JP2895704B2 - Ultrasonic flow meter - Google Patents

Ultrasonic flow meter

Info

Publication number
JP2895704B2
JP2895704B2 JP5064720A JP6472093A JP2895704B2 JP 2895704 B2 JP2895704 B2 JP 2895704B2 JP 5064720 A JP5064720 A JP 5064720A JP 6472093 A JP6472093 A JP 6472093A JP 2895704 B2 JP2895704 B2 JP 2895704B2
Authority
JP
Japan
Prior art keywords
ultrasonic
propagation time
section
measurement
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5064720A
Other languages
Japanese (ja)
Other versions
JPH06249690A (en
Inventor
博昭 中沢
治 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OOBARU KK
Original Assignee
OOBARU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OOBARU KK filed Critical OOBARU KK
Priority to JP5064720A priority Critical patent/JP2895704B2/en
Publication of JPH06249690A publication Critical patent/JPH06249690A/en
Application granted granted Critical
Publication of JP2895704B2 publication Critical patent/JP2895704B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【技術分野】本発明は、超音波流量計に関し、より詳細
には、超音波伝播路における測定管の形状を偏平断面と
した超音波流量計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic flowmeter, and more particularly, to an ultrasonic flowmeter having a measurement tube in an ultrasonic propagation path having a flat cross section.

【0002】[0002]

【従来技術】超音波伝播時間差法および伝播時間逆数差
法による超音波流量計は、超音波を流れ方向に送波した
場合の順方向の超音波伝播時間と、流れと逆方向に送波
した場合の逆方向の超音波伝播時間の伝播時間差または
伝播時間逆数差を利用した、代表的な超音波流量計であ
る。超音波流量計は、測定流体を媒体として超音波の伝
播時間を測定する流量計であるから、測定管内に流れに
抵抗を与える特別の流速検出素子を有しない理想的な流
量計のひとつである。これと同様な流量計に電磁流量計
があるが、電磁流量計は、測定流体の電磁誘導を利用し
ているので測定流体が非導電性の気体や油等の液体の流
量計測は不可能である。
2. Description of the Related Art An ultrasonic flowmeter based on an ultrasonic propagation time difference method and a propagation time reciprocal difference method transmits an ultrasonic wave in a forward direction when an ultrasonic wave is transmitted in a flow direction and transmits the ultrasonic wave in a direction opposite to the flow. This is a typical ultrasonic flow meter utilizing a propagation time difference or a propagation time reciprocal difference of the ultrasonic propagation time in the opposite direction. An ultrasonic flowmeter is a flowmeter that measures the propagation time of an ultrasonic wave using a measurement fluid as a medium, and is one of ideal flowmeters without a special flow velocity detecting element that gives resistance to flow in a measurement tube. . There is an electromagnetic flow meter similar to this, but the electromagnetic flow meter uses electromagnetic induction of the measurement fluid, so it is impossible to measure the flow rate of non-conductive liquid such as gas or oil. is there.

【0003】図5(a),(b)は、従来のシングルパ
ス形の超音波流量計の原理構造を説明するための図で、
(a)図は縦断面図、(b)図はY−Y’線断面図を示
す。測定管20は直径Dの円管で、該測定管20の中心
軸X−X’を含む平面の管壁に第1超音波送受波器(以
後単にトランスデューサと呼ぶ)21、および第2トラ
ンスデューサ22を対向して配設している。第1,第2
トランスデューサ21,22は同一形状構造のものでP
ZT(ジルコン酸チタン酸鉛)等の圧電素子を要部とし
て構成されている。
FIGS. 5A and 5B are diagrams for explaining the principle structure of a conventional single-pass type ultrasonic flowmeter.
(A) is a longitudinal sectional view, and (b) is a sectional view taken along line YY '. The measuring tube 20 is a circular tube having a diameter D, and a first ultrasonic transducer (hereinafter simply referred to as a transducer) 21 and a second transducer 22 are provided on a flat tube wall including the central axis XX ′ of the measuring tube 20. Are arranged facing each other. 1st, 2nd
The transducers 21 and 22 have the same shape and structure.
The piezoelectric element such as ZT (lead zirconate titanate) is constituted as a main part.

