JPH11237264A - Ultrasonic flowmeter - Google Patents

Ultrasonic flowmeter

Info

Publication number
JPH11237264A
JPH11237264A JP10054457A JP5445798A JPH11237264A JP H11237264 A JPH11237264 A JP H11237264A JP 10054457 A JP10054457 A JP 10054457A JP 5445798 A JP5445798 A JP 5445798A JP H11237264 A JPH11237264 A JP H11237264A
Authority
JP
Japan
Prior art keywords
ultrasonic
transducer
ultrasonic flowmeter
wall surface
ultrasonic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10054457A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Shimizu
和義 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaijo Corp
Original Assignee
Kaijo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaijo Corp filed Critical Kaijo Corp
Priority to JP10054457A priority Critical patent/JPH11237264A/en
Publication of JPH11237264A publication Critical patent/JPH11237264A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-accuracy ultrasonic flowmeter in which the point of time of a reception in a reception-side transducer can be decided with high accuracy by reducing the influence of the component of ultrasonic waves which are not passed through a shortest propagation route between a transmitting transducer and the receiving transducer. SOLUTION: In an ultrasonic flowmeter, ultrasonic waves which are generated by a transducer T1 and a transducer T2 are radiated into a fluid which flows inside a conduit, the ultrasonic waves are recieved, and the flow velocity or the flow rate of the fluid is measured on the basis of the time required for their propagation, the amount of a frequency shift or the like. Then, in the ultrasonic flowmeter, an uneven part is formed in at least one point on the inner wall surface of the conduit in a part in which the ultrasonic waves are propagated. Regarding the component of the ultrasonic waves which are propagated so as to be deviated from a shortest propagation route, the point of time of their arrival to the reception-side transducer is delayed due to an increase in the number of times of their reflection on the inner wall surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、超音波の伝播時間
差などから流体の流量や流速を計測する超音波流量計に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic flowmeter for measuring a flow rate and a flow velocity of a fluid from a difference in ultrasonic wave propagation time.

【0002】[0002]

【従来の技術】測定対象の流体中に超音波を伝播させ、
その下流方向と上流方向への伝播時間の差から流量や流
速を計測する超音波流量計が広く使用されている。最も
簡単な構成の超音波流量計では、1対のトランスジュー
サ(電気/音響変換器あるいは超音波振動子)が流体内
の上流側と下流側とに対向させて設置される。しかなが
ら、通常は、トランスジューサを流路内に設置すること
に伴う流速の乱れなどの問題を回避するために、トラン
スジューサを流体の流路の外側に設置する場合が多い。
2. Description of the Related Art Ultrasonic waves are propagated in a fluid to be measured,
Ultrasonic flowmeters that measure the flow rate and flow velocity from the difference in propagation time in the downstream and upstream directions are widely used. In an ultrasonic flow meter having the simplest configuration, a pair of transducers (electric / acoustic transducers or ultrasonic transducers) are installed so as to face the upstream side and the downstream side in the fluid. However, usually, in many cases, the transducer is installed outside the fluid flow path in order to avoid problems such as disturbance of the flow velocity caused by installing the transducer in the flow path.

【0003】このようにトランスジューサを流路の外部
に設置する超音波流量計では、図2に例示するように、
流路の外側に管路に対して斜めにかつ互いに対向するよ
うに1対のトランスジューサT1,T2が設置され、矢
印で示す流れに対して所定の角度傾いた点線で示す超音
波の直線状の伝播路が形成される。図3に示すように管
路の一つの壁面に1対のトランスジューサT1,T2を
設置するために、各トランスジューサを設置する面と対
向する管路の内壁面を反射面として利用することによっ
て、点線で示すV字形状の超音波の伝播経路を形成する
方式も知られている。更には、上下の内壁面上で反射を
3回生じさせることによりW字形状の超音波の伝播経路
を形成する方式も知られている。
In such an ultrasonic flowmeter in which a transducer is installed outside a flow path, as shown in FIG.
A pair of transducers T1 and T2 are installed outside the flow path so as to be oblique and opposed to each other with respect to the pipeline, and the ultrasonic straight line indicated by a dotted line inclined at a predetermined angle with respect to the flow indicated by the arrow A propagation path is formed. As shown in FIG. 3, in order to install a pair of transducers T1 and T2 on one wall surface of the pipeline, the inner wall surface of the pipeline opposite to the surface on which each transducer is installed is used as a reflection surface. There is also known a method of forming a V-shaped ultrasonic wave propagation path indicated by. Further, a method of forming a W-shaped ultrasonic wave propagation path by causing three reflections on upper and lower inner wall surfaces is also known.

【0004】[0004]

【発明が解決しようとする課題】流路の断面形状が円形
の場合の超音波の伝播経路は、図4(A)中に点線で示
すように、対向するトランスジューサT1とT2の間を
直線で結ぶ最短経路と、この最短経路の周りに出現する
曲線状の多数の経路から成る。湾曲した外側の伝播経路
上を伝播した超音波は、直線状の最短経路を経た超音波
よりも遅れて受信されることになる。この結果、超音波
の受信波形が時間軸上で拡がってしまい、受信の時点、
従って、伝播所要時間を判別するのが困難になる。ま
た、この円形断面の導波管においても、矩形断面の導波
管の場合と同様に、直線状の点線で例示した伝播経路を
経て受信側のトランスジューサに入射する反射波によっ
ても受信波形が時間軸上で拡がってしまうという問題が
ある。
When the cross-sectional shape of the flow path is circular, the propagation path of the ultrasonic wave is represented by a straight line between the opposing transducers T1 and T2, as shown by the dotted line in FIG. It is composed of the shortest path to be connected and a number of curved paths appearing around the shortest path. The ultrasonic wave that has propagated on the curved outer propagation path is received later than the ultrasonic wave that has passed through the shortest straight path. As a result, the reception waveform of the ultrasonic wave spreads on the time axis, and at the time of reception,
Therefore, it becomes difficult to determine the required propagation time. Also in this waveguide having a circular cross section, similarly to the case of a waveguide having a rectangular cross section, the reception waveform is also time-dependent by a reflected wave incident on the receiving-side transducer via a propagation path exemplified by a linear dotted line. There is a problem that it spreads on the axis.

【0005】管路の内壁面を反射面として利用すること
によってV字形状やW字形状の超音波の伝播経路を形成
する流量計では、図4(B)に示すように、トランスジ
ューサを設置する管壁面と対向する内壁面に平面状の反
射面を確保するために、矩形断面形状の管路が利用され
る。このような矩形断面の管路では、トランスジューサ
T1,T2の一方から放射された超音波のうち側壁に対
して斜めに放射された成分が一方の側壁、下方の反射面
及び他方の側壁で反射されて他方のトランスジューサに
入射するので、側壁に平行に放射された成分よりも遅れ
て受信側のトランスジューサに入射し、ゼロクロス点な
どとして定義される受信時点の判別を困難にする。
In a flow meter that forms a V-shaped or W-shaped ultrasonic wave propagation path by using the inner wall surface of a pipe as a reflection surface, a transducer is installed as shown in FIG. In order to secure a flat reflecting surface on the inner wall surface facing the tube wall surface, a rectangular cross-sectional shape channel is used. In such a duct having a rectangular cross section, of the ultrasonic waves radiated from one of the transducers T1 and T2, a component radiated obliquely to the side wall is reflected by the one side wall, the lower reflecting surface, and the other side wall. Therefore, since the light is incident on the other transducer, it is incident on the receiving-side transducer later than the component radiated parallel to the side wall, making it difficult to determine the reception time point defined as a zero-cross point or the like.

【0006】従って、本発明の目的は、最短の伝播経路
を経ない超音波成分の影響を低減することによって受信
時点を高精度で確定できる超音波流量計を提供すること
にある。
SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide an ultrasonic flowmeter capable of determining a reception time with high accuracy by reducing the influence of an ultrasonic component which does not pass through the shortest propagation path.

【0007】[0007]

【課題を解決するための手段】上記課題を解決する本発
明の超音波流量計は、管路内を流れる流体中にトランス
ジューサが発生した超音波を放射し、この超音波を受信
し、伝播所要時間や周波数シフト量などの特性から流体
の流速又は流量を測定する超音波流量計であって、超音
波が伝播する部分の管路の内壁面のうち少なくとも一つ
に凹凸が形成されている。
An ultrasonic flowmeter according to the present invention for solving the above problems radiates ultrasonic waves generated by a transducer into a fluid flowing in a pipeline, receives the ultrasonic waves, and transmits the ultrasonic waves. An ultrasonic flowmeter for measuring the flow velocity or flow rate of a fluid from characteristics such as time and frequency shift amount, wherein at least one of the inner wall surfaces of a pipeline in which ultrasonic waves propagate has irregularities.

【0008】[0008]

【発明の実施の形態】本発明の好適な実施の形態によれ
ば、上記超音波流量計は矩形断面形状を有する上記管路
の内壁面の一部を反射面として利用する反射型の超音波
流量計を構成している。
According to a preferred embodiment of the present invention, the ultrasonic flowmeter is a reflection type ultrasonic wave using a part of the inner wall surface of the pipe having a rectangular cross section as a reflection surface. Constructs a flow meter.

【0009】本発明の他の好適な実施の形態によれば、
上記反射面として利用される内壁面の反射予定箇所の前
後に凹凸が形成されている。本発明の更に他の好適な実
施の形態によれば、管路の内壁面に形成される凹凸は、
管路の長手方向にほぼ等間隔で平行に延長される山型の
溝から構成される。更に好適には、上記管路の内壁面に
形成される山型の溝の間隔は、管路内を伝播する超音波
の波長のほぼ2倍以上の値に設定される。
According to another preferred embodiment of the present invention,
Irregularities are formed before and after a reflection expected portion on the inner wall surface used as the reflection surface. According to still another preferred embodiment of the present invention, the unevenness formed on the inner wall surface of the conduit is:
It is composed of a chevron-shaped groove which extends in parallel at substantially equal intervals in the longitudinal direction of the conduit. More preferably, the interval between the mountain-shaped grooves formed on the inner wall surface of the conduit is set to a value that is at least approximately twice the wavelength of the ultrasonic wave propagating in the conduit.

【0010】[0010]

【実施例】図1は、本発明の一実施例の超音波流量計の
構成を示す断面図であり、(A)は矩形管路の管軸を含
む面で切断した縦断面図、(B)と(C)のそれぞれ
は、縦断面図(A)中にB−BとC−Cで示した切断面
に沿って切断した横断面図である。
1 is a sectional view showing the structure of an ultrasonic flowmeter according to an embodiment of the present invention. FIG. 1A is a longitudinal sectional view taken along a plane including a tube axis of a rectangular conduit, and FIG. ) And (C) are cross-sectional views taken along the cutting planes indicated by BB and CC in the vertical cross-sectional view (A).

【0011】この超音波流量計によれば、流体の流路を
形成する矩形状の管路の上方の壁面にトランスジューサ
T1とT2が設置されている。管路のうち超音波が伝播
する箇所の下方の内壁面には、(A)と(B)に示すよ
うに、管路の長手方向に沿ってトランスジューサT1と
T2の中間に位置する箇所を除いて、ほぼ等間隔を保ち
ながら互いに平行に管路の長手方向に延長される山型の
溝が形成されている。さらに、(C)に示すように、管
路のうち超音波が伝播する箇所の側方の内壁面には、ほ
ぼ等間隔を保ちながら互いに平行に管路の長手方向に延
長される山型の溝が形成されている。
According to this ultrasonic flow meter, the transducers T1 and T2 are installed on the wall surface above the rectangular pipe forming the fluid flow path. As shown in (A) and (B), on the inner wall surface of the pipeline below the location where the ultrasonic wave propagates, except for the location located between the transducers T1 and T2 along the longitudinal direction of the pipeline. Thus, a mountain-shaped groove extending in the longitudinal direction of the pipeline in parallel with each other while maintaining substantially equal intervals is formed. Further, as shown in (C), on the inner wall surface on the side of the portion of the pipeline where the ultrasonic wave propagates, a mountain-shaped extending in the longitudinal direction of the pipeline parallel to each other while maintaining substantially equal intervals. A groove is formed.

【0012】トランスジューサT1とT2の一方から放
射される超音波のうち、図中にS0で示すように、側壁に
対して平行に放射されて最短の伝播経路上を伝播する成
分は管路の側方の内壁面に形成された凹凸面に入射する
ことなく、下方の内壁面のうちトランスジューサT1と
T2の中間に位置する凹凸面が形成されていない部分で
反射され、他方のトランスジューサに入射する。すなわ
ち、トランスジューサT1とT2の間にV字形状の伝播
経路が形成される。
Among the ultrasonic waves radiated from one of the transducers T1 and T2, as shown by S0 in the figure, the component radiated parallel to the side wall and propagated on the shortest propagation path is the side of the pipe. Without being incident on the uneven surface formed on one inner wall surface, the light is reflected on a portion of the lower inner wall surface where the uneven surface located between the transducers T1 and T2 is not formed, and is incident on the other transducer. That is, a V-shaped propagation path is formed between the transducers T1 and T2.

【0013】これに対して、トランスジューサT1とT
2の一方から放射される超音波のうち、図中にS1〜S6で
示すように側壁に対して斜めの伝播経路などの上を伝播
する成分は、いずれも管路の内壁面に形成された山型の
溝の部分に入射し、この入射面への入射角に依存した種
々の方向に反射される。この凹凸面で反射された超音波
の成分のうちその大部分は、管路の内壁面の種々の箇所
で多重反射を繰り返すため、最短経路を通った成分が受
信側のトランスジューサに到達したのち相当の時間が経
過するまではこの受信側のトランスジューサには到達し
ないか、到達するとしても多重反射に伴って振幅が大幅
に減衰している。このため、受信電圧波形が0voltの線
を切る時点、すなわちゼロクロス点などによって定義さ
れる受信時点の識別は、最短の伝播経路を経た超音波の
成分を主体として行われ、測定精度が向上する。
On the other hand, transducers T1 and T
Of the ultrasonic waves radiated from one of the two, the components propagating on the propagation path oblique to the side wall as shown by S1 to S6 in the figure were all formed on the inner wall surface of the pipeline. The light is incident on the mountain-shaped groove, and is reflected in various directions depending on the angle of incidence on the incident surface. Most of the ultrasonic components reflected on the uneven surface repeat multiple reflections at various points on the inner wall surface of the pipeline, so the component that has passed the shortest path reaches the transducer on the receiving side. Until the time elapses, the signal does not reach the receiving-side transducer, or if it does, the amplitude is greatly attenuated due to multiple reflection. For this reason, the time point at which the received voltage waveform crosses the 0 volt line, that is, the time point of reception defined by the zero-cross point or the like, is identified mainly by the ultrasonic component that has passed through the shortest propagation path, and the measurement accuracy is improved.

【0014】山型の溝の高さやピッチが超音波の波長に
比べて極端に小さくなると、入射波を種々の方向に反射
する機能が失われる。そこで、この山型の溝の高さやピ
ッチは、超音波の波長の2倍以上の値に設定される。例
えば、流量を測定しようとする流体が気体の場合、その
内部を伝播する超音波の伝播速度は340m/secであるか
ら、超音波の周波数を680 kHzとすると、この気体の内
部を伝播する超音波の波長は、0.5mm となる。この場
合、この波長の2倍程度の1mm以上の高さとピッチの山
型の溝が内壁面に形成される。更に短い波長の超音波を
使用する場合には、管路の内壁面に対してサンドブラス
トを行うことなどにより不規則な粗面を形成することも
できる。
When the height or pitch of the mountain-shaped groove is extremely small as compared with the wavelength of the ultrasonic wave, the function of reflecting the incident wave in various directions is lost. Therefore, the height or pitch of the mountain-shaped groove is set to a value that is at least twice the wavelength of the ultrasonic wave. For example, if the fluid whose flow rate is to be measured is a gas, the propagation speed of the ultrasonic wave propagating inside the gas is 340 m / sec, so if the frequency of the ultrasonic wave is 680 kHz, the ultrasonic wave propagating inside the gas The wavelength of the sound wave is 0.5 mm. In this case, a mountain-shaped groove having a height and a pitch of about 1 mm or more, which is about twice the wavelength, is formed on the inner wall surface. When an ultrasonic wave having a shorter wavelength is used, an irregular rough surface can be formed by sandblasting the inner wall surface of the pipeline.

【0015】以上、途中に反射面を設けてV字形状の伝
播経路を形成する構成を例示した。しかしながら、図2
に示したように、管路の壁面の両側に1対のトランスジ
ューサを設置してトランスジューサ間で直接超音波を送
受するような構成に対しても本発明を適用できる。この
場合、両側面に凹凸面が形成される。
The configuration in which the reflecting surface is provided in the middle to form a V-shaped propagation path has been described above. However, FIG.
As shown in the above, the present invention can be applied to a configuration in which a pair of transducers is installed on both sides of the wall of a pipeline and ultrasonic waves are directly transmitted and received between the transducers. In this case, uneven surfaces are formed on both side surfaces.

【0016】また、管路の断面形状が矩形の場合を例に
とって本発明を説明した。しかしながら、円形など他の
適宜な形状の断面の場合にも本発明を適用できる。この
場合側壁の内壁面などに凹凸面が形成される。
Further, the present invention has been described by taking as an example the case where the cross-sectional shape of the conduit is rectangular. However, the present invention can be applied to the case of a cross section having another appropriate shape such as a circle. In this case, an uneven surface is formed on the inner wall surface or the like of the side wall.

【0017】さらに、超音波の伝播時間差から流量を測
定する装置について本発明の説明した。しかしながら、
超音波のドップラーシフト量から流速や流量を測定する
形式の流量計にも本発明を適用できる。
Further, the present invention has been described with respect to an apparatus for measuring a flow rate from a difference in propagation time of ultrasonic waves. However,
The present invention can also be applied to a flow meter of a type that measures the flow velocity or the flow rate from the Doppler shift amount of ultrasonic waves.

【0018】[0018]

【発明の効果】以上詳細に説明したように、本発明の超
音波流量計は超音波が伝播する部分の管路の内壁面のう
ち少なくとも一つに凹凸を形成する構成であるから、最
短の伝播経路から外れて内壁面に入射する超音波の成分
がそのような凹凸面で多重反射を受け、その伝播時間が
長引くと共に減衰量が増大する。この結果、最短の伝播
経路を経た超音波の成分によって受信時点が定まり、測
定精度が向上するという効果が奏される。
As described above in detail, the ultrasonic flowmeter of the present invention has a configuration in which at least one of the inner wall surfaces of the pipe where the ultrasonic wave propagates has irregularities. The component of the ultrasonic wave deviating from the propagation path and entering the inner wall surface undergoes multiple reflections on such an uneven surface, so that the propagation time is prolonged and the attenuation increases. As a result, the reception time is determined by the component of the ultrasonic wave that has passed through the shortest propagation path, and the effect of improving the measurement accuracy is achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の超音波流量計の構成を示す
断面図である。
FIG. 1 is a sectional view showing a configuration of an ultrasonic flowmeter according to one embodiment of the present invention.

【図2】従来の典型的な超音波流量計の構成の一例を示
す断面図である。
FIG. 2 is a cross-sectional view showing an example of a configuration of a conventional typical ultrasonic flowmeter.

【図3】従来の典型的な超音波流量計の他の構成の一例
を示す断面図である。
FIG. 3 is a cross-sectional view showing another example of the configuration of a conventional typical ultrasonic flow meter.

【図4】本発明の解決課題を説明するための断面図であ
る。
FIG. 4 is a cross-sectional view for explaining a problem to be solved by the present invention.

【符号の説明】[Explanation of symbols]

T1,T2 トランスジューサ S0 トランスジューサ間の最短の超音波の伝播経
路 S1〜S6 凹凸面が形成された内壁面に入射する超音波
の伝播経路
T1, T2 Transducer S0 Propagation path of the shortest ultrasonic wave between transducers S1 to S6 Propagation path of ultrasonic wave incident on inner wall surface with uneven surface

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】管路内を流れる流体中にトランスジューサ
が発生した超音波を放射し、この超音波を受信し、伝播
所要時間や周波数シフト量などの特性から流体の流速又
は流量を測定する超音波流量計において、 前記超音波が伝播する部分の管路の内壁面のうち少なく
とも一つに凹凸が形成されたことを特徴とする超音波流
量計。
An ultrasonic wave generated by a transducer is radiated into a fluid flowing in a pipe, and the ultrasonic wave is received, and the flow rate or flow rate of the fluid is measured based on characteristics such as a propagation time and a frequency shift amount. An ultrasonic flowmeter according to claim 1, wherein at least one of the inner wall surfaces of the conduit in which the ultrasonic wave propagates has irregularities.
【請求項2】 請求項1において、 前記超音波流量計は矩形断面形状の管路の内壁面の一部
を反射面として利用する反射型の超音波流量計であるこ
とを特徴とする超音波流量計。
2. The ultrasonic flowmeter according to claim 1, wherein the ultrasonic flowmeter is a reflection type ultrasonic flowmeter that uses a part of an inner wall surface of a pipe having a rectangular cross section as a reflection surface. Flowmeter.
【請求項3】 請求項2において、 前記反射面として利用される管路の内壁面のうち反射予
定箇所の前後に前記凹凸が形成されたことを特徴とする
超音波流量計。
3. The ultrasonic flowmeter according to claim 2, wherein the unevenness is formed before and after a portion to be reflected on an inner wall surface of the conduit used as the reflecting surface.
【請求項4】 請求項1乃至3のそれぞれにおいて、 前記凹凸は、前記管路の長手方向にほぼ等間隔で平行に
延長される山型の溝であることを特徴とする超音波流量
計。
4. The ultrasonic flowmeter according to claim 1, wherein the unevenness is a mountain-shaped groove extending in parallel at substantially equal intervals in a longitudinal direction of the conduit.
【請求項5】 請求項4において、 前記山型の溝の間隔は放射される超音波の波長のほぼ2
倍以上の値に設定されることを特徴とする超音波流量
計。
5. The method according to claim 4, wherein the interval between the chevron-shaped grooves is approximately two wavelengths of the emitted ultrasonic wave.
An ultrasonic flowmeter characterized by being set to a value that is twice or more.
JP10054457A 1998-02-19 1998-02-19 Ultrasonic flowmeter Pending JPH11237264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10054457A JPH11237264A (en) 1998-02-19 1998-02-19 Ultrasonic flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10054457A JPH11237264A (en) 1998-02-19 1998-02-19 Ultrasonic flowmeter

Publications (1)

Publication Number Publication Date
JPH11237264A true JPH11237264A (en) 1999-08-31

Family

ID=12971217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10054457A Pending JPH11237264A (en) 1998-02-19 1998-02-19 Ultrasonic flowmeter

Country Status (1)

Country Link
JP (1) JPH11237264A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005083372A1 (en) * 2004-02-27 2005-09-09 Fuji Electric Systems Co., Ltd. Ultrasonic flowmeter compatible with both of pulse doppler method and propagation time difference method, method and program for automatically selecting the measurement method in the flowmeter, and electronic device for the flowmeter
WO2005083370A1 (en) * 2004-02-26 2005-09-09 Fuji Electric Systems Co., Ltd. Ultrasonic flowmeter and ultrasonic flow rate measurement method
CN100401022C (en) * 2004-02-26 2008-07-09 富士电机系统株式会社 Ultrasonic flowmeter and ultrasonic flow rate measurement method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005083370A1 (en) * 2004-02-26 2005-09-09 Fuji Electric Systems Co., Ltd. Ultrasonic flowmeter and ultrasonic flow rate measurement method
CN100401022C (en) * 2004-02-26 2008-07-09 富士电机系统株式会社 Ultrasonic flowmeter and ultrasonic flow rate measurement method
US7437948B2 (en) 2004-02-26 2008-10-21 Fuji Electric Systems Co., Ltd. Ultrasonic flowmeter and ultrasonic flow rate measurement method
WO2005083372A1 (en) * 2004-02-27 2005-09-09 Fuji Electric Systems Co., Ltd. Ultrasonic flowmeter compatible with both of pulse doppler method and propagation time difference method, method and program for automatically selecting the measurement method in the flowmeter, and electronic device for the flowmeter
CN100402987C (en) * 2004-02-27 2008-07-16 富士电机系统株式会社 Ultrasonic flowmeter compatible with both of pulse doppler method and propagation time difference method, method and program for automatically selecting the measurement method in the flowmeter, and el

Similar Documents

Publication Publication Date Title
US4480483A (en) Acousto-optical ultrasonic flowmeter
JP5629265B2 (en) Ultrasonic flow meter
JP2014021116A (en) Ultrasonic wedge and method for determining speed of sound in the same
JP2008134267A (en) Ultrasonic flow measurement method
JPH07218307A (en) Method and device for measuring ultrasonic flow rate
KR20150141876A (en) Clamp-on type ultrasonic flowmeter and method for measuring flow rate
KR20120108001A (en) Ultrasonic transducer, flow meter and method
JP3890698B2 (en) Flow measuring device
RU154441U1 (en) SENSOR FOR ULTRASONIC FLOW METER
JP2001304931A (en) Clamping-on ultrasonic flow rate measuring method and multipath ultrasonic flow rate measuring method as well as clamping-on ultrasonic flowmeter and multipath ultrasonic flowmeter
JPH11237264A (en) Ultrasonic flowmeter
JP3328505B2 (en) Ultrasonic flow meter
JPH11237263A (en) Ultrasonic flowmeter
RU2576551C1 (en) Sensor of ultrasonic flowmeter
JPH09287989A (en) Ultrasonic flowmeter
JP2007033115A (en) Detection part of ultrasonic flowmeter
JP4368591B2 (en) Ultrasonic flow meter
JPH11271118A (en) Ultrasonic flowmeter
JP4496258B2 (en) Ultrasonic flow meter
JPH1144561A (en) Ultrasonic flow rate and flow velocity meter
JP2004085211A (en) Ultrasonic flowmeter
KR101476534B1 (en) Ultra sonic Flow measuring Device
JP2000065613A (en) Ultrasonic flowmeter
JP3217021B2 (en) Ultrasonic flow meter
JP4165240B2 (en) Ultrasonic flow meter

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040206