JPH09189589A - Flow rate measuring apparatus - Google Patents

Flow rate measuring apparatus

Info

Publication number
JPH09189589A
JPH09189589A JP8002829A JP282996A JPH09189589A JP H09189589 A JPH09189589 A JP H09189589A JP 8002829 A JP8002829 A JP 8002829A JP 282996 A JP282996 A JP 282996A JP H09189589 A JPH09189589 A JP H09189589A
Authority
JP
Japan
Prior art keywords
flow path
vibrator
rectangular
flow rate
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8002829A
Other languages
Japanese (ja)
Other versions
JP3488003B2 (en
Inventor
Yukio Nagaoka
行夫 長岡
Kenzo Ochi
謙三 黄地
Yuji Nakabayashi
裕治 中林
Motoyuki Nawa
基之 名和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP00282996A priority Critical patent/JP3488003B2/en
Publication of JPH09189589A publication Critical patent/JPH09189589A/en
Application granted granted Critical
Publication of JP3488003B2 publication Critical patent/JP3488003B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To highly accurately measure a flow rate of a wide range, by providing a plurality of vibrators transmitting/receiving ultrasonic waves and having an equal length to that of either side of a rectangular flow path. SOLUTION: The apparatus is provided with a first vibrator 3 and a second vibrator 4 having an almost equal length to that of either side of a rectangular flow path 1, a measuring member 2 for mounting, at the upstream and downstream sides of the rectangular flow path 1, the first and second vibrators 3, 4 transmitting/receiving ultrasonic waves via the flow path 1, a measuring circuit 6 for measuring an ultrasonic signal propagation time between the vibrators, and a flow rate-operating means 7 for operating a flow rate based on a signal of the measuring circuit 6. A speed distribution in the flow path influences less, a correcting coefficient is changed less and a measuring accuracy is enhanced in a wide range. Moreover, stable measuring results can be obtained against a temperature change of a flow disturbance at the upstream side.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、超音波を利用して
ガスなどの流量を計測する流量計測装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow rate measuring device for measuring the flow rate of gas or the like using ultrasonic waves.

【0002】[0002]

【従来の技術】従来のこの種の流量計測装置は、たとえ
ば特開平4−140214号公報が知られており、図8
に示すように、流路101を形成する管路体102の一
部に超音波振動子103と104を流れの上流と下流
に、超音波が流れを横断するように流れ方向にある角度
を有して設けている。このように流路の断面を横断して
超音波が走査するようにし、超音波の伝搬時間の差から
演算装置105で流速を算出すると共にそのときの流体
のレイノルズ数から流路内の流速分布を類推し、補正係
数を求め流量を演算していた。
2. Description of the Related Art A conventional flow rate measuring device of this type is known, for example, from Japanese Patent Application Laid-Open No. 4-140214.
As shown in, the ultrasonic transducers 103 and 104 are provided in a part of the duct body 102 forming the flow path 101 at an angle in the flow direction so that the ultrasonic waves traverse the flow upstream and downstream. Is provided. In this way, the ultrasonic wave is made to scan across the cross section of the flow channel, the flow velocity is calculated by the arithmetic unit 105 from the difference in the propagation time of the ultrasonic wave, and the flow velocity distribution in the flow channel is calculated from the Reynolds number of the fluid at that time. Was calculated and the correction coefficient was calculated to calculate the flow rate.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来の流量計測装置では、レイノルズ数の変化に対応して
流量補正係数を変更させなければならないばかりか、流
体の種類や温度などの環境条件あるいは上流の流れの状
態によってレイノルズ数に対する流速分布の関係が変化
し、測定値に誤差を生じていた。また流速分布の影響を
小さくするために2対以上の振動子によって計測するこ
とも考えられるが、複雑なうえ高価になる欠点があり、
簡単な構成で流量を精度よく計測できる構成を得ること
が新たな課題となっていた。
However, in the above-mentioned conventional flow rate measuring device, not only the flow rate correction coefficient must be changed in accordance with the change in Reynolds number, but also the environmental condition such as the kind of fluid or temperature or the upstream condition. The relationship of the flow velocity distribution to the Reynolds number changed depending on the flow condition of the, and the measurement value had an error. It is also possible to measure with two or more pairs of transducers in order to reduce the influence of the flow velocity distribution, but it has the drawback of being complicated and expensive.
It has been a new problem to obtain a structure that can measure the flow rate with high accuracy by a simple structure.

