and 7 receive the propagated ultrasonic signal, and between the ultrasonic transducers 2 and 7 by calculation from the propagation time A control unit 4 for obtaining the flow rate of the fluid to be measured that satisfies the conditions, a temperature sensor 11 for measuring the temperature of the fluid to be measured, a pressure sensor 12 for measuring the pressure of the fluid to be measured, and the propagation time and ultrasonic vibration on the receiving side. The fluid to be measured discriminating unit 13 for discriminating the type of the fluid to be measured from the correlation between the amplitude of the received wave voltage received by the children 2 and 7 and the temperature and pressure of the fluid to be measured, A flow rate correction unit 14 for correcting based on the Reynolds number of the And a display unit 15 for displaying the flow rate at the time of measurement and the type of the fluid to be measured.

以上のように構成された超音波流量計について、以下その動作、作用を説明する。   About the ultrasonic flowmeter comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

まず基本的な動作としては、背景技術で説明したように、被測定流体の流れ方向と流れと逆方向の超音波の伝搬時間を測定する。従来の超音波流量計の動作に加えて、本発明の第1の実施の形態では、伝搬時間測定時に、温度センサ11と圧力センサ12で被測定流体の温度と圧力を測定し、振幅測定部16で超音波電圧の受信波の振幅を測定する。そして、被測定流体判別部13で、測定した超音波の伝搬時間と温度と圧力と前記受信波電圧の振幅より、あらかじめ設定されている気体の種類ごとの前記伝搬時間と温度と圧力と受信波の振幅の相関表を基に、現在測定している気体の種類を判別する。つぎに流量補正部14で被測定流体判別部13で判別した気体のレイノルズ数等を基に演算部6で算出した流量測定値を補正する。   First, as the basic operation, as described in the background art, the flow direction of the fluid to be measured and the propagation time of the ultrasonic wave in the direction opposite to the flow are measured. In addition to the operation of the conventional ultrasonic flowmeter, in the first embodiment of the present invention, at the time of propagation time measurement, the temperature sensor 11 and the pressure sensor 12 measure the temperature and pressure of the fluid to be measured, and the amplitude measurement unit At 16, the amplitude of the received wave of the ultrasonic voltage is measured. Then, the propagation time, temperature, pressure, and received wave for each kind of gas set in advance from the measured ultrasonic propagation time, temperature, pressure, and amplitude of the received wave voltage in the measured fluid discriminating unit 13. Based on the amplitude correlation table, the type of gas currently measured is determined. Next, the flow rate correction value calculated by the calculation unit 6 is corrected by the flow rate correction unit 14 based on the Reynolds number of the gas determined by the measured fluid determination unit 13.

以上のように、本実施の形態においては温度センサ11と圧力センサ12と被測定流体判別部13と流量補正部14を備えることにより、被測定流体が変化しても被測定流体の音の伝搬速度やレイノズル数の影響を受けることなく、常に正確な流量測定が可能となる。   As described above, in this embodiment, the temperature sensor 11, the pressure sensor 12, the measured fluid discriminating unit 13, and the flow rate correcting unit 14 are provided, so that the sound of the measured fluid propagates even if the measured fluid changes. Accurate flow measurement is always possible without being affected by speed or number of lay nozzles.

(実施の形態2)
図2は、本発明の第2の実施の形態における超音波流量計の構成図を示すものである。
図2に示すように、第1の実施の形態と異なるのは、被測定流体判別部13において、超音波の受信波電圧の振幅の代わりにアンプ8の増幅率を利用している点である。
(Embodiment 2)
FIG. 2 shows a configuration diagram of an ultrasonic flowmeter according to the second embodiment of the present invention.
As shown in FIG. 2, the difference from the first embodiment is that the measured fluid discrimination unit 13 uses the amplification factor of the amplifier 8 instead of the amplitude of the received wave voltage of the ultrasonic wave. .

