JPH09287990A - Ultrasonic flowmeter - Google Patents

Ultrasonic flowmeter

Info

Publication number
JPH09287990A
JPH09287990A JP8122581A JP12258196A JPH09287990A JP H09287990 A JPH09287990 A JP H09287990A JP 8122581 A JP8122581 A JP 8122581A JP 12258196 A JP12258196 A JP 12258196A JP H09287990 A JPH09287990 A JP H09287990A
Authority
JP
Japan
Prior art keywords
ultrasonic
measuring tube
converting means
acoustic
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8122581A
Other languages
Japanese (ja)
Other versions
JP3328505B2 (en
Inventor
Kazuyoshi Shimizu
和義 清水
Takaaki Hayashi
孝明 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaijo Corp
Original Assignee
Kaijo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaijo Corp filed Critical Kaijo Corp
Priority to JP12258196A priority Critical patent/JP3328505B2/en
Publication of JPH09287990A publication Critical patent/JPH09287990A/en
Application granted granted Critical
Publication of JP3328505B2 publication Critical patent/JP3328505B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ultrasonic flowmeter which is compact and gives a high degree of measurement accuracy. SOLUTION: In this ultrasonic flowmeter, a fluid substance is brought to flow in a measurement tube 2, and an ultrasonic wave emitted from either one of electroacoustic converting means 1a or 1b is brought to pass through the fluid substance which flows through the measurement tube 2 and received by the other one of the electroacoustic converting means 1a or 1b. The flow measurement of the fluid substance flowing in the measurement tube 2 is performed by measuring the time of ultrasonic propagation with switching the converting means 1a and 1b. The propagation pass Tc of ultrasonic waves formed by a pair of the electroacoustic converting means 1a and 1b is arranged in shape of letter V that the waves are reflected and received in the measurement tube. A sound insulator 2c is provided at the inside wall of the measurement tube 2 between a pair of the electroacoustic converting means 1a and 1b. This sound insulator 2c enables direct propagation waves which propagate along the surface of the inside wall of the measurement rube, for effective insulation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、測定管内部に気体
もしくは液体などの流体物質を貫流し、その流量を測定
するようにした超音波流量計に関するものであり、特に
測定精度を向上させることが可能な超音波流量計に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic flow meter which allows a fluid substance such as gas or liquid to flow through the inside of a measuring tube and measures the flow rate thereof, and particularly to improve the measurement accuracy. Ultrasonic flowmeter capable of

【0002】[0002]

【従来の技術】超音波流量計は流速測定型の流量計であ
り、流量は測定管内部を流れる気体もしくは液体などの
流体物質の流速を測定し、測定した流速に管断面積等を
乗ずることにより求められる。そして、この種の超音波
による流速測定は、一対の電気−音響変換手段を具備
し、一方の電気−音響変換手段から出射された超音波を
測定管内の流体物質中を透過させて他方の電気−音響変
換手段で受波し、これらを双方で切り替えて超音波伝播
時間を測定し、超音波ビームの伝播時間の逆数差を求め
ることで行われる。
2. Description of the Related Art An ultrasonic flowmeter is a flowmeter of a flow velocity measuring type. The flow rate is obtained by measuring the flow velocity of a fluid substance such as gas or liquid flowing inside a measuring pipe, and multiplying the measured flow velocity by a pipe cross-sectional area or the like. Required by. Then, the flow velocity measurement by this kind of ultrasonic wave is provided with a pair of electric-acoustic conversion means, and the ultrasonic wave emitted from one electric-acoustic conversion means is transmitted through the fluid substance in the measuring tube to make the other electric It is performed by receiving the waves by the acoustic conversion means, switching between them, measuring the ultrasonic wave propagation time, and obtaining the reciprocal difference of the propagation time of the ultrasonic beam.

【0003】図5は、従来のこの種の超音波流量計の例
を断面図によって示したものである。この図5に示す例
においては、測定管2の対向する内側壁部分に、一対の
電気−音響変換手段1a,1bを測定管2の軸線に対し
てほぼ45度の傾きをもって直接対向するように配置さ
れている。
FIG. 5 is a sectional view showing an example of a conventional ultrasonic flowmeter of this type. In the example shown in FIG. 5, a pair of electro-acoustic conversion means 1a and 1b are directly opposed to the inner wall portions of the measuring tube 2 which face each other with an inclination of about 45 degrees with respect to the axis of the measuring tube 2. It is arranged.

【0004】この図5に示された超音波流量計による
と、一方の電気−音響変換手段1aから他方の電気−音
響変換手段1bに、またその逆方向に図中実線で示した
ような直線的な伝播経路Taを介して超音波が伝播し、
この伝播経路Taにおける超音波の伝播速度を測定する
ことにより、測定管2を貫流する流体物質の流量を演算
することができる。
According to the ultrasonic flowmeter shown in FIG. 5, one electric-acoustic converting means 1a is switched to the other electric-acoustic converting means 1b, and the other direction is a straight line as shown by a solid line in the figure. Ultrasonic wave propagates through the typical propagation path Ta,
By measuring the propagation velocity of the ultrasonic wave in the propagation path Ta, the flow rate of the fluid substance flowing through the measuring pipe 2 can be calculated.