【0004】本発明は上記課題を解決するもので、広範
囲の流量を高精度で計測することを目的としている。
The present invention is intended to solve the above-mentioned problems, and an object thereof is to measure a wide range of flow rates with high accuracy.

【0005】[0005]

【課題を解決するための手段】本発明の流量計測装置に
おいては、矩形流路の上流側と下流側にこの流路を横断
し超音波を送信・受信しかつ矩形流路のどちらか一辺の
長さと等しい長さに形成された第1振動子と第2振動子
をそれぞれ設けている。
In the flow rate measuring device of the present invention, an ultrasonic wave is transmitted / received across an upstream side and a downstream side of a rectangular channel, and ultrasonic waves are transmitted to / received from the rectangular channel. A first oscillator and a second oscillator each having a length equal to the length are provided.

【0006】この本発明によれば、流路内の速度分布の
影響を小さくでき、また補正係数の変更も小さくなるの
で、広範囲にわたって計測精度が向上する。
According to the present invention, the influence of the velocity distribution in the flow path can be reduced, and the change of the correction coefficient is reduced, so that the measurement accuracy is improved over a wide range.

【0007】[0007]

【発明の実施の形態】上記目的を達成するために本発明
の流量計測装置は、以下の構成とした。
BEST MODE FOR CARRYING OUT THE INVENTION In order to achieve the above object, a flow rate measuring device of the present invention has the following configuration.

【0008】すなわち、矩形流路と、矩形流路のどちら
か一辺の長さとほぼ等しい長さを有する第1振動子およ
び第2振動子と、矩形流路の上流側と下流側に矩形流路
を横断して超音波を送信または受信する第1振動子およ
び第2振動子を取り付ける測定部材と、振動子間の超音
波信号伝搬時間を計測する計測回路と、計測回路の信号
に基づいて流量を算出する流量演算手段とを備えたもの
である。
That is, the rectangular flow path, the first vibrator and the second vibrator having a length substantially equal to the length of one side of the rectangular flow path, and the rectangular flow path on the upstream side and the downstream side of the rectangular flow path. A measuring member for attaching the first and second oscillators that transmit or receive ultrasonic waves across the probe, a measuring circuit for measuring the ultrasonic signal propagation time between the oscillators, and a flow rate based on the signal of the measuring circuit. And a flow rate calculating means for calculating

【0009】また、矩形流路の短い方の一辺とほぼ等し
い長さを有する第1振動子および第2振動子と、矩形流
路の長い方の一辺を横断して送受信するものである。
Further, the first and second oscillators each having a length substantially equal to the shorter side of the rectangular channel are used to transmit and receive across the longer side of the rectangular channel.

【0010】また、矩形流路の縦横の比率を0.3以下
としたものである。また、振動子は、その送受信側の断
面を矩形にしたものである。
The aspect ratio of the rectangular flow path is set to 0.3 or less. The vibrator has a rectangular cross section on the transmitting and receiving side.

【0011】また、第1振動子と第2振動子は流路に面
した断面の全域で送信あるいは受信可能なものである。
Further, the first vibrator and the second vibrator can transmit or receive in the entire area of the cross section facing the flow path.

【0012】また、第1振動子と第2振動子は流路に面
した断面の全域で送信感度あるいは受信感度がほぼ一様
であるものである。
Further, the first vibrator and the second vibrator have substantially the same transmission sensitivity or reception sensitivity over the entire cross section facing the flow path.

【0013】また、矩形流路と、前記矩形流路のどちら
か一辺の長さより大きい長さを有する第1振動子および
第2振動子と、振動子の一部を塞ぐ遮蔽体と、矩形流路
の上流側と下流側に前記矩形流路を横断して超音波を送
信または受信する第1振動子および第2振動子を取り付
ける測定部材と、振動子間の信号伝搬時間を計測する計
測回路と、計測回路の信号に基づいて流量を算出する流
量演算手段とを備えたものである。
Further, the rectangular flow path, the first vibrator and the second vibrator having a length larger than one of the sides of the rectangular flow path, the shield for blocking a part of the vibrator, and the rectangular flow path. Measuring members for mounting a first vibrator and a second vibrator for transmitting or receiving ultrasonic waves across the rectangular flow path on the upstream side and the downstream side of the path, and a measuring circuit for measuring a signal propagation time between the vibrators. And flow rate calculation means for calculating the flow rate based on the signal from the measurement circuit.