【0004】第1,第2トランスデューサ21,22は
何れか一方が駆動され、超音波を送波し、他方が受波す
る。例えば、上流側の第1トランスデューサ21が駆動
されて送波された超音波を下流側の第2トランスデュー
サ22が受波したときの時間遅れTDは、音速をC流速
をVとし、第1,第2トランスデューサ21,22の超
音波の送受波振動の立ち上りによる時間遅れによる時間
誤差を無視すると、
[0004] One of the first and second transducers 21 and 22 is driven to transmit ultrasonic waves, and the other receives waves. For example, a time delay T D when the ultrasonic wave first transducer 21 on the upstream side is transmitting is driven second transducer 22 on the downstream side is reception, the sound velocity and the C flow velocity is V, the first, When ignoring a time error due to a time delay caused by the rise of the transmitted and received ultrasonic vibrations of the second transducers 21 and 22,

【0005】[0005]

【数1】 (Equation 1)

【0006】逆に、下流側の第2トランスデューサ22
が駆動されて、送波した超音波を上流側の第1トランス
デューサ21が受波したときの時間遅れTU
Conversely, the downstream second transducer 22
Is driven, and the time delay T U when the transmitted first ultrasonic wave is received by the first transducer 21 on the upstream side is

【0007】[0007]

【数2】 (Equation 2)

【0008】第1、第2トランスデューサ間の距離Lは L=D/sinθ …(3) である。従って、伝播時間差△TはThe distance L between the first and second transducers is L = D / sin θ (3). Therefore, the propagation time difference ΔT is

【0009】[0009]

【数3】 (Equation 3)

【0010】ここでC2≫V2cos2θであるから下記
(5)式の如く流速Vは、超音波の伝播時間差△Tに比
例する。以上が伝播時間差法である。しかし、(5)式
の伝播時間差法による伝播時間差法では温度に応じて変
化する音速Cが含まれるので一般には音速Cに影響され
ない伝播時間逆数差法が用いられる。一方、伝播時間逆
数差法は、(1)式から、TDの逆数は
Here, since C 2 ≫V 2 cos 2 θ, the flow velocity V is proportional to the ultrasonic wave propagation time difference ΔT as shown in the following equation (5). The above is the propagation time difference method. However, the propagation time difference method based on the propagation time difference method of the formula (5) includes a sound speed C that changes according to the temperature. Therefore, a propagation time reciprocal difference method that is not affected by the sound speed C is generally used. On the other hand, the reciprocal of T D is obtained from the equation (1),

【0011】[0011]

【数4】 (Equation 4)

【0012】(2)式から、TUの逆数はFrom equation (2), the reciprocal of T U is

【0013】[0013]

【数5】 (Equation 5)

【0014】ここで、伝播時間逆数差Δfは、(5)
(6)式から
Here, the propagation time reciprocal difference Δf is given by (5)
From equation (6)

【0015】[0015]

【数6】 (Equation 6)

【0016】すなわち、下記(8)式の如く流速Vは、
超音波の伝播時間逆数差Δfに比例する。
That is, the flow velocity V is given by the following equation (8):
It is proportional to the reciprocal difference Δf of the propagation time of the ultrasonic wave.

【0017】[0017]

【数7】 (Equation 7)

【0018】以上が伝播時間逆数差法である。The above is the propagation time reciprocal difference method.

【0019】(5)式または(8)式により求めた流速
Vは、測定管20の計測パスにおける平均流速である
が、測定管20内の平均流速を表すものではない。測定
管20内を流れる実際の流れは、レイノルズ数(Re)
に応じた図示の層流分布VL、乱流分布VTのように変化
したパターンの流速分布を有している。このため超音波
伝播路の長さL上において、レイノルズ数による流速パ
ターンの変化による流域を補正し、真の管内平均流速に
する必要がある。
The flow velocity V obtained by the expression (5) or (8) is the average flow velocity in the measurement path of the measurement pipe 20, but does not represent the average flow velocity in the measurement pipe 20. The actual flow flowing in the measuring tube 20 is the Reynolds number (Re)
Laminar flow distribution V L shown in accordance with, and has a flow velocity distribution of the changed pattern as turbulent distribution V T. Therefore, on the length L of the ultrasonic wave propagation path, it is necessary to correct the flow basin due to the change in the flow velocity pattern due to the Reynolds number to obtain the true average flow velocity in the pipe.