【0005】すなわち流体物質の流れの方向に対して上
流側、下流側に設けられた電気−音響変換手段としての
超音波送受波器1a,1bから測定管2に対して発射さ
れた超音波ビームを双方で切り替えて、これら順逆方向
の伝播時間t1,t2を繰り返し計測させる。
That is, the ultrasonic beam emitted from the ultrasonic wave transmitters / receivers 1a and 1b as electric-acoustic conversion means provided on the upstream side and the downstream side with respect to the flow direction of the fluid substance to the measuring pipe 2. Are switched on both sides to repeatedly measure the forward and backward propagation times t1 and t2.

【0006】この計測された時間を逆数に演算すること
により、音速Cの影響がなくなり以下の式が得られる。
By calculating the measured time as an inverse number, the influence of the sound velocity C is eliminated and the following equation is obtained.

【0007】 t1=L1 /(C+Vcosθ1 ) ……式1 t2=L1 /(C−Vcosθ1 ) ……式2T1 = L1 / (C + Vcos θ1) Equation 1 t2 = L1 / (C-Vcos θ1) Equation 2

【0008】式1および式2より V=(L1 /2cosθ1 )×〔(1/t1)−(1/t1)〕……式3From Equation 1 and Equation 2, V = (L1 / 2cos θ1) × [(1 / t1)-(1 / t1)] Equation 3

【0009】ただし、L1 :超音波の伝播路長(L1 =
D/sinθ1 ) D :管内径 C :流体物質中の音速 θ1 :超音波伝播路と管軸のなす角 V :超音波伝播路上の線平均流速
Where L1 is the propagation path length of ultrasonic waves (L1 =
D / sin θ1) D: Inner diameter of pipe C: Velocity of sound in fluid substance θ1: Angle between ultrasonic wave propagation path and tube axis V: Average line velocity on ultrasonic wave propagation path

【0010】この構成による超音波流速計は音響パスに
沿った平均流速を計測する装置である。そして、測定管
内の流速分布は、流量により変化する。この流量を得る
ためには流速分布変化の補正が必要となる。そして体積
流量Qは計測された線平均流速Vと、測定部の断面積A
と、流速分布補正計数Knから計算される。
The ultrasonic velocity meter having this structure is a device for measuring the average velocity along the acoustic path. Then, the flow velocity distribution in the measuring pipe changes depending on the flow rate. In order to obtain this flow rate, it is necessary to correct the change in the flow velocity distribution. The volume flow rate Q is the measured linear average flow velocity V and the cross-sectional area A of the measurement part.
And the flow velocity distribution correction coefficient Kn.

【0011】すなわち次の式4のように表すことができ
る。
That is, it can be expressed by the following equation 4.

【0012】Q=A×V×Kn ……式4Q = A × V × Kn ... Equation 4

【0013】前記Knは測定された線平均流速と管断面
の平均流速の比であり、レイノルズ数の関数である。
The Kn is the ratio of the measured linear average flow velocity to the average flow velocity in the cross section of the pipe, and is a function of the Reynolds number.

【0014】 Kn=1/(1.119−0.011 log Re) ……式5Kn = 1 / (1.119−0.011 log Re) Equation 5

【0015】層流域におけるKnは、理論的に計算する
ことが可能であり、Kn=0.75(一定)が得られて
いる。ここで、レイノルズ数が2320より小さい場合
の流れは層流と呼ばれ、その分布は一定で変わらない。
Kn in the laminar flow region can be theoretically calculated, and Kn = 0.75 (constant) is obtained. Here, the flow when the Reynolds number is smaller than 2320 is called laminar flow, and its distribution is constant and does not change.

【0016】図5に示す装置を用い、以上に示した式1
乃至式5のような理論式により演算することにより、流
体物質の流量を算出することが可能である。
Using the apparatus shown in FIG. 5, the above equation 1 is used.
It is possible to calculate the flow rate of the fluid substance by calculating with a theoretical formula such as Formula 5.

【0017】ところで、前記した構成による流量計の測
定精度を向上させるには、超音波ビームの伝播時間を正
確に測定できるようにすることが必要となる。この場
合、超音波ビームの伝播距離を大きくとった方が超音波
ビームの伝播時間を正確に測定することが可能となり、
よって流量の測定精度も向上させることができる。
By the way, in order to improve the measurement accuracy of the flow meter having the above-mentioned structure, it is necessary to accurately measure the propagation time of the ultrasonic beam. In this case, it is possible to accurately measure the propagation time of the ultrasonic beam by increasing the propagation distance of the ultrasonic beam,
Therefore, the measurement accuracy of the flow rate can be improved.

【0018】しかしながら、図5に示す構成において
は、一方と他方の電気−音響変換手段1a,1bの間の
伝播距離Taは、前記一方の電気−音響変換手段1aと
他方の電気−音響変換手段1bとの間の測定管の軸方向
の距離L2 の約1.4倍程度であり、測定管2を小型に
形成した場合においては、その伝播距離Taを大きく取
ることができず、超音波流量計の測定精度を向上させる
には限界がある。
However, in the configuration shown in FIG. 5, the propagation distance Ta between the one and the other electro-acoustic converting means 1a and 1b is determined by the one electro-acoustic converting means 1a and the other electro-acoustic converting means. 1b is about 1.4 times the axial distance L2 of the measuring tube from 1b, and when the measuring tube 2 is formed in a small size, the propagation distance Ta cannot be made large and the ultrasonic flow rate There is a limit to improving the measurement accuracy of the meter.

【0019】そこで、測定管を小型に形成しつつ、一対
の電気−音響変換手段1a,1b間の伝播距離を大きく
する手段として、図6に示すような構成を考えることが
できる。この図6に示す構成は、測定管2の一方の内側
壁2aに一対の電気−音響変換手段1a,1bを配置
し、測定管2の他方の内側壁2bを超音波の反射面とし
て利用し、超音波の伝播経路Tbを略V字型とすること
で、その伝播距離を大きくとるようにしたものである。
Therefore, as a means for increasing the propagation distance between the pair of electro-acoustic converting means 1a and 1b while forming the measuring tube in a small size, a configuration as shown in FIG. 6 can be considered. In the configuration shown in FIG. 6, a pair of electro-acoustic converting means 1a and 1b are arranged on one inner wall 2a of the measuring tube 2, and the other inner wall 2b of the measuring tube 2 is used as a reflection surface of ultrasonic waves. By making the ultrasonic wave propagation path Tb substantially V-shaped, the propagation distance can be increased.

【0020】この図6に示す構成によると、それぞれの
測定管2の軸線に対する電気−音響変換手段1a,1b
の超音波出射角θを45度とした場合、前記図5に示す
例に比較して2倍の伝播距離を取ることができる。した
がって超音波流量計の測定精度をより向上させることが
できる。
According to the configuration shown in FIG. 6, the electro-acoustic conversion means 1a and 1b with respect to the axis of each measuring tube 2 are arranged.
When the ultrasonic wave emission angle θ is 45 degrees, the propagation distance can be doubled as compared with the example shown in FIG. Therefore, the measurement accuracy of the ultrasonic flowmeter can be further improved.

【0021】[0021]

【発明が解決しようとする課題】このように図6に示す
構成によると、図5に示す構成に対して超音波の伝播距
離を2倍とすることができ、したがって超音波流量計の
測定精度をより向上させることが期待できる。
As described above, according to the configuration shown in FIG. 6, the propagation distance of ultrasonic waves can be doubled as compared with the configuration shown in FIG. 5, and therefore, the measurement accuracy of the ultrasonic flowmeter can be improved. Can be expected to improve.

【0022】しかしながら、一対の電気−音響変換手段
1a,1bにおける超音波の出射エネルギーは、比較的
広範囲な指向特性を有しており、超音波の出射軸以外に
も超音波信号の一部が放射される。
However, the output energy of ultrasonic waves from the pair of electro-acoustic conversion means 1a and 1b has a relatively wide range of directional characteristics, and a part of the ultrasonic signal other than the ultrasonic output axis is present. Is emitted.

【0023】このために、図6に示すように一対の電気
−音響変換手段1a,1bを配置した測定管2の一方の
内側壁2aの表面経路を伝わって一方の電気−音響変換
手段1aから他方の電気−音響変換手段1bに、またそ
の逆方向に図中破線Tsで示したように超音波信号の一
部が直接的に伝播する(直接伝播波)という現象が発生
する。
For this purpose, as shown in FIG. 6, one electric-acoustic conversion means 1a is transmitted from the one electric-acoustic conversion means 1a along the surface path of one inner wall 2a of the measuring tube 2 in which a pair of electric-acoustic conversion means 1a, 1b are arranged. A phenomenon occurs in which a part of the ultrasonic signal directly propagates (directly propagated wave) in the other electro-acoustic converting means 1b and in the opposite direction, as indicated by a broken line Ts in the figure.

【0024】この図6に示したような直接伝播波Ts
は、本来の受波が到達する直前、もしくは同時に現れ、
本来の受波に対して波形歪みなどを起こさせることで測
定誤差を生み出す。この度合は測定管2内の流量が多く
なればなる程、すなわち流量が増大する程、測定誤差を
増大させるという問題点を含んでいる。
The direct propagating wave Ts as shown in FIG.
Appears immediately before the arrival of the original wave, or at the same time,
A measurement error is generated by causing waveform distortion etc. to the original received wave. This degree includes a problem that the measurement error increases as the flow rate in the measuring tube 2 increases, that is, as the flow rate increases.