【0014】本発明は上記構成によって、流速分布に影
響されない受信信号により流速を求めて流量を計測する
ものである。
According to the present invention, the flow rate is measured by obtaining the flow velocity from the received signal which is not affected by the flow velocity distribution.

【0015】以下、本発明の第1の実施例を図面にもと
づいて説明する。図1において、流路1を形成する流路
部材2に超音波を送受信する矩形形状の第1振動子3と
第2振動子4が流れの上流と下流に配置されている。第
1振動子3と第2振動子4とは流路に対して斜めに配置
されているので、第1振動子3から送信された超音波は
図2に示すような矩形断面流路5を横断するように伝搬
し、第2振動子4に到達し、逆に第2振動子4から送信
された場合には前述と同様に第1振動子3に到達する。
それぞれの超音波の伝搬時間は流路1内に流れが存在す
ることで変化する。この伝搬時間は計測回路6によって
測定され流量演算手段7で流量値に変換される。
A first embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, a rectangular first oscillator 3 and a second oscillator 4 for transmitting and receiving ultrasonic waves are arranged upstream and downstream of a flow in a flow channel member 2 forming a flow channel 1. Since the first vibrator 3 and the second vibrator 4 are arranged obliquely with respect to the flow path, the ultrasonic wave transmitted from the first vibrator 3 passes through the rectangular cross-section flow path 5 as shown in FIG. It propagates so as to traverse, reaches the second oscillator 4, and conversely, when transmitted from the second oscillator 4, reaches the first oscillator 3 as described above.
The propagation time of each ultrasonic wave changes due to the existence of a flow in the flow path 1. This propagation time is measured by the measuring circuit 6 and converted into a flow rate value by the flow rate calculating means 7.

【0016】次にその動作について述べる。伝搬時間
は、静止流体中の音をc、流体の流れの速さをvとする
と、流れの順方向の超音波の伝搬速度は(c+v)とな
る。振動子3と4の間の距離をL、超音波伝搬軸と管路
の中心軸とがなす角度をφとすると、上流から下流に超
音波が伝搬する時間t1は、 t1=L/(c+vCOSφ) (1) となり、下流から上流に伝搬する時間は、 t2=L/(c+vCOSφ) (2) となり、Lとφが既知ならt1とt2を計測回路6で測
定すれば流速vが求められる。
Next, the operation will be described. As for the propagation time, when the sound in the stationary fluid is c and the velocity of the fluid flow is v, the propagation velocity of the ultrasonic wave in the forward direction of the flow is (c + v). Assuming that the distance between the transducers 3 and 4 is L and the angle between the ultrasonic wave propagation axis and the central axis of the conduit is φ, the time t1 for the ultrasonic wave to propagate from upstream to downstream is t1 = L / (c + vCOSφ ) (1) and the propagation time from the downstream to the upstream is t2 = L / (c + vCOSφ) (2), and if L and φ are known, the flow velocity v can be obtained by measuring t1 and t2 with the measuring circuit 6.

【0017】この流速より流量Qは、流路の通過面積を
S、補正計数をKとすれば、流量演算回路7で、 Q=KSv (3) を演算し流量を求める。
From the flow velocity, the flow rate Q is obtained by calculating Q = KSv (3) in the flow rate calculation circuit 7 where S is the passage area of the flow path and K is the correction coefficient.

【0018】流路1内の流速は一般に図1に示すように
流速分布があり、その分布はレイノルズ数や上流の流れ
の乱れによって変化する。この流速分布は2次元的に発
生し、図1に示すように矩形断面の長い方の一辺(長
辺)と図3に示すように矩形断面の短い方の一辺(短
辺)にも発生する。この長辺と短辺の比率(アスペクト
比)は好ましくは0.3以下になるように設定すれば流
速分布はさらに安定する。このように流速分布が存在す
る場合には、その伝搬時間は微小部分で受けた速度の変
化を積分したものになる。
The flow velocity in the flow path 1 generally has a flow velocity distribution as shown in FIG. 1, and the distribution changes depending on the Reynolds number and the turbulence of the upstream flow. This flow velocity distribution is two-dimensionally generated, and also occurs on one long side (long side) of the rectangular cross section as shown in FIG. 1 and on one short side (short side) of the rectangular cross section as shown in FIG. . If the ratio of the long side to the short side (aspect ratio) is preferably set to 0.3 or less, the flow velocity distribution is further stabilized. When there is such a flow velocity distribution, its propagation time is the integral of the change in velocity received by the minute portion.