【0020】[0020]

【数8】 (Equation 8)

【0021】しかし、上記補正係数Kの値は、測定管2
0内の流れが正規分布の場合のものである。従って配管
状況により、偏流や旋回流が発生した場合には上記の補
正係数Kを適用しても高精度の補正はできない。このた
め、超音波流量計の前後流側の配管に制限が加えられ、
超音波流量計に流入する流体の流速分布が、正規分布と
なるような整流装置の取り付けや上流配管長等の条件設
定が必要であった。
However, the value of the correction coefficient K is
This is for the case where the flow in 0 has a normal distribution. Therefore, when a drift or a swirling flow occurs due to the piping condition, high-precision correction cannot be performed even if the above-described correction coefficient K is applied. For this reason, restrictions are added to the piping on the upstream and downstream sides of the ultrasonic flow meter,
It was necessary to mount a rectifier and set conditions such as the upstream pipe length so that the flow velocity distribution of the fluid flowing into the ultrasonic flowmeter became a normal distribution.

【0022】また、超音波の伝播速度は、媒質の物理的
条件により定められる一定速度であるから、小口径の超
音波流量計では超音波伝播距離Lが小さく伝播時間が小
さい。このため、伝播時間差△Tおよび伝播時間逆数差
△fも小さく、トランスデューサの振動立ち上りの時間
遅れ誤差を無視できなくなり器差が大きくなる。
Since the propagation speed of the ultrasonic wave is a constant speed determined by the physical conditions of the medium, the ultrasonic wave propagation distance L is small and the propagation time is short in a small-diameter ultrasonic flowmeter. For this reason, the propagation time difference ΔT and the propagation time reciprocal difference Δf are also small, and the time delay error of the rise of the vibration of the transducer cannot be ignored, and the instrumental difference increases.

【0023】図6(a),(b)は、従来のシングルパ
ス・リフレクションタイプの超音波流量計の構成を示す
図であるが、該超音波流量計は、測定管20の中心軸X
−X’を含む面上の一方の測定管壁に第1トランスデュ
ーサ22と第2トランスデューサ23を配設し、他方の
壁面の点Fを超音波反射面として超音波の送受波を可能
とするようにすることにより、超音波伝播路を長くして
伝播時間差測定精度および伝播時間逆数差測定精度を高
めることを目的としたものであるが、図5に示した、シ
ングルパス形の超音波流量計と同様の問題点があった。
FIGS. 6A and 6B show the structure of a conventional single-pass reflection type ultrasonic flow meter. The ultrasonic flow meter has a central axis X of a measuring pipe 20. FIG.
The first transducer 22 and the second transducer 23 are disposed on one measurement tube wall on the surface including -X ', and the point F on the other wall surface is used as an ultrasonic reflection surface to enable transmission and reception of ultrasonic waves. The purpose of this is to increase the ultrasonic propagation path to increase the accuracy of measuring the propagation time difference and the accuracy of measuring the reciprocal time difference, but the single-pass type ultrasonic flow meter shown in FIG. There was a similar problem.

【0024】[0024]

【目的】本発明は、上述のごとき実情に鑑みなされたも
ので、同一管径の測定管でも超音波伝播路の長さを大き
くして、伝播時間測定精度を上げ、更には、配管による
旋回流や偏流を減少することにより、小形で、高精度の
超音波流量計を提供することを目的とする。
[Object] The present invention has been made in view of the above-mentioned circumstances, and increases the length of an ultrasonic wave propagation path even in a measurement tube having the same diameter to increase the propagation time measurement accuracy. An object of the present invention is to provide a small, high-accuracy ultrasonic flowmeter by reducing flow and drift.