【0025】本発明は、前記した従来のものの問題点に
鑑みてなされたものであって、特に一方の電気−音響変
換手段から出射された超音波を測定管内を反射させて他
方の電気−音響変換手段によって受波するV型の超音波
伝播経路を形成した超音波流量計において、本来の受波
以外の妨害波を受ける要因を少なくし、測定精度を向上
させることが可能な超音波流量計を提供することを目的
とするものである。
The present invention has been made in view of the above-mentioned problems of the conventional one, and in particular, the ultrasonic wave emitted from one electro-acoustic conversion means is reflected in the measuring tube to make the other electro-acoustic. In an ultrasonic flowmeter having a V-shaped ultrasonic wave propagation path that is received by a conversion means, it is possible to reduce the factors that receive an interfering wave other than the original received wave and improve the measurement accuracy. It is intended to provide.

【0026】[0026]

【課題を解決するための手段】前記した目的を達成する
ために成された本発明に係る超音波流量計は、一方の電
気−音響変換手段から出射された超音波を測定管内の流
体物質中を透過させて他方の電気−音響変換手段で受波
し、これらを双方で切り替えて超音波伝播時間を測定し
て測定管内部に流れる流体物質の流量測定を行う超音波
流量計であって、前記一方の電気−音響変換手段から出
射された超音波を測定管内を反射させて他方の電気−音
響変換手段によって受波するV型の超音波伝播経路を形
成し、前記一方の電気−音響変換手段と他方の電気−音
響変換手段との間を結ぶ測定管の内側壁面に遮音物質を
配置するように構成されたものである。そして、前記遮
音物質は好ましくは、測定管を構成する同一材料を測定
管内面に対して一体に突出させて配置される。また、前
記遮音物質は、測定管内に貼着された遮音材により構成
される場合もある。この場合の前記遮音材はグラスウー
ルであることが望ましい。そして、前記測定管は、該測
定管の軸方向に対して直角な断面形状が長方形に構成さ
れる。
The ultrasonic flowmeter according to the present invention, which has been made in order to achieve the above-mentioned object, is arranged so that ultrasonic waves emitted from one of the electro-acoustic conversion means are contained in a fluid substance in a measuring tube. An ultrasonic flowmeter which transmits the other electric-acoustic conversion means to receive, and switches the both to measure the ultrasonic propagation time to measure the flow rate of the fluid substance flowing inside the measuring tube, A V-shaped ultrasonic wave propagation path is formed in which the ultrasonic wave emitted from the one electric-acoustic conversion means is reflected in the measuring tube and is received by the other electric-acoustic conversion means, and the one electric-acoustic conversion is performed. The sound insulating material is arranged on the inner wall surface of the measuring pipe connecting the means and the other electro-acoustic converting means. The sound insulating material is preferably arranged such that the same material forming the measuring tube is integrally projected with respect to the inner surface of the measuring tube. Further, the sound insulation material may be composed of a sound insulation material attached inside the measuring tube. In this case, the sound insulation material is preferably glass wool. Further, the measuring tube has a rectangular cross-sectional shape perpendicular to the axial direction of the measuring tube.

【0027】このような構成により、一対の電気−音響
変換手段によって形成される超音波の伝播経路は、測定
管内を反射させて受波するいわゆるV字型を構成する。
この場合、一対の電気−音響変換手段間を結ぶ測定管の
内側壁面に遮音物質が配置されているため、従来のもの
のように測定管の内側壁表面を伝わる直接伝播波Tsの
影響を受けることがない。
With such a configuration, the ultrasonic wave propagation path formed by the pair of electro-acoustic conversion means forms a so-called V-shape that reflects the inside of the measuring tube and receives the wave.
In this case, since the sound insulation material is arranged on the inner wall surface of the measuring pipe that connects the pair of electric-acoustic converting means, it is affected by the direct propagating wave Ts propagating on the inner wall surface of the measuring pipe unlike the conventional one. There is no.

【0028】したがって、本来の受波に波形歪みを起こ
させることで測定誤差を生み出すという問題点を解消さ
せることができる。
Therefore, it is possible to solve the problem that a measurement error is generated by causing waveform distortion in the original received wave.

【0029】[0029]

【発明の実施の形態】以下、本発明に係る超音波流量計
について図1を参照しつつ説明する。なお、以下に示す
実施例において、従来の装置と同一の構成および機能を
有するものについては同じ符号を用いて示している。
BEST MODE FOR CARRYING OUT THE INVENTION An ultrasonic flowmeter according to the present invention will be described below with reference to FIG. In the embodiments described below, components having the same configurations and functions as those of the conventional device are designated by the same reference numerals.

【0030】測定管2は、図1(a)に断面状態で示す
ようにその両端部においてフランジ状の接続部3a,3
bによって、それぞれ配管4a,4bに対して接続され
ている。そして測定管2は、図1(b)に示すように測
定管2の軸方向に対して直角な断面形状が長方形で構成
されており、その開口の横幅がW、高さがhの角状ダク
トを構成している。なお図1に示す実施例における測定
管2の開口のアスペクト比(W対h)は、1:5に成さ
れている。またこの開口のアスペクト比は、一般に1:
3乃至1:7程度に選定される。
The measuring tube 2 has flange-like connecting portions 3a, 3 at both ends as shown in a sectional view in FIG. 1 (a).
b to the pipes 4a and 4b, respectively. As shown in FIG. 1B, the measuring tube 2 has a rectangular cross-sectional shape perpendicular to the axial direction of the measuring tube 2, and its opening has a lateral width W and a height h. It constitutes a duct. The aspect ratio (W to h) of the opening of the measuring tube 2 in the embodiment shown in FIG. 1 is 1: 5. The aspect ratio of this opening is generally 1:
It is selected in the range of 3 to 1: 7.