【0019】図4は第2の実施例であり、矩形振動子8
の送受信面8’が矩形の形状をしており、その一辺は矩
形の流路の短辺とほぼ同一の長さになって短辺の流路全
体の超音波を受信することができる。従って図3に示す
ような短辺の流速分布が存在しても、そのすべての超音
波を積分した形の信号を受信するので速度分布を平均し
た結果が得られる。一方図1に示す流路の長辺の流速分
布は、超音波が長辺を横断して操作しているので、第1
振動子3と第2振動子4との間で流速分布が変化しなけ
れば、すべての分布による伝搬速度の変化を等しく受け
たことになり、流速分布の影響を解消することができ
る。したがって前述の補正係数Kを変更する必要がな
い。矩形振動子8の送受信面8’は圧電素子のみで形成
されており、全面で送受信が可能で、その送受信感度は
図5に示すようにどの部分もほぼ同一の感度を有する。
図6は、圧電素子の周囲をケーシング7で補強して機械
的強度を増したものであるが、その送受信面9’は矩形
流路の短辺と等しい長さにしてある。
FIG. 4 shows a second embodiment, which is a rectangular vibrator 8
The transmission / reception surface 8'has a rectangular shape, and one side thereof has substantially the same length as the short side of the rectangular flow path, so that ultrasonic waves in the entire short side flow path can be received. Therefore, even if there is a flow velocity distribution on the short side as shown in FIG. 3, a signal obtained by integrating all the ultrasonic waves is received, so that the result of averaging the velocity distributions can be obtained. On the other hand, in the flow velocity distribution on the long side of the flow path shown in FIG. 1, since the ultrasonic waves are operating across the long side,
If the flow velocity distribution does not change between the oscillator 3 and the second oscillator 4, it means that the changes in the propagation velocity due to all the distributions are equally received, and the influence of the flow velocity distribution can be eliminated. Therefore, it is not necessary to change the above-mentioned correction coefficient K. The transmission / reception surface 8'of the rectangular vibrator 8 is formed of only a piezoelectric element, and transmission / reception can be performed on the entire surface. The transmission / reception sensitivity is almost the same in all parts as shown in FIG.
In FIG. 6, the periphery of the piezoelectric element is reinforced by the casing 7 to increase the mechanical strength, but the transmitting / receiving surface 9'has a length equal to the short side of the rectangular flow path.

【0020】図7は第3の実施例で、振動子10は円形
の断面形状をしているが、その一部は遮蔽体11で覆わ
れており送受信面10’は矩形の流路に対応したところ
のみ超音波が送受信できるように構成している。
FIG. 7 shows a third embodiment. The vibrator 10 has a circular cross-sectional shape, a part of which is covered with a shield 11 and the transmitting / receiving surface 10 'corresponds to a rectangular flow path. Ultrasonic waves can be transmitted and received only where they are.

【0021】[0021]

【発明の効果】以上のように本発明によれば次の効果が
得られる。
As described above, according to the present invention, the following effects can be obtained.

【0022】(1)矩形流路と、矩形流路のどちらか一
辺の長さとほぼ等しい長さを有する第1振動子および第
2振動子と、矩形流路の上流側と下流側に矩形流路を横
断して超音波を送信または受信する第1振動子および第
2振動子を取り付ける測定部材と、振動子間の超音波信
号伝搬時間を計測する計測回路と、計測回路の信号に基
づいて流量を算出する流量演算手段とを備えたので、流
路内の速度分布の影響を小さくでき補正係数の変更も小
さく、測定精度も広範囲にわたって高くなる。また温度
の変化や上流側の流れの乱れに対して安定した計測結果
が得られる。
(1) A rectangular flow path, a first vibrator and a second vibrator having a length substantially equal to one side of the rectangular flow path, and a rectangular flow on the upstream side and the downstream side of the rectangular flow path. Based on the measurement member that attaches the first transducer and the second transducer that transmits or receives ultrasonic waves across the path, the measurement circuit that measures the ultrasonic signal propagation time between the transducers, and the signal of the measurement circuit Since the flow rate calculating means for calculating the flow rate is provided, the influence of the velocity distribution in the flow channel can be reduced, the change of the correction coefficient is small, and the measurement accuracy is wide range. In addition, stable measurement results can be obtained against changes in temperature and turbulence in the upstream flow.