【0025】[0025]

【構成】本発明は、上記目的を達成するために、同軸上
に円形断面の流入口及び流出口を有し、該流入口から流
出口に向けて順次一定の偏平断面形状に変形する流路を
有する測定管と、該測定管の偏平断面の長軸を含む面に
前記軸と所定角度をもって超音波の送受波可能に前記測
定管壁に配設された一対の超音波送受波器と、該一対の
超音波送受波器間において流れと逆方向及び順方向に超
音波が伝播する伝播時間差を検知する時間差測定手段ま
たは伝播時間逆数差測定手段を有し、前記超音波の伝播
時間差または伝播時間逆数差に比例して流体の流量を測
定することを特徴とするものである。以下、本発明の実
施例に基づいて説明する。
[Configuration] The present invention, in order to achieve the above object, has an inlet and an outlet of circular cross-section on the same axis, the flow be transformed into sequential fixed flat cross section toward the outlet from the flow inlet A measuring tube having a path, and a pair of ultrasonic transducers disposed on the measuring tube wall so as to be capable of transmitting and receiving ultrasonic waves at a predetermined angle with respect to the plane including the long axis of the flat section of the measuring tube. Having a time difference measuring means or a propagation time reciprocal difference measuring means for detecting a propagation time difference in which the ultrasonic wave propagates in the backward direction and the forward direction between the pair of ultrasonic transducers, the propagation time difference of the ultrasonic wave or in proportion to the inverse difference propagation time in which characterized that you measure the flow rate of the fluid. Hereinafter, a description will be given based on examples of the present invention.

【0026】図1(a),(b),(c)は、本発明に
おける超音波流量計の基本構成を説明するための図で、
(a)図は流れに平行な縦断面図、(b)図は流れ方向
からみた断面図、(c)図は平断面図であり、図中、1
は測定管、2は上流トランスデューサ、3は下流トラン
スデューサ、4は計測パスである。
FIGS. 1A, 1B and 1C are views for explaining the basic structure of an ultrasonic flowmeter according to the present invention.
(A) is a longitudinal sectional view parallel to the flow, (b) is a sectional view seen from the flow direction, (c) is a plan sectional view,
Is a measurement tube, 2 is an upstream transducer, 3 is a downstream transducer, and 4 is a measurement path.

【0027】図1の超音波流量計は、シングルパス・リ
フレクション形のもので、測定管1の断面が偏平な形
状、たとえば楕円形状であり、長軸Y−Y’を挾んだ測
定管1の対称位置に上流トランスデューサ2と、下流ト
ランスデューサ3とが装着される。計測パス4は、測定
管1の長軸の反対のY’側に頂点Fを有する二等辺三角
形の斜辺である。
The ultrasonic flowmeter shown in FIG. 1 is of a single-pass reflection type, in which the cross section of the measuring tube 1 is flat, for example, elliptical, and the measuring tube 1 has a long axis YY '. The upstream transducer 2 and the downstream transducer 3 are mounted at symmetrical positions. The measurement path 4 is a hypotenuse of an isosceles triangle having a vertex F on the Y ′ side opposite to the long axis of the measurement tube 1.

【0028】測定管1の断面を楕円形のように偏平にす
ると、円形の場合と比較して計測パス4が長くなり、そ
の分超音波伝播時間が長く、時間測定精度が向上する。
また、計測パス4の同一レイノルズ数における流速分布
Sの面積は、図5(a)の測定管20が円形である場
合の層流流速分布VLの面積よりも大きいので、円形の
場合に比べて、より精度よく管内平均流速を代表してい
る。従って、管内平均流速を導入するための補正係数K
の変動幅も小さく補正値の影響が小さいので高精度の平
均流速を求めることができる。
When the cross section of the measuring tube 1 is flattened like an ellipse, the measuring path 4 is longer than in the case of a circular shape, and the ultrasonic wave propagation time is correspondingly longer, and the time measuring accuracy is improved.
The area of the flow velocity distribution V S at the same Reynolds number of the measurement path 4 is larger than the area of the laminar flow velocity distribution V L when the measurement pipe 20 in FIG. 5A is circular. In comparison, the average flow velocity in the pipe is more accurately represented. Therefore, the correction coefficient K for introducing the average flow velocity in the pipe is obtained.
Is small and the influence of the correction value is small, so that an average flow velocity with high accuracy can be obtained.