【0031】そして、一対の電気−音響変換手段1a,
1bがそれぞれ測定管2の一方の内側壁2aに配置さ
れ、一方の電気−音響変換手段1aから他方の電気−音
響変換手段1bに対して、またその逆方向にそれぞれ対
向する他方の内側壁2bを反射面としてV字状の超音波
信号の伝播経路Tcが構成されるようになされている。
A pair of electro-acoustic conversion means 1a,
1b are respectively arranged on one inner wall 2a of the measuring tube 2, and the other inner wall 2b opposite from the one electro-acoustic converting means 1a to the other electro-acoustic converting means 1b and vice versa. The V-shaped ultrasonic signal propagation path Tc is configured with the reflection surface as a reflection surface.

【0032】そして、図2に示すように一方の電気−音
響変換手段1aおよび他方の電気−音響変換手段1b
は、それぞれ測定管2の軸線に対して交差角度θをもっ
て出射されるように配置されている。
Then, as shown in FIG. 2, one electric-acoustic converting means 1a and the other electric-acoustic converting means 1b.
Are arranged so as to be emitted at an intersecting angle θ with respect to the axis of the measuring tube 2.

【0033】さらに前記一方の電気−音響変換手段1a
と他方の電気−音響変換手段1bとの間を結ぶ測定管2
の内側壁2aには、遮音物質2cが配置されている。こ
の遮音物質2cは、測定管を構成する同一材料、例えば
合成樹脂により一体となるように突出させて配置されて
いる。
Further, the one electro-acoustic conversion means 1a is provided.
And a measuring tube 2 connecting the other electro-acoustic conversion means 1b.
A sound insulating material 2c is disposed on the inner wall 2a of the. The sound insulation material 2c is arranged so as to be integrally formed of the same material forming the measuring tube, for example, synthetic resin.

【0034】また、遮音物質2cが成形された一方の内
側壁2aに対向する他方の内側壁2bには、遮音物質2
cの突出形態に対応させて凹部2dが形成されており、
この凹部2dの存在により、測定管2内を流れる流体物
質の流速が一定となるように工夫されている。
The sound insulating material 2c is formed on the other inner wall 2b facing the one inner wall 2a on which the sound insulating material 2c is formed.
The concave portion 2d is formed to correspond to the protruding form of c,
Due to the presence of the recess 2d, the flow velocity of the fluid substance flowing in the measuring pipe 2 is devised so as to be constant.

【0035】なお前記一対の電気−音響変換手段1a,
1bは例えばピエゾセラミック素子により構成された超
音波送受波器であり、この超音波送受波器1a,1bか
らは間欠的に交互に200KHz程度の超音波ビームが
発射され、超音波ビームの伝播時間に基づいて測定管2
内に貫流する流体物質の流量を測定するように成され
る。
The pair of electro-acoustic conversion means 1a,
Reference numeral 1b denotes an ultrasonic wave transmitter / receiver composed of, for example, a piezoceramic element, and the ultrasonic wave transmitters / receivers 1a and 1b intermittently and alternately emit ultrasonic waves of about 200 KHz, and the propagation time of the ultrasonic beam is increased. Based on the measuring tube 2
It is adapted to measure the flow rate of a fluid substance flowing therethrough.

【0036】このようにして超音波送受波器1a,1b
から交互に間欠的に超音波ビームが発射され、超音波送
受波器1a,1bはこれを交互に受けて測定管2内に貫
流する流体物質の流量を測定する。この場合の演算処理
は、図5に示した従来の例と同様であり、その詳細な説
明は省略する。
In this way, the ultrasonic transducers 1a and 1b
Ultrasonic beams are alternately emitted from the ultrasonic wave transmitters and the ultrasonic wave transmitters / receivers 1a and 1b alternately receive the ultrasonic beams to measure the flow rate of the fluid substance flowing into the measuring tube 2. The calculation processing in this case is the same as that of the conventional example shown in FIG. 5, and the detailed description thereof will be omitted.

【0037】この場合、一対の電気−音響変換手段1
a,1b間を結ぶ測定管2の内側壁2aに遮音物質2c
が突出するように配置されているため、電気−音響変換
手段1a,1b間を結ぶ測定管2の内側壁2aの表面を
沿って伝播する直接伝播波Tsを遮断させることができ
る。
In this case, the pair of electro-acoustic conversion means 1
The sound insulation material 2c is provided on the inner wall 2a of the measuring pipe 2 connecting between a and 1b.
Is arranged so as to project, it is possible to block the direct propagation wave Ts propagating along the surface of the inner wall 2a of the measuring tube 2 connecting the electro-acoustic converting means 1a and 1b.

【0038】したがって、一対の電気−音響変換手段1
a,1bが図6に示すように直接伝播波Tsを互いに受
けて本来の受波に対して波形歪みなどを起こさせる可能
性を除去することができる。
Therefore, the pair of electro-acoustic conversion means 1
It is possible to eliminate the possibility that a and 1b receive the direct propagating waves Ts with each other as shown in FIG. 6 and cause waveform distortion or the like with respect to the original received waves.

【0039】図2は、本発明に係る超音波流量計の他の
実施例を断面状態で示したものである。この図2に示す
例においては、遮音物質2cとして別体の遮音材5を用
意し、これを一対の電気−音響変換手段1a,1b間を
結ぶ測定管2の内側壁2aに貼着するようにしたもので
ある。この遮音材5としては、例えばグラスウール、ゴ
ム、プラスチック、金属等を挙げることができるが、他
に一般的に遮音材として作用する他の物質を採用するこ
ともできる。
FIG. 2 shows another embodiment of the ultrasonic flowmeter according to the present invention in a sectional state. In the example shown in FIG. 2, a separate sound insulating material 5 is prepared as the sound insulating material 2c, and the sound insulating material 5 is attached to the inner wall 2a of the measuring tube 2 connecting between the pair of electro-acoustic converting means 1a and 1b. It is the one. Examples of the sound insulating material 5 include glass wool, rubber, plastic, metal, and the like, but other substances that generally act as the sound insulating material can also be adopted.

【0040】図2に示す場合においては、電気−音響変
換手段1a,1b間を結ぶ測定管2の内側壁2aの表面
を沿って伝播する図6に示すような直接伝播波Tsを前
記遮音材5によって吸収することができる。
In the case shown in FIG. 2, the direct propagating wave Ts as shown in FIG. 6 propagating along the surface of the inner wall 2a of the measuring tube 2 connecting the electro-acoustic converting means 1a and 1b is used as the sound insulating material. 5 can be absorbed.

【0041】よって、この図2に示す例においても、一
対の電気−音響変換手段1a,1bが直接伝播波Tsを
互いに受けて本来の受波に対して波形歪みなどを起こさ
せる可能性を除去することができる。
Therefore, also in the example shown in FIG. 2, it is possible to eliminate the possibility that the pair of electro-acoustic converting means 1a and 1b directly receive the propagating wave Ts and cause a waveform distortion or the like to the originally received wave. can do.

【0042】図3は、図2に示す本発明に係る超音波流
量計の測定精度に関する結果を示したものであり、縦軸
に信号レベルを横軸に時間経過を示している。その測定
条件は、流体物質として空気を用い、流量が5m3 /H
で、20℃の環境下で行ったものである。図3における
下側に描かれた波形が測定管の流体物質(空気)を通過
してきた波形信号であり、図中上側に描かれたピーク状
の信号がこれによって生成される受波信号を示してい
る。
FIG. 3 shows the results regarding the measurement accuracy of the ultrasonic flowmeter according to the present invention shown in FIG. 2, in which the vertical axis shows the signal level and the horizontal axis shows the passage of time. The measurement condition is that air is used as the fluid substance and the flow rate is 5 m 3 / H.
It was carried out in an environment of 20 ° C. The waveform shown on the lower side of FIG. 3 is the waveform signal that has passed through the fluid substance (air) in the measuring tube, and the peak-shaped signal shown on the upper side of the figure shows the received signal generated by this. ing.

【0043】図3に示されたように、その前半において
直接伝播波Ts等によるノイズ成分の影響を受けず、し
たがって本来の受波に対して波形歪みなどを受けること
がなく、受波信号として認識されるピーク状の信号が正
確な位置に発生することが判る。
As shown in FIG. 3, in the first half, it is not affected by the noise component due to the direct propagating wave Ts and the like, and therefore the waveform is not distorted with respect to the original received wave. It can be seen that the recognized peaked signal occurs at the correct location.

【0044】一方、図4は、図6に示した従来例のもの
を、同様の条件下で測定したものであり、図4に示すよ
うにその前半において直接伝播波Ts等によるノイズ成
分の影響を受けており、したがって本来の受波に対して
波形歪みなどを受け、受波信号として認識されるピーク
状の信号が図3に示した場合に比較して時間的に前に発
生し、測定誤差が発生していることが判る。
On the other hand, FIG. 4 shows a measurement of the conventional example shown in FIG. 6 under the same conditions. As shown in FIG. 4, the influence of noise components due to the direct propagating wave Ts and the like in the first half thereof is shown. Therefore, the waveform is distorted with respect to the original received wave, and a peak-shaped signal recognized as a received signal occurs earlier in time than the case shown in FIG. It can be seen that an error has occurred.