【0023】(2)矩形流路の短い方の一辺とほぼ等し
い長さを有する第1振動子および第2振動子と、矩形流
路の長い方の一辺を横断して送受信するので、流速分布
に影響されない測定結果が得られ、補正係数の変更も必
要がなくなる。
(2) Since the first oscillator and the second oscillator having a length substantially equal to the shorter side of the rectangular channel are transmitted and received across the longer side of the rectangular channel, the flow velocity distribution is obtained. A measurement result that is not affected by is obtained, and there is no need to change the correction coefficient.

【0024】(3)矩形流路の縦横の比率が0.3以下
にしたので、流速分布が小さくなってさらに測定精度が
向上する。
(3) Since the ratio of the length and width of the rectangular flow path is set to 0.3 or less, the flow velocity distribution is reduced and the measurement accuracy is further improved.

【0025】(4)振動子は、その送受信側の断面が矩
形であるので、流路の形状と一致させることができより
精度が高くなる。
(4) Since the vibrator has a rectangular cross section on the transmitting and receiving sides, the shape can be made to match the shape of the flow path, and the accuracy becomes higher.

【0026】(5)第1振動子と第2振動子は流路に面
した断面の全域で送信あるいは受信可能にしたので、流
路全体の超音波信号を得ることができ精度が高くなる。
(5) Since the first oscillator and the second oscillator are capable of transmitting or receiving over the entire area of the cross section facing the flow path, an ultrasonic signal of the entire flow path can be obtained and the accuracy is improved.

【0027】(6)第1振動子と第2振動子は流路に面
した断面の全域で送信感度あるいは受信感度がほぼ一様
にしたので、平均的な受信信号が得られ精度が向上す
る。
(6) Since the transmission sensitivity or the reception sensitivity of the first vibrator and the second vibrator are substantially uniform over the entire cross section facing the flow path, an average received signal is obtained and the accuracy is improved. .

【0028】(7)矩形流路と、前記矩形流路のどちら
か一辺の長さより大きい長さを有する第1振動子および
第2振動子と、振動子の一部を塞ぐ遮蔽体と、矩形流路
の上流側と下流側に矩形流路を横断して超音波を送信ま
たは受信する第1振動子および第2振動子を取り付ける
測定部材と、振動子間の信号伝搬時間を計測する計測回
路と、計測回路の信号に基づいて流量を算出する流量演
算手段とを備えたので、振動子の形状に制約されず様々
な振動子に対応可能になり、低価格に構成できる。
(7) A rectangular flow path, a first vibrator and a second vibrator each having a length larger than one of the sides of the rectangular flow path, a shield for blocking a part of the vibrator, and a rectangle. A measuring member for mounting a first oscillator and a second oscillator for transmitting or receiving ultrasonic waves across a rectangular flow path on the upstream side and the downstream side of the flow path, and a measurement circuit for measuring a signal propagation time between the vibrators. Since the flow rate calculating means for calculating the flow rate based on the signal of the measuring circuit is provided, it is possible to cope with various vibrators without being restricted by the shape of the vibrator, and the cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例の流量計測装置の構成図FIG. 1 is a configuration diagram of a flow rate measuring device according to a first embodiment of the present invention.

【図2】同装置の流路構成の側面図FIG. 2 is a side view of the flow channel structure of the device.

【図3】同装置の流路構成の断面図FIG. 3 is a cross-sectional view of the flow path configuration of the device.

【図4】本発明の第2の実施例の流量計測装置の振動子
の斜視図
FIG. 4 is a perspective view of a vibrator of a flow rate measuring device according to a second embodiment of the present invention.

【図5】同装置の受信感度を示す特性図FIG. 5 is a characteristic diagram showing reception sensitivity of the device.

【図6】同装置の振動子の実施例を示す斜視図FIG. 6 is a perspective view showing an embodiment of a vibrator of the same device.

【図7】本発明の第3の実施例の流量計測装置の振動子
の斜視図
FIG. 7 is a perspective view of a vibrator of a flow rate measuring device according to a third embodiment of the present invention.

【図8】従来の流量計測装置の構成図FIG. 8 is a block diagram of a conventional flow rate measuring device.