【0029】更には、測定流体は偏平断面内を流れるの
で旋回成分が除去されるという整流効果もあるので流速
分布の変動が小さい。すなわち、上、下流側の配管影響
を受け難く、配管の制限がなくなる。従って、流量計の
多様なニーズに対応させることができる。
Further, since the measurement fluid flows in the flat cross section, there is also a rectifying effect that the swirling component is removed, so that the fluctuation of the flow velocity distribution is small. That is, it is hardly affected by the piping on the upstream and downstream sides, and there is no restriction on the piping. Therefore, it is possible to meet various needs of the flow meter.

【0030】図2は、本発明における超音波流量計の具
体例を説明するための図で、図中、5,6はトランスデ
ューサ、7は計測パス、10は測定管、11は流入端、
12は流出端、13は中間部である。
FIG. 2 is a view for explaining a specific example of the ultrasonic flow meter according to the present invention. In the figure, 5, 6 are transducers, 7 is a measurement path, 10 is a measurement pipe, 11 is an inflow end,
12 is an outflow end, and 13 is an intermediate portion.

【0031】図示の超音波流量計は、シングルパスのも
のである。測定管10は、軸X−X’上に円形断面の流
路である流入端11と、流出端12とがあり、該流入端
11と流出端12との間の中間部13の断面は、長さK
の区間で一定形状の楕円である。流入端11と、流出端
12とから中間部13に至る流路断面は、円形から楕円
形に連続した曲面にしてある。このような形状は、円形
のパイプの中央部を、プレス又は絞り加工等により連続
して断面形状が変化するように形成される。
The illustrated ultrasonic flow meter is of a single pass type. The measurement tube 10 has an inflow end 11 which is a flow path having a circular cross section on the axis XX ′, and an outflow end 12, and a cross section of the intermediate portion 13 between the inflow end 11 and the outflow end 12 is as follows. Length K
Is an ellipse of a fixed shape in the section of. The cross section of the flow path from the inflow end 11 and the outflow end 12 to the intermediate portion 13 is a curved surface that is continuous from circular to elliptical. Such a shape is formed such that the cross-sectional shape of the central portion of the circular pipe is continuously changed by pressing or drawing.

【0032】トランスデューサ5,6は、中心軸X−
X’と楕円の長軸を含む面において、中心軸X−X’と
角度θをもって傾斜した計測パス7上に対向して測定管
10の管壁に装着されている。
The transducers 5 and 6 have a central axis X-
It is mounted on the wall of the measurement tube 10 so as to face the measurement path 7 inclined at an angle θ with respect to the central axis XX ′ on a plane including X ′ and the major axis of the ellipse.

【0033】図示のシングルパスの超音波流量計の場合
も、計測パス7の長さが円形断面の場合に比べて長いの
で、上述の図1の場合と同様な効果が得られる。
In the case of the illustrated single-pass ultrasonic flow meter, the length of the measurement path 7 is longer than that of the case of the circular cross section, so that the same effect as in the case of FIG. 1 described above can be obtained.

【0034】図3は、本発明における超音波流量計の他
の具体例を説明するための図で、図中、8,9はトラン
スデューサで、図2と同じ作用をする部分には図2と同
一の参照番号を付している。
FIG. 3 is a view for explaining another specific example of the ultrasonic flowmeter according to the present invention. In the figure, reference numerals 8 and 9 denote transducers, and parts having the same functions as FIG. The same reference numbers are given.

【0035】図3の超音波流量計は、シングルパス・リ
フレクションタイプのもので、測定管10は図2のもの
と同様で、シングルパス・リフレクションタイプとする
ために図1のトランスデューサ2,3と同様にトランス
デューサ8,9は一定形状の楕円断面の区間K内で、長
軸の一方の壁面に装着されている。この場合も図1と同
様の効果が得られる。
The ultrasonic flow meter of FIG. 3 is of a single-pass reflection type, and the measuring tube 10 is the same as that of FIG. Similarly, the transducers 8 and 9 are mounted on one wall surface of the long axis in a section K having an elliptical cross section of a predetermined shape. In this case, the same effect as in FIG. 1 can be obtained.

