JPH05223608A - Ultrasonic flowmeter - Google Patents

Ultrasonic flowmeter

Info

Publication number
JPH05223608A
JPH05223608A JP4030236A JP3023692A JPH05223608A JP H05223608 A JPH05223608 A JP H05223608A JP 4030236 A JP4030236 A JP 4030236A JP 3023692 A JP3023692 A JP 3023692A JP H05223608 A JPH05223608 A JP H05223608A
Authority
JP
Japan
Prior art keywords
pipe
section
measuring
upstream
flow velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4030236A
Other languages
Japanese (ja)
Inventor
Ryohei Mogi
良平 茂木
Yutaka Kashiwase
裕 柏瀬
Toshio Sato
敏夫 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokimec Inc
Original Assignee
Tokimec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokimec Inc filed Critical Tokimec Inc
Priority to JP4030236A priority Critical patent/JPH05223608A/en
Publication of JPH05223608A publication Critical patent/JPH05223608A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To allow application for any kind of fluid with a simple handling along with higher measuring accuracy by a method the section of a measuring tube section is formed between upstream and downstream points of a pipe to be rectangular and a transducer is mounted on the external wall of a parallel surface. CONSTITUTION:A measuring liquid flows into a pipe 1 having a pipe wall 12. The upstream and downstream end parts of the pipe 11 are formed circular in section. A measuring tube section 15 is formed integral between the upstream and downstream end parts and the measuring tube section 15 has a section thereof formed rectangular. Transducers 20 and 21 comprise a piezo-electric vibrator, for instance and mounted on external walls of parallel surfaces 16 and 17 through a resin wedge. The transducers 20 and 21 are arranged in plurality so as to form a plurality of side lines 24. The achieves higher average effect on the surface as a whole thereby improving measuring accuracy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超音波を利用した超音
波流量計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic flowmeter utilizing ultrasonic waves.

【0002】[0002]

【従来の技術】従来の超音波流量計としては、例えば図
7および図8に示すようなものがある。図7および図8
において、1は内部を流体が流れる管壁2を有する管、
3,4はプラスチックの楔、5,6はセンサとしての送
受波器である。
2. Description of the Related Art As a conventional ultrasonic flowmeter, for example, there is one as shown in FIGS. 7 and 8
In, 1 is a tube having a tube wall 2 through which a fluid flows,
3 and 4 are plastic wedges, and 5 and 6 are transducers as sensors.

【0003】送受波器5,6は、例えばセラミック振動
子などよりなり、楔3,4を介して管1の外壁に固定具
により固定される。ここで、測定原理について簡単に説
明する。上流側の送受波器5から超音波が発信され、そ
れが管壁2を通過し、流体中を流れに乗って斜めに伝搬
し、さらに管壁2を通過し下流側の送受波器6で受信さ
れるまでの超音波伝搬時間tdは、
The wave transmitters / receivers 5 and 6 are made of, for example, ceramic vibrators, and fixed to the outer wall of the tube 1 via the wedges 3 and 4 by a fixture. Here, the measurement principle will be briefly described. An ultrasonic wave is transmitted from the upstream / downstream transducer 5, passes through the tube wall 2, propagates obliquely along the flow in the fluid, and further passes through the tube wall 2 to the downstream transducer / receiver 6. The ultrasonic wave propagation time td until reception is

【0004】[0004]

【数1】 [Equation 1]

【0005】で表わされ、逆に下流側の送受波器6から
超音波が発信され、前記経路と逆に流体の流れにさから
って伝搬して上流側の送受波器5で受信されるまでの超
音波伝搬時間tuは、
On the contrary, ultrasonic waves are transmitted from the downstream side wave transmitter / receiver 6, propagated in the opposite direction to the fluid flow and received by the upstream side wave transmitter / receiver 5. The ultrasonic wave propagation time tu until

【0006】[0006]

【数2】 [Equation 2]

【0007】で表わされる。ここで、Dは管内径、θは
流体中放射角、Cは音速、Vは流体の流速、τは管壁な
どを超音波が伝搬するのに要する全体の時間で、予め測
定されてセットされる。伝搬時間tu,tdの差Δt
は、下記に表わされ、流体の流速Vに比例する。
It is represented by Here, D is the inner diameter of the pipe, θ is the radiation angle in the fluid, C is the speed of sound, V is the flow velocity of the fluid, and τ is the total time required for the ultrasonic waves to propagate through the pipe wall, etc. It Difference Δt between propagation times tu and td
Is expressed below and is proportional to the flow velocity V of the fluid.

【0008】[0008]

【数3】 [Equation 3]

【0009】通常、流体が水の場合、C=1500m/
s,V=〜10m/sで、C>>Vである。したがっ
て、伝搬時間tu,tdの差Δtは、次の(1)式で表
わされる。
Usually, when the fluid is water, C = 1500 m /
s, V = -10 m / s, and C >> V. Therefore, the difference Δt between the propagation times tu and td is expressed by the following equation (1).

【0010】[0010]

【数4】 [Equation 4]

【0011】・・・(1) また、伝搬時間tu,tdの平均値toは(1) Further, the average value to of the propagation times tu and td is

【0012】[0012]

【数5】 [Equation 5]

【0013】であるから、音速Cは、次の(2)式で表
わされる。
Therefore, the sound velocity C is expressed by the following equation (2).

【0014】[0014]

【数6】 [Equation 6]

【0015】・・・(2) (1),(2)式により、(3)式で表わされる流速V
が得られる。
(2) From equations (1) and (2), the flow velocity V expressed by equation (3)
Is obtained.

【0016】[0016]

【数7】 [Equation 7]

【0017】・・・(3) 流量Qは、(3)式に断面積をかければ次の(4)式で
求められる。
(3) The flow rate Q can be obtained by the following equation (4) by multiplying the sectional area by the equation (3).

【0018】[0018]

【数8】 [Equation 8]

【0019】・・・(4) しかしながら、(3)式で求めた流速Vは、超音波伝搬
経路に沿った平均であるので、これを面平均流速VA
計算し直して用いないと正確ではない。そこで、次の流
速分布補正係数Kが流体力学的に理想的な流速分布(軸
対称分布)を仮定して、求められている。 K=VA /V 実際には、この係数をかけて、Qが次の(5)式で求め
られている。
(4) However, since the flow velocity V obtained by the equation (3) is an average along the ultrasonic wave propagation path, it must be recalculated to the surface average flow velocity V A and used correctly. is not. Therefore, the following flow velocity distribution correction coefficient K is obtained by assuming an ideal flow velocity distribution (axisymmetric distribution) in terms of hydrodynamics. K = V A / V Actually, this coefficient is multiplied to obtain Q by the following equation (5).

【0020】[0020]

【数9】 [Equation 9]

【0021】・・・(5) 流速分布補正係数Kを決めるときには、例えば、図9の
ような軸対称分布が想定されており、それはNikrause
等により導出されている。一方、直径上で平均した流速
Vと断面積全体で平均した流速VA との比として、ゲ
・イ・ビルゲル等が次の流速分布補正係数Kを提案して
いる。
(5) When determining the flow velocity distribution correction coefficient K, for example, an axisymmetric distribution as shown in FIG. 9 is assumed, which is Nikrause.
And so on. On the other hand, as a ratio of the flow velocity V averaged over the diameter and the flow velocity VA averaged over the entire cross-sectional area, Ge I Birgel et al. Propose the following flow velocity distribution correction coefficient K.

【0022】[0022]

【数10】 [Equation 10]

【0023】ここで、Reはレイノルズ数である。この
流速分布補正係数Kは、管壁2がなめらかで、直管長
(送受波器から上流部分で管がまっすぐになっている部
分の長さ)が十分ある時には正しいが、現実の流れは、
直管長が短いなどのため、これとは違っていることが多
い。このような流速分布の問題点を克服する方法とし
て、例えば直交2測線法と平行多測線法がある。
Here, Re is the Reynolds number. This flow velocity distribution correction coefficient K is correct when the pipe wall 2 is smooth and the straight pipe length (the length of the straight pipe portion in the upstream portion from the transducer) is sufficient, but the actual flow is
It is often different from this because the straight pipe length is short. As a method of overcoming such a problem of the flow velocity distribution, there are, for example, the orthogonal two-line method and the parallel multi-line method.

【0024】直交2測線法では、図10に示すように、
管1の中心Oを通り直交2測線に対して、超音波で流速
Vを測定し、測線L1の流速V1と測線L2の流速V2
の平均として、流速Vを求める。これにより、非軸対称
分布でも測線を増加して平均を求めれば、精度が向上す
るという考え方であり、これによって、面全体の効果を
求めようとするものである。なお、図10中8は流速分
布の等高線を示す。
In the orthogonal two-line method, as shown in FIG.
The flow velocity V is measured ultrasonically with respect to two orthogonal measurement lines passing through the center O of the pipe 1, and the flow velocity V1 of the measurement line L1 and the flow velocity V2 of the measurement line L2 are measured.
The flow velocity V is obtained as the average of This is the idea that accuracy can be improved by increasing the number of survey lines and averaging even in a non-axisymmetric distribution, and by this, the effect of the entire surface is sought. In addition, 8 in FIG. 10 shows the contour line of the flow velocity distribution.

【0025】一方、平行多測線法では、図11に示すよ
うに、平行な複数の測線9を形成するので、面全体の平
均効果が格段に向上する。したがって、精度向上もかな
り期待できる。この方法では、管壁2(鋼、音速、横波
で3200m/s)と水(音速1500m/s)とでは
音速がかなり異なるので、管壁の外に送受波器をつける
クランプオン方式では、屈折による臨界角の制限が生
じ、図11の両端のような測線9は形成できない。した
がって、この方法ではクランプオン方式をとることがで
きず、送受波器5,6は管壁2に穴をあけ、水に接する
形態になる。
On the other hand, in the parallel multi-line survey method, since a plurality of parallel survey lines 9 are formed as shown in FIG. 11, the averaging effect of the entire surface is remarkably improved. Therefore, accuracy improvement can be expected considerably. In this method, the sound velocity of pipe wall 2 (steel, sound velocity, shear wave 3200 m / s) and water (sound velocity 1500 m / s) are significantly different. As a result, the critical angle is restricted, and the survey line 9 at both ends of FIG. 11 cannot be formed. Therefore, the clamp-on method cannot be adopted in this method, and the wave transmitters / receivers 5 and 6 have a shape in which a hole is formed in the tube wall 2 and contact with water.

【0026】[0026]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の超音波流量計にあっては、直交2側線法で
は、測線をかなり多く増加しても、図12からも分かる
ように、中心部のみを多く考慮し、周辺部の影響の考慮
は少ない。したがって、中心Oを通る測線10を多用し
たとしても流速分布誤差が生じ、精度の向上を図ること
ができないという問題点があった。特に、上流側の直管
長が短いと、誤差が大きくなる。
However, in such a conventional ultrasonic flowmeter, in the orthogonal two-sided line method, as shown in FIG. Considering only the surrounding area, the influence of the surrounding area is small. Therefore, even if the survey line 10 passing through the center O is used many times, an error in the flow velocity distribution occurs, and the accuracy cannot be improved. In particular, when the straight pipe length on the upstream side is short, the error becomes large.

【0027】一方、平行多測線法では、次のような問題
点があった。取付け、保守、交換の取扱いが難しい。ま
た、管壁内面に凸部や凹部を作り、その部分の流量が見
積りにくいので、誤差を生む。さらに、液体に送受波器
が接するので、異物をきらう液体には使用しにくく、例
えば、飲料水、薬品、原子力等には適用することができ
ない。
On the other hand, the parallel multi-line method has the following problems. Installation, maintenance and replacement are difficult to handle. Further, a convex portion or a concave portion is formed on the inner surface of the pipe wall, and it is difficult to estimate the flow rate at that portion, which causes an error. Furthermore, since the transducer contacts the liquid, it is difficult to use it for liquids that resist foreign matter, and cannot be applied to drinking water, chemicals, nuclear power, etc.

【0028】本発明は、このような従来の問題点に鑑み
てなされたものであって、測定精度を向上させることが
でき、取り扱いが簡単で、かつ、どの種類の流体にも適
用することができる超音波流量計を提供することを目的
とする。
The present invention has been made in view of the above-mentioned conventional problems, can improve the measurement accuracy, is easy to handle, and can be applied to any kind of fluid. An object is to provide an ultrasonic flowmeter that can be used.

【0029】[0029]

【課題を解決するための手段】前記目的を達成するため
に、本発明は、超音波を発信するとともに超音波を受信
する複数の送受波器を用いて、管内の流体の流量を測定
する超音波流量計において、前記管の上流と下流の間を
測定管部として、該測定管部を断面が矩形となるように
形成し、測定管部の平行面の外壁に前記送受波器を取り
付けたものである。
In order to achieve the above-mentioned object, the present invention is a super-measuring device for measuring the flow rate of a fluid in a pipe by using a plurality of transducers for transmitting ultrasonic waves and receiving ultrasonic waves. In the sonic flow meter, the measurement pipe portion was formed between the upstream and the downstream of the pipe, the measurement pipe portion was formed to have a rectangular cross section, and the transducer was attached to the outer wall of the parallel surface of the measurement pipe portion. It is a thing.

【0030】[0030]

【作用】本発明においては、測定管部の断面を矩形と
し、その平行面に複数個の送受波器を取り付けるように
したため、平行な複数の測線を形成することができ、面
全体の平均効果を向上させることができるので、測定精
度を向上させることができる。
In the present invention, since the measuring tube has a rectangular cross section and a plurality of transducers are attached to its parallel surface, a plurality of parallel measuring lines can be formed, and the average effect of the entire surface is obtained. Therefore, the measurement accuracy can be improved.

【0031】また、送受波器の取付け、保守、交換が簡
単となり、取り扱いが容易になる。また、管壁内面に凸
部や凹部をつくることがないので、その部分での誤差が
生じなくなる。また、液体に送受波器が接することがな
いので、どの種類の液体にも適用することができる。さ
らに、測定管部矩形断面を上流、下流の円形断面より小
さくすると、整流効果を期待することができる。S/N
比も向上させることができるので、測定精度を向上させ
ることができる。
Further, the wave transmitter / receiver can be easily attached, maintained and replaced, and can be easily handled. Moreover, since no convex or concave portion is formed on the inner surface of the pipe wall, no error occurs in that portion. Further, since the transducer is not in contact with the liquid, it can be applied to any kind of liquid. Further, if the rectangular cross section of the measuring pipe portion is made smaller than the circular cross sections of the upstream side and the downstream side, a rectifying effect can be expected. S / N
Since the ratio can also be improved, the measurement accuracy can be improved.

【0032】[0032]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1〜図6は本発明の一実施例を示す図である。
図1および図2において、11は所定の管壁12を有す
る管であり、管11の内部には流体である測定液が流れ
る。管11の上流端部13および下流端部14は、断面
が円形にそれぞれ形成されている。上流端部13と下流
端部14の間には測定管部15が一体的に形成され、測
定管部15はその断面が矩形に形成される。測定管部1
5は対向する各一対の平面な平行面16,17,18,
19を有する。
Embodiments of the present invention will be described below with reference to the drawings. 1 to 6 are views showing an embodiment of the present invention.
In FIG. 1 and FIG. 2, 11 is a tube having a predetermined tube wall 12, and a measurement liquid, which is a fluid, flows inside the tube 11. Each of the upstream end portion 13 and the downstream end portion 14 of the pipe 11 has a circular cross section. A measuring pipe portion 15 is integrally formed between the upstream end portion 13 and the downstream end portion 14, and the measuring pipe portion 15 has a rectangular cross section. Measuring tube 1
5 is a pair of flat parallel surfaces 16, 17, 18 facing each other,
Has 19.

【0033】20,21はセンサとしての送受波器であ
り、送受波器20,21は、例えばピエゾ振動子よりな
り、超音波の発信および受信を行う。送受波器20,2
1は所定の放射角で超音波を発信するように、プラスチ
ックの楔22,23を介して平行面16,17の外壁に
取り付けられる。送受波器20,21は、平行な複数の
測線24を形成するように複数個設けられる。
Reference numerals 20 and 21 denote wave transmitters / receivers as sensors. The wave transmitters / receivers 20, 21 are made of, for example, piezo oscillators, and transmit and receive ultrasonic waves. Transducers 20, 2
1 is attached to the outer wall of the parallel surfaces 16 and 17 via plastic wedges 22 and 23 so as to emit ultrasonic waves at a predetermined radiation angle. A plurality of wave transmitters / receivers 20, 21 are provided so as to form a plurality of parallel survey lines 24.

【0034】図3に示すように、他の平行面18,19
に送受波器25,26を取り付けるようにしても良い。
これにより、面全体の平均効果を上げることができる。
また、図4に示すように、一方の平行面16にのみ送受
波器20,21を設けて、反射波を受信するようにして
も良い。図2中27はスイッチよりなる送受切換器であ
り、送受切換器27は送受波器20,21にそれぞれ接
続されている。送受切換器27はMPU28からの指令
により、超音波の発信方向を逆転させる。
As shown in FIG. 3, other parallel surfaces 18, 19
The transducers 25 and 26 may be attached to the.
This can increase the average effect of the entire surface.
Further, as shown in FIG. 4, the transducers 20 and 21 may be provided only on one of the parallel surfaces 16 to receive the reflected wave. In FIG. 2, reference numeral 27 denotes a transmission / reception switching device including a switch, and the transmission / reception switching device 27 is connected to the transmission / reception devices 20 and 21, respectively. The transmission / reception switch 27 reverses the ultrasonic wave transmission direction in response to a command from the MPU 28.

【0035】29はトランシーバよりなる送受信器であ
り、送受信器29は送受切換器27に対する信号の送信
および送受切換器29からの信号の受信を行う。30は
送受信器29に接続されたカウンタであり、カウンタ3
0はパルス数を計測して、超音波伝搬時間td,tuを
求める。カウンタ30の出力は、MPU28に与えら
れ、MPU28は超音波伝搬時間td,tuに基づい
て、流量Q((5)式、参照)を演算する。求めた流量
Qは、MPU28からプリンタ31または、表示器32
に出力される。
Reference numeral 29 is a transceiver including a transceiver, and the transceiver 29 transmits a signal to the transmission / reception switch 27 and receives a signal from the transmission / reception switch 29. Reference numeral 30 is a counter connected to the transmitter / receiver 29, and the counter 3
In 0, the number of pulses is measured to obtain ultrasonic wave propagation times td and tu. The output of the counter 30 is given to the MPU 28, and the MPU 28 calculates the flow rate Q (equation (5), reference) based on the ultrasonic wave propagation times td and tu. The calculated flow rate Q is displayed by the MPU 28 on the printer 31 or the display 32.
Is output to.

【0036】このように、平行な複数の測線24を形成
することができるので、面全体の平均効果を向上させる
ことができ、測定精度を向上させることができる。平面
な平行面16,17に送受波器20,21をクランプオ
ン式で取り付けるので、取付け、保守、交換が簡単にな
る。また、管壁12の内面に凸部や凹部をつくらないの
で、その部分での誤差を生じることがない。
Since a plurality of parallel survey lines 24 can be formed in this way, the averaging effect of the entire surface can be improved and the measurement accuracy can be improved. Since the transducers 20 and 21 are mounted on the plane parallel surfaces 16 and 17 by the clamp-on method, mounting, maintenance and replacement are easy. Further, since the convex portion or the concave portion is not formed on the inner surface of the tube wall 12, no error occurs in that portion.

【0037】また、測定液に送受波器20,21が接し
ないので、どのような種類の測定液にも適用することが
できる。このように、両方法の長所を合わせ持つことが
できる。また、上流端部13および下流端部14の各内
形断面よりも測定管部15の矩形断面を小さくしておく
と、整流効果を期待することができる。
Further, since the transducers 20 and 21 do not come into contact with the measuring liquid, the measuring liquid can be applied to any kind of measuring liquid. In this way, the advantages of both methods can be combined. Further, if the rectangular cross section of the measuring pipe portion 15 is made smaller than the internal cross sections of the upstream end portion 13 and the downstream end portion 14, the rectifying effect can be expected.

【0038】すなわち、図5に示すような上流の流速分
布が、測定管部15中では絞られて、図6のように整流
され、流速分布も一様となる。したがって、管内壁近く
での流速分布の不均一が減少し測定精度の向上も期待す
ることができる。さらに、この測定管部15では流れを
絞っているので、流速が大きくなっている。したがっ
て、流速の原信号とも言えるΔtが大きくなる。それ
は、(5)式を次のように変形することにより理解する
ことができる。
That is, the upstream flow velocity distribution as shown in FIG. 5 is narrowed in the measuring pipe portion 15 and rectified as shown in FIG. 6, and the flow velocity distribution becomes uniform. Therefore, the nonuniformity of the flow velocity distribution near the inner wall of the pipe is reduced, and improvement in measurement accuracy can be expected. Furthermore, since the flow is restricted in the measuring pipe portion 15, the flow velocity is high. Therefore, Δt, which is the original signal of the flow velocity, becomes large. This can be understood by modifying the equation (5) as follows.

【0039】[0039]

【数11】 [Equation 11]

【0040】すなわち、上流、測定管部15中ともに、
Qは変わらないが、内径Dが小さくなったと考えられ
る。一方、伝搬時間tもDが小さくなるのに応じて小さ
くなるが、分子は2乗の効果なのに対し、分母は3乗の
効果である。したがって、Δtは大きくなる。Δtが大
きくなることは、それだけS/N比が向上することにも
なるので、この点でも測定精度の向上を期待することが
できる。
That is, both upstream and in the measuring pipe section 15,
Although Q does not change, it is considered that the inner diameter D has decreased. On the other hand, the propagation time t also becomes smaller as D becomes smaller, but the numerator has an effect of square, while the denominator has an effect of cube. Therefore, Δt becomes large. Since the increase in Δt also improves the S / N ratio, the improvement of the measurement accuracy can be expected in this respect as well.

【0041】[0041]

【発明の効果】以上説明してきたように、本発明によれ
ば、測定精度を向上させることができ、また、取扱いが
簡単となり、さらに、どの種類の測定液にも適用するこ
とができる。
As described above, according to the present invention, the measurement accuracy can be improved, the handling is simple, and the present invention can be applied to any kind of measurement liquid.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す図FIG. 1 is a diagram showing an embodiment of the present invention.

【図2】他の断面図FIG. 2 is another sectional view.

【図3】送受波器の追加例を示す図FIG. 3 is a diagram showing an example of adding a transceiver.

【図4】送受波器の他の取付け例を示す図FIG. 4 is a diagram showing another example of mounting the wave transmitter / receiver.

【図5】上流の流速分布を示す図FIG. 5 is a diagram showing an upstream flow velocity distribution.

【図6】.測定管部の流速分布を示す図FIG. Diagram showing the flow velocity distribution in the measuring pipe section

【図7】従来例を示す断面図FIG. 7 is a sectional view showing a conventional example.

【図8】従来例の他の断面図FIG. 8 is another cross-sectional view of the conventional example.

【図9】流速の軸対称分布を示す図FIG. 9 is a diagram showing an axisymmetric distribution of flow velocity.

【図10】直交2側線法の説明図FIG. 10 is an explanatory diagram of the orthogonal two-sided line method.

【図11】平行多測線法の説明図FIG. 11 is an explanatory diagram of the parallel multi-line method.

【図12】問題点の説明図FIG. 12 is an explanatory diagram of problems

【符号の説明】[Explanation of symbols]

11:管 12:管壁 13:上流端部 14:下流端部 15:測定管部 16〜19:平行面 20,21,25,26:送受波器 22,23:楔 24:測線 27:送受切換器 28:MPU 29:送受信器 30:カウンタ 31:プリンタ 32:表示器 11: Pipe 12: Pipe wall 13: Upstream end 14: Downstream end 15: Measuring pipe 16-19: Parallel planes 20, 21, 25, 26: Transducer 22, 23: Wedge 24: Measurement line 27: Transmission / reception Switching device 28: MPU 29: Transmitter / receiver 30: Counter 31: Printer 32: Display device

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】超音波を発信するとともに超音波を受信す
る複数の送受波器を用いて、管内の流体の流量を測定す
る超音波流量計において、 前記管の上流と下流の間を測定管部として、該測定管部
を断面が矩形となるように形成し、測定管部の平行面の
外壁に前記送受波器を取り付けることを特徴とする超音
波流量計。
1. An ultrasonic flowmeter for measuring the flow rate of a fluid in a pipe using a plurality of transducers for transmitting ultrasonic waves and receiving ultrasonic waves, comprising: a measuring pipe between an upstream side and a downstream side of the pipe. The ultrasonic flowmeter is characterized in that the measuring tube portion is formed as a section so as to have a rectangular cross section, and the transducer is attached to the outer wall of the parallel surface of the measuring tube portion.
【請求項2】前記測定管部の矩形断面を前記管の上流の
円形断面より小さくしたことを特徴とする前記請求項1
の超音波流量計。
2. The rectangular cross section of the measuring pipe section is made smaller than the circular cross section upstream of the pipe.
Ultrasonic flow meter.
【請求項3】前記測定管部の平行面の外壁に水平方向お
よび垂直方向に前記送受波器を取り付けたことを特徴と
する前記請求項1の超音波流量計。
3. The ultrasonic flowmeter according to claim 1, wherein the transducer is attached in a horizontal direction and a vertical direction to the outer wall of the parallel surface of the measuring tube portion.
【請求項4】前記測定管部の一方の平行面の外壁にのみ
に前記送受波器を取り付けたことを特徴とする前記請求
項1の超音波流量計。
4. The ultrasonic flowmeter according to claim 1, wherein the transducer is attached only to an outer wall of one parallel surface of the measuring tube portion.
JP4030236A 1992-02-18 1992-02-18 Ultrasonic flowmeter Pending JPH05223608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4030236A JPH05223608A (en) 1992-02-18 1992-02-18 Ultrasonic flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4030236A JPH05223608A (en) 1992-02-18 1992-02-18 Ultrasonic flowmeter

Publications (1)

Publication Number Publication Date
JPH05223608A true JPH05223608A (en) 1993-08-31

Family

ID=12298086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4030236A Pending JPH05223608A (en) 1992-02-18 1992-02-18 Ultrasonic flowmeter

Country Status (1)

Country Link
JP (1) JPH05223608A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08233628A (en) * 1995-02-28 1996-09-13 Agency Of Ind Science & Technol Ultrasonic flowmeter
JPH0926342A (en) * 1995-07-13 1997-01-28 Matsushita Electric Ind Co Ltd Ultrasonic oscillator and ultrasonic flowmeter using it
WO1997021985A1 (en) * 1995-12-13 1997-06-19 Matsushita Electric Industrial Co., Ltd. Ultrasonic flowmeter and ultrasonic generator/detector
JPH09189589A (en) * 1996-01-11 1997-07-22 Matsushita Electric Ind Co Ltd Flow rate measuring apparatus
JPH1144561A (en) * 1997-07-24 1999-02-16 Kaijo Corp Ultrasonic flow rate and flow velocity meter
JP2003315122A (en) * 2002-04-19 2003-11-06 Matsushita Electric Ind Co Ltd Ultrasonic flowmeter
JP2004004115A (en) * 1997-04-18 2004-01-08 Matsushita Electric Ind Co Ltd Ultrasonic flowmeter
JP3556232B2 (en) * 1997-04-18 2004-08-18 松下電器産業株式会社 Ultrasonic flow meter
JP2008196924A (en) * 2007-02-13 2008-08-28 Tokyo Keiso Co Ltd Ultrasonic flowmeter
JP2009041912A (en) * 2007-08-06 2009-02-26 Tokyo Keiso Co Ltd Ultrasonic flow meter
DE102016007930A1 (en) * 2016-06-10 2017-12-14 Em-Tec Gmbh Device for measuring flows with a fluid line
JP2018077066A (en) * 2016-11-07 2018-05-17 田村 善胤 Saddle type ultrasonic flow rate meter and flow rate measurement method
CN113295222A (en) * 2020-02-21 2021-08-24 北京昌民技术有限公司 Ultrasonic flowmeter

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08233628A (en) * 1995-02-28 1996-09-13 Agency Of Ind Science & Technol Ultrasonic flowmeter
JPH0926342A (en) * 1995-07-13 1997-01-28 Matsushita Electric Ind Co Ltd Ultrasonic oscillator and ultrasonic flowmeter using it
US6508133B1 (en) 1995-12-13 2003-01-21 Matsushita Electric Industrial Co. Ltd. Ultrasonic flowmeter and ultrasonic generator/detector
WO1997021985A1 (en) * 1995-12-13 1997-06-19 Matsushita Electric Industrial Co., Ltd. Ultrasonic flowmeter and ultrasonic generator/detector
JP3554336B2 (en) * 1995-12-13 2004-08-18 松下電器産業株式会社 Ultrasonic flow meter and ultrasonic transducer
JPH09189589A (en) * 1996-01-11 1997-07-22 Matsushita Electric Ind Co Ltd Flow rate measuring apparatus
JP2004004115A (en) * 1997-04-18 2004-01-08 Matsushita Electric Ind Co Ltd Ultrasonic flowmeter
JP3556232B2 (en) * 1997-04-18 2004-08-18 松下電器産業株式会社 Ultrasonic flow meter
JPH1144561A (en) * 1997-07-24 1999-02-16 Kaijo Corp Ultrasonic flow rate and flow velocity meter
JP2003315122A (en) * 2002-04-19 2003-11-06 Matsushita Electric Ind Co Ltd Ultrasonic flowmeter
JP2008196924A (en) * 2007-02-13 2008-08-28 Tokyo Keiso Co Ltd Ultrasonic flowmeter
JP2009041912A (en) * 2007-08-06 2009-02-26 Tokyo Keiso Co Ltd Ultrasonic flow meter
DE102016007930A1 (en) * 2016-06-10 2017-12-14 Em-Tec Gmbh Device for measuring flows with a fluid line
JP2018077066A (en) * 2016-11-07 2018-05-17 田村 善胤 Saddle type ultrasonic flow rate meter and flow rate measurement method
CN113295222A (en) * 2020-02-21 2021-08-24 北京昌民技术有限公司 Ultrasonic flowmeter

Similar Documents

Publication Publication Date Title
JP2747618B2 (en) Ultrasonic flow velocity measuring method and apparatus
US7069793B2 (en) Ultrasonic flow meter and ultrasonic sensor
EP1621856A2 (en) Doppler ultrasonic flow velocity profile meter
JPH05223608A (en) Ultrasonic flowmeter
JP2015232519A (en) Clamp-on type ultrasonic flow meter and flow measurement method
JP2895704B2 (en) Ultrasonic flow meter
EP1726920B1 (en) Method for ultrasonic Doppler fluid flow measurement
KR101513697B1 (en) Ultrasonic transducing apparatus for measuring pipe thickness and apparatus for measuring flow velocity using the same
JPH11230799A (en) Ultrasonic flowmeter
JP2011038870A (en) Ultrasonic flow meter and flow rate measuring method using the same
JP3535612B2 (en) Ultrasound transceiver
JP3328505B2 (en) Ultrasonic flow meter
JPH09287989A (en) Ultrasonic flowmeter
JP2007322186A (en) Ultrasonic flow meter
JP4827008B2 (en) Ultrasonic flow meter, ultrasonic transducer, ultrasonic transmission / reception unit, and flow measurement method using ultrasonic flow meter
JP3194270B2 (en) Ultrasonic flow meter
JPH05180678A (en) Ultrasonic flow meter and method for measuring flow rate by it
WO2007074779A1 (en) Ultrasonic flowmeter and wedge for use in ultrasonic flowmeter
JP2011127948A (en) Flow velocity measuring device
JPH07139982A (en) Ultrasonic flowmeter
JP2004045425A (en) Flow rate measuring device
JPS6348005B2 (en)
JP2685590B2 (en) Ultrasound transceiver
JPH06103206B2 (en) Ultrasonic velocity measuring method and apparatus
JP2003302267A (en) Ultrasonic flowmeter