【符号の説明】[Explanation of symbols]

1 矩形流路 2 流路部材 3 第1振動子 4 第2振動子 6 計測回路 7 流量演算手段 8 矩形振動子 11 遮蔽体 DESCRIPTION OF SYMBOLS 1 rectangular flow path 2 flow path member 3 1st vibrator 4 2nd vibrator 6 measurement circuit 7 flow rate calculation means 8 rectangular vibrator 11 shield

───────────────────────────────────────────────────── フロントページの続き (72)発明者 名和 基之 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────の Continued from the front page (72) Motoyuki Nawa, Inventor 1006 Odaka, Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】矩形流路と、前記矩形流路のどちらか一辺
の長さとほぼ等しい長さを有する第1振動子および第2
振動子と、前記矩形流路の上流側と下流側に前記矩形流
路を横断して超音波を送信または受信する前記第1振動
子および第2振動子を取り付ける流路部材と、前記振動
子間の信号伝搬時間を計測する計測回路と、前記計測回
路の信号に基づいて流量を算出する流量演算手段とを備
えた流量計測装置。
1. A rectangular flow path, and a first vibrator and a second vibrator each having a length substantially equal to a length of one side of the rectangular flow path.
A vibrator, a flow path member to which the first vibrator and the second vibrator that transmit or receive ultrasonic waves across the rectangular flow path are attached to the upstream side and the downstream side of the rectangular flow path, and the vibrator A flow rate measuring device comprising a measuring circuit for measuring a signal propagation time between them, and a flow rate calculating means for calculating a flow rate based on a signal of the measuring circuit.
【請求項2】矩形流路の短い方の一辺とほぼ等しい長さ
を有する第1振動子および第2振動子と、矩形流路の長
い方の一辺を横断して送受信する請求項1記載の流量計
側装置。
2. A first oscillator and a second oscillator having a length substantially equal to the shorter side of the rectangular channel, and transmitting / receiving across the longer side of the rectangular channel. Flow meter side device.
【請求項3】矩形流路の縦横の比率が0.3以下である
請求項1記載の流量計側装置。
3. The flowmeter-side device according to claim 1, wherein the aspect ratio of the rectangular flow path is 0.3 or less.
【請求項4】振動子は、その送受信側の断面が矩形であ
る請求項1記載の流量計測装置。
4. The flow rate measuring device according to claim 1, wherein the vibrator has a rectangular cross section on the transmission / reception side.
【請求項5】第1振動子と第2振動子は流路に面した断
面の全域で送信あるいは受信可能な請求項1記載の流量
計測装置。
5. The flow rate measuring device according to claim 1, wherein the first vibrator and the second vibrator are capable of transmitting or receiving over the entire cross section facing the flow path.
【請求項6】第1振動子と第2振動子は流路に面した断
面の全域で送信感度あるいは受信感度がほぼ一様である
請求項1記載の流量計測装置。
6. The flow rate measuring device according to claim 1, wherein the first oscillator and the second oscillator have substantially the same transmission sensitivity or reception sensitivity over the entire cross section facing the flow path.
【請求項7】矩形流路と、前記矩形流路のどちらか一辺
の長さより大きい長さを有する第1振動子および第2振
動子と、前記振動子の一部を塞ぐ遮蔽体と、前記矩形流
路の上流側と下流側に前記矩形流路を横断して超音波を
送信または受信する第1振動子および第2振動子を取り
付ける流路部材と、前記振動子間の信号伝搬時間を計測
する計測回路と、前記計測回路の信号に基づいて流量を
算出する流量演算手段とを備えた流量計測装置。
7. A rectangular flow path, a first vibrator and a second vibrator each having a length greater than a length of one side of the rectangular flow path, a shield for closing a part of the vibrator, and The signal propagation time between the flow path member between the first and second oscillators that transmits or receives ultrasonic waves across the rectangular flow path on the upstream side and the downstream side of the rectangular flow path and the signal propagation time between the vibrators is set. A flow rate measuring device comprising a measurement circuit for measuring and a flow rate calculating means for calculating a flow rate based on a signal from the measurement circuit.
JP00282996A 1996-01-11 1996-01-11 Flow measurement device Expired - Lifetime JP3488003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00282996A JP3488003B2 (en) 1996-01-11 1996-01-11 Flow measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00282996A JP3488003B2 (en) 1996-01-11 1996-01-11 Flow measurement device