【0036】以上、図1〜3においては、対をなす超音
波のトランスデューサを測定管壁に装着しているが、超
音波流量計とするためには、超音波を発生するためのト
ランスデューサの駆動回路、および、受波信号を検知す
る受波回路、および、駆動回路および受波回路を交互に
切換えて超音波伝播時間差を測定する時間差測定回路ま
たは伝播時間逆数差測定回路および、伝播時間差または
伝播時間逆数差に比例した流量を算出補正する演算回路
を有するが、以上においては、これらの計測手段につい
ての説明を省いた。
As described above, in FIGS. 1 to 3, a pair of ultrasonic transducers is mounted on the measurement tube wall. However, in order to use an ultrasonic flowmeter, the transducers for generating ultrasonic waves must be driven. Circuit, a receiving circuit for detecting a received signal, a time difference measuring circuit or a propagation time reciprocal difference measuring circuit for alternately switching a driving circuit and a receiving circuit to measure an ultrasonic propagation time difference, and a propagation time difference or propagation Although an arithmetic circuit for calculating and correcting the flow rate proportional to the time reciprocal difference is provided, the description of these measuring means has been omitted above.

【0037】図4(a),(b)は、本発明に係る測定
管の断面形状の他の実施例を説明するための図で、図
2,3の測定管10の計測パス7,17での断面を楕円
形としたが、(a)図の測定管14は、平行面14aと
半円14bとからなる偏平形状の測定管であり、(b)
図の測定管15は、矩形断面で、角部を四分円形とした
偏平形状の測定管であり、楕円形状の測定管に比して、
製作が容易で旋回成分の小さいものが得られる。
FIGS. 4A and 4B are diagrams for explaining another embodiment of the cross-sectional shape of the measuring tube according to the present invention. The measuring paths 7, 17 of the measuring tube 10 shown in FIGS. The cross-section at the above is made elliptical. However, the measuring tube 14 shown in (a) is a flat measuring tube composed of a parallel surface 14a and a semicircle 14b, and (b)
The measuring tube 15 shown in the figure is a flat measuring tube having a rectangular cross section and a quadrangular corner portion, and compared to an elliptical measuring tube,
It is easy to manufacture and has a small turning component.

【0038】[0038]

【効果】以上の説明から明らかなように、本発明による
と、以下のような効果がある。 測定管の偏平断面の長軸方向で平均流速を計測するの
で断面積の比率が大きい。この結果、計測パス上で計測
した平均流速が管内平均流速に近くなり、補正係数を考
慮しても精度が向上する。 測定管が偏平断面であることにより偏流や旋回流等は
消去されて流速分布が一定に保たれるので、上流側の配
管による旋回成分、偏流等の影響が小さく配管に対する
特別の配慮が不要となる。 超音波の計測パスが長くなるので超音波の伝播時間が
長くなり、伝播時間差または伝播時間逆数差の測定精度
が向上する。逆に計測パスの長さを従来の円形断面の場
合と同じにすると、計測パスの角度θを大きくできるの
で流量計の全長を短縮できる。
As apparent from the above description, the present invention has the following effects. Since the average flow velocity is measured in the long axis direction of the flat section of the measuring tube, the ratio of the sectional area is large. As a result, the average flow velocity measured on the measurement path becomes close to the average flow velocity in the pipe, and the accuracy is improved even in consideration of the correction coefficient. Since the measurement pipe has a flat cross section, the drift and swirl flow are eliminated and the flow velocity distribution is kept constant, so the influence of the swirl components and drift due to the upstream piping is small, and special consideration for the piping is not required. Become. Since the ultrasonic measurement path becomes longer, the ultrasonic wave propagation time becomes longer, and the measurement accuracy of the propagation time difference or the propagation time reciprocal difference is improved. Conversely, if the length of the measurement path is the same as that of the conventional circular cross section, the angle θ of the measurement path can be increased, so that the total length of the flow meter can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明における超音波流量計の基本構成を説
明するための図である。
FIG. 1 is a diagram for explaining a basic configuration of an ultrasonic flowmeter according to the present invention.

【図2】 本発明における超音波流量計の具体例を説明
するための図である。
FIG. 2 is a diagram illustrating a specific example of an ultrasonic flowmeter according to the present invention.