そして、受信検知回路9での精度向上のためにアンプ8の増幅率を増幅後の受信波形の振幅が同じになるように増幅率調整部17で調整しているような超音波流量計においても第1の実施の形態と同じように、温度センサ11と圧力センサ12と被測定流体判別部13と流量補正部14を備えることにより、被測定流体が変化しても被測定流体の音の伝搬速度やレイノズル数の影響を受けることなく、常に正確な流量測定が可能となる。   And in the ultrasonic flowmeter in which the amplification factor of the amplifier 8 is adjusted by the amplification factor adjustment unit 17 so that the amplitude of the reception waveform after amplification is the same for improving the accuracy in the reception detection circuit 9. As in the first embodiment, the temperature sensor 11, the pressure sensor 12, the measured fluid discriminating unit 13, and the flow rate correcting unit 14 are provided, so that the sound of the measured fluid propagates even if the measured fluid changes. Accurate flow measurement is always possible without being affected by speed or number of lay nozzles.

(実施の形態3)
図3は、本発明の第3の実施の形態における超音波流量計の構成図を示すものである。
(Embodiment 3)
FIG. 3 shows a configuration diagram of an ultrasonic flowmeter according to the third embodiment of the present invention.

図3に示すように、超音波流量計は超音波信号を送受信可能な一対の超音波振動子2、7と、一方の前記超音波振動子2、7から送信され、被測定流体を伝搬した超音波信号を他方の超音波振動子2、7が受信するまでの超音波の伝搬時間を計測する伝搬時間測定部5と、前記伝搬時間から演算によって前記超音波振動子間を満たす被測定流体の流量を求める制御部4と、被測定流体の種類を設定するための種類設定手段4aと、伝搬時間と受信側の超音波振動子2、7で受信する受信波電圧の振幅と被測定流体の種類から被測定流体の温度を計算する温度算出部18と、被測定流体の種類と測定時の流量及び温度を表示する表示部15を備えている。   As shown in FIG. 3, the ultrasonic flowmeter is transmitted from a pair of ultrasonic transducers 2 and 7 capable of transmitting and receiving ultrasonic signals and one of the ultrasonic transducers 2 and 7 and propagates through the fluid to be measured. A propagation time measuring unit 5 that measures the propagation time of the ultrasonic wave until the other ultrasonic vibrators 2 and 7 receive the ultrasonic signal, and a fluid to be measured that fills the space between the ultrasonic vibrators by calculation from the propagation time Control unit 4 for determining the flow rate of the fluid, type setting means 4a for setting the type of the fluid to be measured, propagation time, amplitude of the received wave voltage received by the ultrasonic transducers 2 and 7 on the receiving side, and the fluid to be measured The temperature calculation unit 18 that calculates the temperature of the fluid to be measured from the types of the above, and the display unit 15 that displays the type of the fluid to be measured, the flow rate and the temperature at the time of measurement.

以上のように構成された超音波流量計について、以下その動作、作用を説明する。   About the ultrasonic flowmeter comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

まず基本的な動作としては、背景技術で説明したように、被測定流体の流れ方向と流れと逆方向の超音波の伝搬時間を測定する。従来の超音波流量計の動作に加えて、伝搬時間測定時に、圧力センサ12で被測定流体の圧力を測定し、振幅測定部16で超音波の受信波電圧の振幅を測定する。そして、温度算出部18で、測定した超音波の伝搬時間と前記受信波電圧の振幅より、あらかじめ設定されている気体の種類ごとの前記伝搬時間と温度と受信波電圧の振幅の相関表を基に、現在測定している気体の温度を算出する。   First, as the basic operation, as described in the background art, the flow direction of the fluid to be measured and the propagation time of the ultrasonic wave in the direction opposite to the flow are measured. In addition to the operation of the conventional ultrasonic flowmeter, the pressure of the fluid to be measured is measured by the pressure sensor 12 and the amplitude of the received wave voltage of the ultrasonic wave is measured by the amplitude measuring unit 16 when measuring the propagation time. Then, based on the measured propagation time of the ultrasonic wave and the amplitude of the received wave voltage, the temperature calculation unit 18 is based on a correlation table of the propagation time, temperature, and amplitude of the received wave voltage for each preset gas type. Next, the temperature of the gas currently measured is calculated.

以上のように、本実施の形態においては温度算出部18を備えることにより、被測定流体が判明している場合、温度センサを設けなくても被測定流体の流量と温度を測定することができる。   As described above, in the present embodiment, the flow rate and the temperature of the fluid to be measured can be measured without providing the temperature sensor when the fluid to be measured is known by providing the temperature calculation unit 18. .

(実施の形態4)
図4は、本発明の第4の実施の形態における超音波流量計の構成図を示すものである。
(Embodiment 4)
FIG. 4 shows a configuration diagram of an ultrasonic flowmeter according to the fourth embodiment of the present invention.

図4に示すように、超音波流量計は第3の実施の形態に加えて、被測定流体の種類を設定することによって前記伝搬時間と受信側の超音波振動子2、7で受信する受信波電圧の振幅から被測定流体の圧力を計算する圧力算出部19と、被測定流体の種類と測定時の流量及び温度と圧力を表示する表示部を備えている。   As shown in FIG. 4, in addition to the third embodiment, the ultrasonic flowmeter receives the propagation time and the reception by the ultrasonic transducers 2 and 7 on the receiving side by setting the type of fluid to be measured. A pressure calculation unit 19 that calculates the pressure of the fluid to be measured from the amplitude of the wave voltage, and a display unit that displays the type of the fluid to be measured, the flow rate at the time of measurement, the temperature and the pressure.

以上のように構成された超音波流量計について、以下その動作、作用を説明する。   About the ultrasonic flowmeter comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

まず基本的な動作としては、背景技術で説明したように、被測定流体の流れ方向と流れと逆方向の超音波の伝搬時間を測定する。従来の超音波流量計の動作に加えて、伝搬時間測定時に、振幅測定部16で超音波の受信波電圧の振幅を測定する。そして、圧力算出部19で、測定した超音波の伝搬時間と前記受信波電圧の振幅と温度より、あらかじめ設定されている気体の種類ごとの前記伝搬時間と温度と受信波電圧の振幅の相関表を基に、現在測定している気体の圧力を算出する。   First, as the basic operation, as described in the background art, the flow direction of the fluid to be measured and the propagation time of the ultrasonic wave in the direction opposite to the flow are measured. In addition to the operation of the conventional ultrasonic flowmeter, the amplitude measurement unit 16 measures the amplitude of the received wave voltage of the ultrasonic wave during the propagation time measurement. Then, the pressure calculation unit 19 uses the measured ultrasonic propagation time and the amplitude and temperature of the received wave voltage to correlate the propagation time, temperature and received wave voltage amplitude for each preset gas type. Based on the above, the gas pressure currently measured is calculated.

以上のように、本実施の形態においては圧力算出部19を備えることにより、被測定流体が判明している場合、圧力センサを設けなくても被測定流体の流量と温度と圧力を測定することができる。   As described above, in the present embodiment, by providing the pressure calculation unit 19, when the fluid to be measured is known, the flow rate, temperature, and pressure of the fluid to be measured can be measured without providing a pressure sensor. Can do.

また、表示部15として液晶表示素子を用いて、被測定流体の流れの方向を矢印の向きで表現し、流量の大きさを矢印の大きさで表現するように構成すると、流量の大きさ及び向きの視認性が向上し、気体の種類、温度、圧力を同じ液晶表示部に表示することによって、気体の状態が容易に把握できる。   Further, when the liquid crystal display element is used as the display unit 15 and the flow direction of the fluid to be measured is expressed by the direction of the arrow and the flow rate is expressed by the size of the arrow, The visibility of the direction is improved, and the gas state can be easily grasped by displaying the type, temperature, and pressure of the gas on the same liquid crystal display unit.

以上のように、本発明にかかる超音波流量計は、被測定流体が変化しても被測定流体の音の伝搬速度やレイノズル数の影響を受けることなく、常に正確な流量測定が可能となるため、被測定流体ごとに流量計を交換する必要が無いうえに、気体の種類を確認することができるため、複数の種類の気体を測定する必要のある設備や、ガスメーター等の用途にも適用できる。また、気体の流量、温度、圧力の測定が必要な設備等に一つの流量計で対応できる。   As described above, the ultrasonic flowmeter according to the present invention can always measure the flow rate accurately without being influenced by the sound propagation speed of the fluid to be measured and the number of lay nozzles even if the fluid to be measured changes. Therefore, it is not necessary to replace the flowmeter for each fluid to be measured, and the type of gas can be confirmed, so it is also applicable to equipment that needs to measure multiple types of gas and applications such as gas meters it can. In addition, a single flow meter can be used for equipment that requires measurement of gas flow rate, temperature, and pressure.

本発明の実施の形態1における超音波流量計の構成図Configuration diagram of ultrasonic flowmeter in Embodiment 1 of the present invention 本発明の実施の形態2における超音波流量計の構成図Configuration diagram of ultrasonic flowmeter in embodiment 2 of the present invention 本発明の実施の形態3における超音波流量計の構成図The block diagram of the ultrasonic flowmeter in Embodiment 3 of this invention 本発明の実施の形態4における超音波流量計の構成図The block diagram of the ultrasonic flowmeter in Embodiment 4 of this invention 従来の超音波流量計の構成図Configuration diagram of conventional ultrasonic flowmeter

符号の説明Explanation of symbols

1 測定流路
2、7 超音波振動子
4 制御部
4a 種類設定手段
5 伝搬時間測定部
9 受信検知回路
11 温度センサ
12 圧力センサ
13 被測定流体判別部
14 流量補正部
15 表示部
17 増幅率調整部
18 温度算出部
19 圧力算出部
DESCRIPTION OF SYMBOLS 1 Measurement flow path 2, 7 Ultrasonic vibrator 4 Control part 4a Type setting means 5 Propagation time measurement part 9 Reception detection circuit 11 Temperature sensor 12 Pressure sensor 13 Fluid to be measured discrimination | determination part 14 Flow volume correction part 15 Display part 17 Gain adjustment Section 18 Temperature calculation section 19 Pressure calculation section

Claims (6)

超音波信号を送受信可能な一対の超音波振動子と、一方の前記超音波振動子から送信され、被測定流体を伝搬した超音波信号を他方の前記超音波振動子が受信するまでの超音波の伝搬時間を計測する伝搬時間測定部と、前記伝搬時間から演算によって前記超音波振動子間を満たす被測定流体の流量を求める制御部と、被測定流体の温度を測定する温度センサと、被測定流体の圧力を測定する圧力センサと、前記伝搬時間と受信側の超音波振動子で受信する受信波電圧の振幅と被測定流体の温度と圧力の相関から被測定流体の種類を判別する被測定流体判別部と、判別した気体の種類から流量測定値を気体のレイノルズ数等を基に補正する流量補正部とを備えた超音波流量計。 A pair of ultrasonic transducers capable of transmitting and receiving ultrasonic signals and ultrasonic waves transmitted from one of the ultrasonic transducers until the other ultrasonic transducer receives an ultrasonic signal transmitted through the fluid to be measured A propagation time measurement unit that measures the propagation time of the measurement fluid, a control unit that obtains a flow rate of the fluid to be measured that fills between the ultrasonic transducers by calculation from the propagation time, a temperature sensor that measures the temperature of the fluid to be measured, A pressure sensor for measuring the pressure of the fluid to be measured, and a type of fluid to be measured that determines the type of fluid to be measured from the correlation between the propagation time, the amplitude of the received wave voltage received by the ultrasonic transducer on the receiving side, and the temperature and pressure of the fluid to be measured. An ultrasonic flowmeter comprising: a measurement fluid discrimination unit; and a flow rate correction unit that corrects a flow rate measurement value based on the discriminated gas type based on the Reynolds number of the gas. 超音波信号を送受信可能な一対の超音波振動子と、一方の前記超音波振動子から送信され、被測定流体を伝搬した超音波信号を他方の前記超音波振動子が受信するまでの超音波の伝搬時間を計測する伝搬時間測定部と、前記伝搬時間から演算によって前記超音波振動子間を満たす被測定流体の流量を求める制御部と、被測定流体の温度を測定する温度センサと、被測定流体の圧力を測定する圧力センサと、受信側の前記超音波振動子で受信する受信波電圧を常に同じ振幅になるように増幅率を調整する増幅率調整部と、前記伝搬時間と前記受信波電圧の増幅率と被測定流体の温度と圧力の相関から被測定流体の種類を判別する被測定流体判別部と、判別した気体の種類から流量測定値を気体のレイノルズ数等を基に補正する流量補正部とを備えた超音波流量計。 A pair of ultrasonic transducers capable of transmitting and receiving ultrasonic signals and ultrasonic waves transmitted from one of the ultrasonic transducers until the other ultrasonic transducer receives an ultrasonic signal transmitted through the fluid to be measured A propagation time measurement unit that measures the propagation time of the measurement fluid, a control unit that obtains a flow rate of the fluid to be measured that fills between the ultrasonic transducers by calculation from the propagation time, a temperature sensor that measures the temperature of the fluid to be measured, A pressure sensor that measures the pressure of the measurement fluid; an amplification factor adjustment unit that adjusts the amplification factor so that the reception wave voltage received by the ultrasonic transducer on the reception side always has the same amplitude; the propagation time and the reception Measured fluid discriminating unit that discriminates the type of fluid to be measured from the correlation between wave voltage amplification factor and temperature and pressure of the fluid to be measured, and corrects the measured flow rate based on the Reynolds number of the gas etc. Equipped with a flow correction unit Ultrasonic flow meter. 超音波信号を送受信可能な一対の超音波振動子と、一方の前記超音波振動子から送信され、被測定流体を伝搬した超音波信号を他方の前記超音波振動子が受信するまでの超音波の伝搬時間を計測する伝搬時間測定部と、前記伝搬時間から演算によって前記超音波振動子間を満たす被測定流体の流量を求める制御部と、被測定流体の種類を設定する種類設定手段と、前記伝搬時間と受信側の前記超音波振動子で受信する受信波電圧の振幅と被測定流体の種類から被測定流体の温度を計算する温度算出部とを備えた超音波流量計。 A pair of ultrasonic transducers capable of transmitting and receiving ultrasonic signals and ultrasonic waves transmitted from one of the ultrasonic transducers until the other ultrasonic transducer receives an ultrasonic signal transmitted through the fluid to be measured A propagation time measurement unit that measures the propagation time of the control unit, a control unit that obtains a flow rate of the fluid to be measured that satisfies the space between the ultrasonic transducers by calculation from the propagation time, a type setting unit that sets a type of the fluid to be measured, The ultrasonic flowmeter provided with the temperature calculation part which calculates the temperature of the fluid to be measured from the propagation time, the amplitude of the received wave voltage received by the ultrasonic transducer on the receiving side, and the type of the fluid to be measured. 伝搬時間と受信側の超音波振動子で受信する受信波電圧の振幅と被測定流体の種類から被測定流体の圧力を計算する圧力算出部とを備えた請求項3に記載の超音波流量計。 The ultrasonic flowmeter according to claim 3, further comprising: a pressure calculation unit that calculates the pressure of the fluid to be measured from the propagation time, the amplitude of the received wave voltage received by the ultrasonic transducer on the reception side, and the type of the fluid to be measured. . 被測定流体の種類及び流量、温度、圧力の内少なくとも1つを表示するための表示部を備えた請求項1〜4のいずれか1項に記載の超音波流量計。 The ultrasonic flowmeter according to any one of claims 1 to 4, further comprising a display unit for displaying at least one of the type and flow rate, temperature, and pressure of the fluid to be measured. 表示部は、被測定流体の流れ方向及び流量の大きさを矢印の向きと大きさで表示することを特徴とする請求項5記載の超音波流量計。 6. The ultrasonic flowmeter according to claim 5, wherein the display unit displays the flow direction of the fluid to be measured and the magnitude of the flow rate in the direction and size of an arrow.
JP2004113798A 2004-04-08 2004-04-08 Ultrasonic flow meter Pending JP2005300244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004113798A JP2005300244A (en) 2004-04-08 2004-04-08 Ultrasonic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004113798A JP2005300244A (en) 2004-04-08 2004-04-08 Ultrasonic flow meter

Publications (1)

Publication Number Publication Date
JP2005300244A true JP2005300244A (en) 2005-10-27

Family

ID=35331958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004113798A Pending JP2005300244A (en) 2004-04-08 2004-04-08 Ultrasonic flow meter

Country Status (1)

Country Link
JP (1) JP2005300244A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187506A (en) * 2006-01-12 2007-07-26 Aichi Tokei Denki Co Ltd Ultrasonic flowmeter
JP2008122103A (en) * 2006-11-08 2008-05-29 Osaka Gas Co Ltd Ultrasonic type meter device
US7716991B2 (en) * 2008-05-06 2010-05-18 Korea Research Institute Of Standards And Science Apparatus for measuring pressure using acoustic impedance variation
JP2011257435A (en) * 2011-10-03 2011-12-22 Osaka Gas Co Ltd Ultrasonic type meter device
JP2013210313A (en) * 2012-03-30 2013-10-10 Tokiko Techno Kk Ultrasonic flowmeter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000292233A (en) * 1999-04-02 2000-10-20 Matsushita Electric Ind Co Ltd Flow-rate measuring apparatus
JP2001281031A (en) * 2000-03-29 2001-10-10 Toyo Keiki Co Ltd Multifunctional type ultrasonic gas meter
JP2001317975A (en) * 2000-05-10 2001-11-16 Kansai Gas Meter Co Ltd Method and apparatus for ultrasonic flow velocity measurement
JP2002181794A (en) * 2000-12-15 2002-06-26 Yazaki Corp Gas discrimination apparatus and gas meter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000292233A (en) * 1999-04-02 2000-10-20 Matsushita Electric Ind Co Ltd Flow-rate measuring apparatus
JP2001281031A (en) * 2000-03-29 2001-10-10 Toyo Keiki Co Ltd Multifunctional type ultrasonic gas meter
JP2001317975A (en) * 2000-05-10 2001-11-16 Kansai Gas Meter Co Ltd Method and apparatus for ultrasonic flow velocity measurement
JP2002181794A (en) * 2000-12-15 2002-06-26 Yazaki Corp Gas discrimination apparatus and gas meter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187506A (en) * 2006-01-12 2007-07-26 Aichi Tokei Denki Co Ltd Ultrasonic flowmeter
JP2008122103A (en) * 2006-11-08 2008-05-29 Osaka Gas Co Ltd Ultrasonic type meter device
US7716991B2 (en) * 2008-05-06 2010-05-18 Korea Research Institute Of Standards And Science Apparatus for measuring pressure using acoustic impedance variation
JP2011257435A (en) * 2011-10-03 2011-12-22 Osaka Gas Co Ltd Ultrasonic type meter device
JP2013210313A (en) * 2012-03-30 2013-10-10 Tokiko Techno Kk Ultrasonic flowmeter

Similar Documents

Publication Publication Date Title
JP2008134267A (en) Ultrasonic flow measurement method
WO2011083766A1 (en) Ultrasonic flowmeter
WO2011074248A1 (en) Flow rate measuring device
JP2013185973A (en) Ultrasonic measuring instrument
JP2005300244A (en) Ultrasonic flow meter
JP2006308449A (en) Apparatus for measuring flow of fluid
JP4561088B2 (en) Ultrasonic flow meter
WO2014006881A1 (en) Flow quantity measuring apparatus
US20060243065A1 (en) Method and apparatus for measuring flow rate of fluid
JP2017187310A (en) Ultrasonic flowmeter
JP5141613B2 (en) Ultrasonic flow meter
WO2011055532A1 (en) Ultrasonic flowmeter
JP4797515B2 (en) Ultrasonic flow measuring device
JPH1048009A (en) Ultrasound temperature current meter
JP6187343B2 (en) Ultrasonic measuring instrument
JP3624743B2 (en) Ultrasonic flow meter
JP2007064988A (en) Flowmeter
JP3622613B2 (en) Ultrasonic flow meter
JP2007064988A5 (en)
JP2000329597A5 (en)
JP2020180811A (en) Ultrasonic flowmeter
WO2012157261A1 (en) Ultrasonic flow meter
US20220034694A1 (en) Flow-rate measuring apparatus capable of accurately measuring flow rate of fluid containing foreign objects
JP3465100B2 (en) Vortex flow meter
JP2005257421A (en) Flow measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061219

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070112

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101109