Publications (2)

Publication Number Publication Date
JPH09189589A true JPH09189589A (en) 1997-07-22
JP3488003B2 JP3488003B2 (en) 2004-01-19

Family

ID=11540317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00282996A Expired - Lifetime JP3488003B2 (en) 1996-01-11 1996-01-11 Flow measurement device

Country Status (1)

Country Link
JP (1) JP3488003B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1144561A (en) * 1997-07-24 1999-02-16 Kaijo Corp Ultrasonic flow rate and flow velocity meter
JP2003075218A (en) * 2001-09-06 2003-03-12 Matsushita Electric Ind Co Ltd Ultrasonic flowmeter
JP2003315122A (en) * 2002-04-19 2003-11-06 Matsushita Electric Ind Co Ltd Ultrasonic flowmeter
JP2004045425A (en) * 2003-09-26 2004-02-12 Matsushita Electric Ind Co Ltd Flow rate measuring device
JP2012242090A (en) * 2011-05-16 2012-12-10 Panasonic Corp Ultrasonic flowmeter
JP2013228388A (en) * 2012-04-25 2013-11-07 General Electric Co <Ge> Ultrasonic flow measurement system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05223608A (en) * 1992-02-18 1993-08-31 Tokimec Inc Ultrasonic flowmeter
JPH05506092A (en) * 1990-03-29 1993-09-02 シーメンス アクチエンゲゼルシヤフト Improvement of ultrasonic gas/liquid flow meter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05506092A (en) * 1990-03-29 1993-09-02 シーメンス アクチエンゲゼルシヤフト Improvement of ultrasonic gas/liquid flow meter
JPH05223608A (en) * 1992-02-18 1993-08-31 Tokimec Inc Ultrasonic flowmeter

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1144561A (en) * 1997-07-24 1999-02-16 Kaijo Corp Ultrasonic flow rate and flow velocity meter
JP2003075218A (en) * 2001-09-06 2003-03-12 Matsushita Electric Ind Co Ltd Ultrasonic flowmeter
JP2003315122A (en) * 2002-04-19 2003-11-06 Matsushita Electric Ind Co Ltd Ultrasonic flowmeter
JP2004045425A (en) * 2003-09-26 2004-02-12 Matsushita Electric Ind Co Ltd Flow rate measuring device
JP2012242090A (en) * 2011-05-16 2012-12-10 Panasonic Corp Ultrasonic flowmeter
JP2013228388A (en) * 2012-04-25 2013-11-07 General Electric Co <Ge> Ultrasonic flow measurement system

Also Published As

Publication number Publication date
JP3488003B2 (en) 2004-01-19

Similar Documents

Publication Publication Date Title
KR0170815B1 (en) Ultrasonic multi circuit flowmeter
US7806003B2 (en) Doppler type ultrasonic flow meter
JP6375519B2 (en) Gas meter
JPH06249690A (en) Ultrasonic flowmeter
JPH09189589A (en) Flow rate measuring apparatus
JP3570315B2 (en) Ultrasonic flow meter and gas meter using it
JPH09287989A (en) Ultrasonic flowmeter
JPH09287990A (en) Ultrasonic flowmeter
JPH11271117A (en) Ultrasonic flowmeter
JP4333098B2 (en) Flow measuring device
JP4069222B2 (en) Ultrasonic vortex flowmeter
JP3503578B2 (en) Flow measurement device
JP3653829B2 (en) Anemometer
JP3480711B2 (en) Ultrasonic vortex flowmeter
JP4561071B2 (en) Flow measuring device
JP3528436B2 (en) Ultrasonic flow meter and current meter
JP3497279B2 (en) Ultrasonic flow meter
JPH088417Y2 (en) Ultrasonic flowmeter calibration device
JPH08128875A (en) Flow rate measuring instrument
JPH07139982A (en) Ultrasonic flowmeter
JPH0447768B2 (en)
JPS63173920A (en) Ultrasonic gas current meter
JP2000146643A (en) Ultrasonic flowmeter
JP3186569B2 (en) Vortex flow meter
JPWO2005064289A1 (en) Ultrasonic flow meter, ultrasonic transducer, ultrasonic transmission / reception unit, and flow measurement method using ultrasonic flow meter

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081031

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101031

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 10

EXPY Cancellation because of completion of term