【図3】 本発明における超音波流量計の他の具体例を
説明するための図である。
FIG. 3 is a diagram for explaining another specific example of the ultrasonic flow meter according to the present invention.

【図4】 本発明に係る測定管の断面形状の他の実施例
を説明するための図である。
FIG. 4 is a view for explaining another embodiment of the cross-sectional shape of the measuring tube according to the present invention.

【図5】 従来のシングルパス形の超音波流量計の原理
構造を説明するための図である。
FIG. 5 is a view for explaining the principle structure of a conventional single-pass type ultrasonic flowmeter.

【図6】 従来のシングルパス・リフレクションタイプ
の超音波流量計である。
FIG. 6 is a conventional single-pass reflection type ultrasonic flowmeter.

【符号の説明】[Explanation of symbols]

1…測定管、2…上流トランスデューサ、3…下流トラ
ンスデューサ、4…計測パス、5,6…トランスデュー
サ、7…計測パス、8,9…トランスデューサ、10…
測定管、11…流入端、12…流出端、13…中間部。
DESCRIPTION OF SYMBOLS 1 ... Measurement pipe, 2 ... Upstream transducer, 3 ... Downstream transducer, 4 ... Measurement path, 5, 6 ... Transducer, 7 ... Measurement path, 8, 9 ... Transducer, 10 ...
Measuring tube, 11: inflow end, 12: outflow end, 13: middle part.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 同軸上に円形断面の流入口及び流出口を
有し、該流入口から流出口に向けて順次一定の偏平断面
形状に変形する流路を有する測定管と、該測定管の偏平
断面の長軸を含む面に前記軸と所定角度をもって超音波
の送受波可能に前記測定管壁に配設された一対の超音波
送受波器と、該一対の超音波送受波器間において流れと
逆方向及び順方向に超音波が伝播する伝播時間差を検知
する時間差測定手段または伝播時間逆数差測定手段を有
し、前記超音波の伝播時間差または伝播時間逆数差に比
例して流体の流量を測定することを特徴とする超音波流
量計。
1. A measuring pipe having an inflow port and an outflow port having a circular cross section on the same axis, and a flow path which is sequentially deformed from the inflow port to the outflow port into a constant flat cross-sectional shape. A pair of ultrasonic transducers disposed on the measurement tube wall so as to be capable of transmitting and receiving ultrasonic waves at a predetermined angle with respect to the plane including the long axis of the flat cross section, and between the pair of ultrasonic transducers. It has a time difference measuring means or a propagation time reciprocal difference measuring means for detecting a propagation time difference in which the ultrasonic wave propagates in the backward direction and the forward direction, and the flow rate of the fluid in proportion to the propagation time difference or the propagation time reciprocal difference of the ultrasonic wave. ultrasonic flowmeter you comprising measuring.
JP5064720A 1993-03-01 1993-03-01 Ultrasonic flow meter Expired - Fee Related JP2895704B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5064720A JP2895704B2 (en) 1993-03-01 1993-03-01 Ultrasonic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5064720A JP2895704B2 (en) 1993-03-01 1993-03-01 Ultrasonic flow meter

Publications (2)

Publication Number Publication Date
JPH06249690A JPH06249690A (en) 1994-09-09
JP2895704B2 true JP2895704B2 (en) 1999-05-24

Family

ID=13266278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5064720A Expired - Fee Related JP2895704B2 (en) 1993-03-01 1993-03-01 Ultrasonic flow meter

Country Status (1)

Country Link
JP (1) JP2895704B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008504543A (en) * 2004-06-28 2008-02-14 フレクシム フレクシブレ インドゥストリーメステヒニーク ゲーエムベーハー Method for calibrating mounting type or clamp type ultrasonic flow measuring device
EP3388794A1 (en) * 2017-04-13 2018-10-17 SICK Engineering GmbH Measuring device for measuring a flow speed of a fluid