【0045】[0045]

【発明の効果】以上の説明で明らかなとおり、本発明に
係る超音波流量計によれば、一対の電気−音響変換手段
によって形成される超音波の伝播経路を、測定管内を反
射させて受波するV字型となるように構成し、且つ一対
の電気−音響変換手段間を結ぶ測定管の内側壁に遮音物
質を配置するようにしたので、電気−音響変換手段間を
結ぶ測定管の内側壁表面に沿って伝播する直接伝播波T
sを効果的に遮断させることができる。したがって、従
来のもののように一対の電気−音響変換手段が直接伝播
波Tsを互いに受けて本来の受波に対して波形歪みなど
を起こさせる可能性を除去することができ、測定精度の
高い超音波流量計を提供することができる。
As is clear from the above description, according to the ultrasonic flowmeter of the present invention, the ultrasonic wave propagation path formed by the pair of electro-acoustic converting means is received by reflecting inside the measuring tube. Since the sound-insulating substance is arranged on the inner wall of the measuring tube connecting between the pair of electric-acoustic converting means, the measuring tube connecting between the electric-acoustic converting means is constructed. Directly propagating wave T propagating along the inner wall surface
s can be effectively blocked. Therefore, it is possible to eliminate the possibility that the pair of electro-acoustic conversion means directly receive the propagating wave Ts and cause a waveform distortion or the like to the original received wave, unlike the conventional one, and it is possible to eliminate the possibility of high measurement accuracy. A sonic flow meter can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明に係る超音波流量計の第1の実
施例の基本構成を示した断面図である。
FIG. 1 is a sectional view showing a basic configuration of a first embodiment of an ultrasonic flowmeter according to the present invention.

【図2】図2は、本発明に係る超音波流量計の第2の実
施例の基本構成を示した断面図である。
FIG. 2 is a sectional view showing a basic configuration of a second embodiment of the ultrasonic flowmeter according to the present invention.

【図3】図3は、図1に示す超音波流量計における特性
を示した波形図である。
FIG. 3 is a waveform diagram showing characteristics in the ultrasonic flowmeter shown in FIG.

【図4】図4は、従来の超音波流量計における特性を示
した波形図である。
FIG. 4 is a waveform diagram showing the characteristics of a conventional ultrasonic flowmeter.

【図5】図5は、従来の超音波流量計の基本構成を示し
た断面図である。
FIG. 5 is a sectional view showing a basic configuration of a conventional ultrasonic flowmeter.

【図6】図6は、従来の他の超音波流量計の基本構成を
示した断面図である。
FIG. 6 is a cross-sectional view showing a basic configuration of another conventional ultrasonic flowmeter.

【符号の説明】[Explanation of symbols]

1a 超音波送受波器(電気−音響変換手段) 1b 超音波送受波器(電気−音響変換手段) 2 測定管 2c 遮音物質 2d 凹部 3a 接続部 3b 接続部 4a 配管 4b 配管 5 遮音材 Tc 伝播経路 1a Ultrasonic transducer (electric-acoustic conversion means) 1b Ultrasonic transducer (electric-acoustic conversion means) 2 Measuring pipe 2c Sound insulation material 2d Recess 3a Connection part 3b Connection part 4a Piping 4b Piping 5 Sound insulation material Tc Propagation path

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 一方の電気−音響変換手段から出射され
た超音波を測定管内の流体物質中を透過させて他方の電
気−音響変換手段で受波し、これらを双方で切り替えて
超音波伝播時間を測定して測定管内部に流れる流体物質
の流量測定を行う超音波流量計であって、 前記一方の電気−音響変換手段から出射された超音波を
測定管内を反射させて他方の電気−音響変換手段によっ
て受波する略V型の超音波伝播経路を形成し、前記一方
の電気−音響変換手段と他方の電気−音響変換手段との
間を結ぶ測定管の内側壁面に遮音物質を配置したことを
特徴とする超音波流量計。
1. An ultrasonic wave emitted from one electro-acoustic conversion means is transmitted through a fluid substance in a measuring tube and is received by the other electro-acoustic conversion means, and these are switched to propagate ultrasonic waves. An ultrasonic flowmeter for measuring a flow rate of a fluid substance flowing inside a measuring tube by measuring time, wherein ultrasonic waves emitted from one of the electro-acoustic conversion means are reflected in the measuring tube and the other electric- A substantially V-shaped ultrasonic wave propagation path that is received by the acoustic converting means is formed, and a sound insulating material is arranged on the inner wall surface of the measuring pipe that connects between the one electric-acoustic converting means and the other electric-acoustic converting means. An ultrasonic flowmeter characterized in that
【請求項2】 前記遮音物質は、測定管を構成する同一
材料を測定管内面に対して一体に突出させて配置したこ
とを特徴とする請求項1に記載の超音波流量計。
2. The ultrasonic flowmeter according to claim 1, wherein the sound insulation material is arranged such that the same material forming the measuring tube is integrally projected with respect to the inner surface of the measuring tube.
【請求項3】 前記遮音物質は、測定管内に貼着された
遮音材であることを特徴とする請求項1に記載の超音波
流量計。
3. The ultrasonic flowmeter according to claim 1, wherein the sound insulation material is a sound insulation material attached inside a measuring tube.
【請求項4】 前記遮音材はグラスウールであることを
特徴とする請求項3に記載の超音波流量計。
4. The ultrasonic flowmeter according to claim 3, wherein the sound insulation material is glass wool.
【請求項5】 前記測定管は、該測定管の軸方向に対し
て直角な断面形状が長方形であることを特徴とする請求
項1乃至4のうちいずれか1に記載の超音波流量計。
5. The ultrasonic flowmeter according to claim 1, wherein the measurement tube has a rectangular cross-section that is perpendicular to the axial direction of the measurement tube.
JP12258196A 1996-04-19 1996-04-19 Ultrasonic flow meter Expired - Lifetime JP3328505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12258196A JP3328505B2 (en) 1996-04-19 1996-04-19 Ultrasonic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12258196A JP3328505B2 (en) 1996-04-19 1996-04-19 Ultrasonic flow meter

Publications (2)

Publication Number Publication Date
JPH09287990A true JPH09287990A (en) 1997-11-04
JP3328505B2 JP3328505B2 (en) 2002-09-24

Family

ID=14839464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12258196A Expired - Lifetime JP3328505B2 (en) 1996-04-19 1996-04-19 Ultrasonic flow meter

Country Status (1)

Country Link
JP (1) JP3328505B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001311636A (en) * 2000-04-28 2001-11-09 Matsushita Electric Ind Co Ltd Ultrasonic flow rate-measuring device
JP2010164585A (en) * 2010-04-28 2010-07-29 Panasonic Corp Ultrasonic flow rate measuring device
JP2011013100A (en) * 2009-07-02 2011-01-20 Panasonic Corp Ultrasonic flow measuring device
JP2013503029A (en) * 2009-08-26 2013-01-31 ユニバーシティ、オブ、サウサンプトン Cleaning device, cleaning method, and monitoring method thereof
US11426772B2 (en) 2015-05-13 2022-08-30 Sloan Water Technology Limited Cleaning apparatus and method of using an acoustic transducer
US12017739B2 (en) 2017-12-06 2024-06-25 Sloan Water Technology Limited Apparatus and method for prevention and treatment of marine biofouling

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001311636A (en) * 2000-04-28 2001-11-09 Matsushita Electric Ind Co Ltd Ultrasonic flow rate-measuring device
JP2011013100A (en) * 2009-07-02 2011-01-20 Panasonic Corp Ultrasonic flow measuring device
JP2013503029A (en) * 2009-08-26 2013-01-31 ユニバーシティ、オブ、サウサンプトン Cleaning device, cleaning method, and monitoring method thereof
US11577284B2 (en) 2009-08-26 2023-02-14 Sloan Water Technology Limited Cleaning apparatus and method, and monitoring thereof
JP2010164585A (en) * 2010-04-28 2010-07-29 Panasonic Corp Ultrasonic flow rate measuring device
US11426772B2 (en) 2015-05-13 2022-08-30 Sloan Water Technology Limited Cleaning apparatus and method of using an acoustic transducer
US12017739B2 (en) 2017-12-06 2024-06-25 Sloan Water Technology Limited Apparatus and method for prevention and treatment of marine biofouling

Also Published As

Publication number Publication date
JP3328505B2 (en) 2002-09-24

Similar Documents

Publication Publication Date Title
JP2747618B2 (en) Ultrasonic flow velocity measuring method and apparatus
JPH05506092A (en) Improvement of ultrasonic gas/liquid flow meter
JPH10122923A (en) Ultrasonic flow meter
JP2012509460A (en) Ultrasonic flow meter
CN103477194A (en) Coupling element of an ultrasonic transducer for an ultrasonic flow meter
JPH09287990A (en) Ultrasonic flowmeter
JPH09287989A (en) Ultrasonic flowmeter
US3204457A (en) Ultrasonic flowmeter
JP7151311B2 (en) ultrasonic flow meter
JP3488003B2 (en) Flow measurement device
JP4368591B2 (en) Ultrasonic flow meter
JPH11271117A (en) Ultrasonic flowmeter
JP3535625B2 (en) Ultrasonic current meter
JP3194270B2 (en) Ultrasonic flow meter
JP2003177042A (en) Ultrasonic flowmeter
JPH11237263A (en) Ultrasonic flowmeter
JPH0915012A (en) Ultrasonic wave flowmeter
JP2001349758A (en) Ultrasonic flow velocity measuring instrument
JP2505647Y2 (en) Ultrasonic flow meter
JPS631217Y2 (en)
JPH11237264A (en) Ultrasonic flowmeter
JP2005195371A (en) Ultrasonic flowmeter, and sound absorbing material for ultrasonic flowmeter
JPH0921665A (en) Ultrasonic flow meter
JPH1144561A (en) Ultrasonic flow rate and flow velocity meter
JPH10170318A (en) Ultrasonic flow-velocity measuring apparatus

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070712

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080712

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090712

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100712

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110712

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110712

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120712

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120712

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130712

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130712

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140712

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term