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08313316A (en) * 1995-05-19 1996-11-29 Matsushita Electric Ind Co Ltd Ultrasonic wave type flow meter
JPH09243421A (en) * 1996-03-07 1997-09-19 Matsushita Electric Ind Co Ltd Flow rate measuring apparatus
JPH09264771A (en) * 1996-03-29 1997-10-07 Kaijo Corp Small-sized ultrasonic flowmeter
JP3689975B2 (en) * 1996-05-31 2005-08-31 松下電器産業株式会社 Ultrasonic flow meter
JPH109916A (en) * 1996-06-26 1998-01-16 Matsushita Electric Ind Co Ltd Ultrasonic flowmeter
JP3528436B2 (en) * 1996-06-28 2004-05-17 松下電器産業株式会社 Ultrasonic flow meter and current meter
JP3689987B2 (en) * 1996-07-22 2005-08-31 松下電器産業株式会社 Ultrasonic flow meter
JPH11325993A (en) * 1998-05-21 1999-11-26 Kaijo Corp Ultrasonic flowmeter
JP4045022B2 (en) * 1998-07-29 2008-02-13 株式会社カワタ Powder measuring device
JP3722368B2 (en) * 2002-04-16 2005-11-30 横河電機株式会社 Ultrasonic wave propagation device
JP2004191173A (en) * 2002-12-11 2004-07-08 Saginomiya Seisakusho Inc Vortex flowmeter
DE102011119982A1 (en) * 2011-12-02 2013-06-06 Krohne Ag Magnetic-inductive flowmeter
JP7023105B2 (en) * 2017-12-26 2022-02-21 アズビル金門株式会社 Flow measuring tube
CN114088150A (en) * 2022-01-19 2022-02-25 山东思达特测控设备有限公司 Metering component for ultrasonic gas meter and gas meter with same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008504543A (en) * 2004-06-28 2008-02-14 フレクシム フレクシブレ インドゥストリーメステヒニーク ゲーエムベーハー Method for calibrating mounting type or clamp type ultrasonic flow measuring device
JP4712035B2 (en) * 2004-06-28 2011-06-29 フレクシム フレクシブレ インドゥストリーメステヒニーク ゲーエムベーハー Method for calibrating mounting type or clamp type ultrasonic flow measuring device
EP3388794A1 (en) * 2017-04-13 2018-10-17 SICK Engineering GmbH Measuring device for measuring a flow speed of a fluid
CN108732379A (en) * 2017-04-13 2018-11-02 西克工程有限公司 Measuring device for the flow velocity for measuring fluid
US10488237B2 (en) 2017-04-13 2019-11-26 Sick Engineering Gmbh Measurement apparatus for measuring a flow rate of a fluid
CN108732379B (en) * 2017-04-13 2020-10-02 西克工程有限公司 Measuring device for measuring the flow rate of a fluid

Also Published As

Publication number Publication date
JPH06249690A (en) 1994-09-09

Similar Documents

Publication Publication Date Title
JP2895704B2 (en) Ultrasonic flow meter
RU2446393C2 (en) Method of diagnosing pipe roughness and ultrasonic flowmeter
JP3246851B2 (en) Ultrasonic flowmeter detector
US8701501B2 (en) Ultrasonic flowmeter
WO2013008445A1 (en) Ultrasonic flow-meter
US7412902B2 (en) Device for determination and/or monitoring of the volumetric and/or mass flow of a medium and having coupling element including two element portions
JP6375519B2 (en) Gas meter
JP2002520583A (en) Multi-code flow meter
JP3068649B2 (en) Flow meter with fluid oscillator
JPH05223608A (en) Ultrasonic flowmeter
JP2001133307A (en) Inflow and outflow symmetric flowmeter
JP3103264B2 (en) Ultrasonic flow meter
JP6982737B2 (en) Ultrasonic flow meter
JP2956805B2 (en) Ultrasonic flow meter
JP7151311B2 (en) ultrasonic flow meter
JP2935944B2 (en) Ultrasonic flow meter unit
JPH10239125A (en) Ultrasonic flowmeter
JP2956804B2 (en) Ultrasonic flow meter
JP3194270B2 (en) Ultrasonic flow meter
JP4561071B2 (en) Flow measuring device
JPS58811Y2 (en) ultrasonic flow meter
US4335617A (en) Flowmeter
JP4007861B2 (en) Ultrasonic flow meter
JP2008014833A (en) Ultrasonic flowmeter
JPH1144561A (en) Ultrasonic flow rate and flow velocity meter

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees