JP2956805B2 - Ultrasonic flow meter - Google Patents

Ultrasonic flow meter

Info

Publication number
JP2956805B2
JP2956805B2 JP3359508A JP35950891A JP2956805B2 JP 2956805 B2 JP2956805 B2 JP 2956805B2 JP 3359508 A JP3359508 A JP 3359508A JP 35950891 A JP35950891 A JP 35950891A JP 2956805 B2 JP2956805 B2 JP 2956805B2
Authority
JP
Japan
Prior art keywords
pipe
ultrasonic
flow
main pipe
branch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3359508A
Other languages
Japanese (ja)
Other versions
JPH05180678A (en
Inventor
孝 植木
一光 温井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP3359508A priority Critical patent/JP2956805B2/en
Publication of JPH05180678A publication Critical patent/JPH05180678A/en
Application granted granted Critical
Publication of JP2956805B2 publication Critical patent/JP2956805B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、超音波を用いて管内の
流速を測定することにより、流体の流量を求めるように
した超音波流量計に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic flowmeter for measuring the flow rate of a fluid by measuring the flow velocity in a pipe using ultrasonic waves .

【0002】[0002]

【従来の技術】通常、管内の流体の流量は管の面平均流
速V0に、管断面積等を乗ずることにより得られるが、
流量測定手段のうちの一つとして、例えば、図3に示す
ように、超音波流量計1は、一対の超音波送受波器2を
管壁3に相対して取り付け、交互に超音波パルスを伝播
させて流速を測定するようにした流速測定型の流量計で
ある。この測定される流速は、超音波の伝播路(測線)の
線平均流速V1である。なお、管内における流体の面平
均流速分布は Re=V0・D/ν…………(1) (ただし、Re:レイノルズ数、D:管内径、ν:動粘
性係数)により求められる。ここで、Re<2320の
流れは層流であり、Re≒4000以上の流れは乱流と
いわれ、図4にその分布の一例を示す。層流において、
線平均流速V1と面平均流速V0の比をκとすると、 κ=V1/V0………(2) この場合、κ=4/3で一定である。乱流においては、
いくつかの報告があるが、ここではゲ・イ・ビルゲルに
よるものを適用するものとする。レイノルズ数Reとκ
の関係を図示すると、図5の通りである。
2. Description of the Related Art In general, the surface average flow velocity V 0 which tubes flow of the fluid in the tube, is obtained by multiplying the Kandan area, etc.,
As one of the flow rate measuring means, for example, as shown in FIG. 3, the ultrasonic flow meter 1 has a pair of ultrasonic transducers 2 attached to the tube wall 3 and alternately transmits ultrasonic pulses. It is a flow rate measuring type flow meter that measures the flow velocity by propagating. The measured flow velocity is the linear average flow velocity V 1 of the ultrasonic wave propagation path (measuring line). The surface average flow velocity distribution of the fluid in the pipe is obtained from Re = V 0 · D / ν (1) (where Re: Reynolds number, D: pipe inner diameter, and ν: kinematic viscosity coefficient). Here, a flow with Re <2320 is a laminar flow, and a flow with Re ≒ 4000 or more is called a turbulent flow, and FIG. 4 shows an example of the distribution. In laminar flow,
Assuming that the ratio between the linear average flow velocity V 1 and the surface average flow velocity V 0 is κ, κ = V 1 / V 0 (2) In this case, κ = 4/3, which is constant. In turbulence,
There are several reports, but here we apply the one by Gay Virgel. Reynolds number Re and κ
5 is as shown in FIG.

【0003】ところで、実際の流量測定では、通常、乱
流域での計測となり、その乱流域での流量Qは、 Q=V0・S・3600=V1/κ・πD2/4・3600(m3/H)……(3) (ただし、V0:面平均流速、S:断面積、V1:線平均
流速、κ:レイノルズ数に応じた流速補正係数)より求
められる。
[0003] In the actual flow rate measurement, usually, it becomes a measure of the turbulent basin, the flow rate Q in the turbulent basin, Q = V 0 · S · 3600 = V 1 / κ · πD 2/4 · 3600 ( m 3 / H) (3) (where V 0 : average surface velocity, S: cross-sectional area, V 1 : average linear velocity, κ: velocity correction coefficient corresponding to Reynolds number).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、(3)式
におけるκは、乱流域では、図5に示すようにレイノル
ズ数Re、すなわち面平均流速V0により変化するた
め、広い流量範囲にわたつて高い精度の値を求めること
は困難である。本発明はかかる課題を鑑みてなされたも
のであって、κが一定である層流域で計測できるように
超音波流量計を構成することにより、流量の測定値の精
度を向上させることを目的とする。
However, in the turbulent flow region, κ in the equation (3) changes depending on the Reynolds number Re, that is, the surface average flow velocity V 0, and therefore, over a wide flow rate range. It is difficult to obtain a value with high accuracy. The present invention has been made in view of such a problem, and has an object to improve the accuracy of a measured value of a flow rate by configuring an ultrasonic flowmeter so that measurement can be performed in a laminar flow region where κ is constant. I do.

【0005】[0005]

【課題を解決するための手段】前記した課題を解決する
ために、本発明は、流体を流通させる主管に、分岐管を
設け、前記主管および分岐管に、それぞれ一対の超音波
送受波器を相対して配設し、前記分岐管の内径を、23
20>Re=V 0 ・d/ν(ただし、V 0 :管の面平均流
速、Re:レイノルズ数、d:管内径、ν:流体の動粘
性係数)を満たすように設定するようにした。また、前
記超音波流量計においては、流速に応じて、主管および
分岐管における超音波送受波器により切り換えて計測す
るようにしている。さらに本発明は、流体を流通させる
主管に、分岐管を設け、前記主管および分岐管に、それ
ぞれ一対の超音波送受波器を相対して配設し、前記分岐
管に配設される超音波送受波器は管軸方向に相対するよ
うにし、分岐管の内径を、2320>Re=V 0 ・d/
ν(ただし、V 0 :管の面平均流速、Re:レイノルズ
数、d:管内径、ν:流体の動粘性係数)を満たすよう
に設定するようにした
In order to solve the above-mentioned problems, the present invention provides a main pipe through which a fluid flows, a branch pipe, and a pair of ultrasonic transducers respectively provided in the main pipe and the branch pipe. The branch pipe has an inner diameter of 23
20> Re = V 0 · d / ν (where V 0 : plane average flow of the pipe)
Speed, Re: Reynolds number, d: pipe inner diameter, ν: kinematic viscosity of fluid
(Sex coefficient). Further, in the ultrasonic flow meter, the measurement is performed by switching the ultrasonic flow in the main pipe and the branch pipe according to the flow velocity. The invention further main pipe for circulating the fluid, a branch pipe provided in the main pipe and branch pipes, respectively disposed relative to the pair of ultrasonic transducer, the branch
The ultrasonic transducer installed in the tube is opposed to the tube axis.
And the inner diameter of the branch pipe is set to 2320> Re = V 0 .d /
ν (where, V 0 : average surface flow velocity of tube, Re: Reynolds
Number, d: pipe inner diameter, ν: kinematic viscosity coefficient of fluid)
Was set to .

【0006】[0006]

【作用】主管内の流速が小さく層流の範囲では、主管に
おける超音波送受波器によって、流量を計測し、流速が
大きくなって、乱流となると、2320>Re=V 0
d/νを満たすように設定した分岐管における超音波送
受波器によって計測するようにしたので、層流下での計
測となり、高い精度の流量を求めることができる。
[Function] In the laminar flow range where the flow velocity in the main pipe is small,
The definitive ultrasonic transducer, the flow rate measurement, the flow rate is increased and becomes turbulent, 2320> Re = V 0 ·
Since the measurement was performed by the ultrasonic transducer in the branch pipe set so as to satisfy d / ν, the measurement under laminar flow was performed.
Measurement, and a highly accurate flow rate can be obtained.

【0007】[0007]

【実施例】次に、本発明にかかる超音波流量計につい
て、添付の図面を参照しながら以下説明する。図1にお
いて、参照符号10は第1の実施例にかかる超音波流量
計10を示し、この超音波流量計10は、流体を流通さ
せる主管11に、分岐管12を設け、前記主管11およ
び分岐管12に、それぞれ超音波送受波器13、14を
配設構成したものである。この場合、分岐管12におい
て、導入部15は主管11の管軸に対して直角状に分岐
形成され、分流部16は主管11の管軸に平行であり、
還流部17は主管11の管軸に対して直角状に形成され
る。また、前記超音波送受波器13、14は、管軸に対
して超音波伝播路を所定角度θをなすように取り付けら
れる。なお、前記分流部16の内径dは、2320>R
e=V0・d/νを満たすように設定される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an ultrasonic flow meter according to the present invention will be described with reference to the accompanying drawings. In FIG. 1, reference numeral 10 denotes an ultrasonic flowmeter 10 according to the first embodiment. This ultrasonic flowmeter 10 is provided with a branch pipe 12 in a main pipe 11 through which a fluid flows, and the main pipe 11 and the branch pipe. Ultrasonic transducers 13 and 14 are provided in a tube 12, respectively. In this case, in the branch pipe 12, the introduction part 15 is formed so as to be branched at right angles to the pipe axis of the main pipe 11, the branch part 16 is parallel to the pipe axis of the main pipe 11,
The reflux portion 17 is formed at right angles to the pipe axis of the main pipe 11. The ultrasonic transducers 13 and 14 are attached so that the ultrasonic wave propagation path forms a predetermined angle θ with respect to the tube axis. Note that the inner diameter d of the flow dividing portion 16 is 2320> R
It is set so as to satisfy e = V 0 · d / ν.

【0008】かかる超音波流量計10においては、図示
しない適宜な制御手段より、流速に応じて、主管11お
よび分岐管12における超音波送受波器13、14を切
り換え動作させて、計測する手順を採用している。すな
わち、流速が小さく流れが層流域においては、主管11
における超音波送受波器13により計測し、流速が大き
く流れが乱流域であれば、分岐管12における超音波送
受波器14により計測するように手順を実行する。
In the ultrasonic flow meter 10, a procedure for switching the ultrasonic transducers 13 and 14 in the main pipe 11 and the branch pipe 12 in accordance with the flow velocity by a suitable control means (not shown) to perform measurement. Has adopted. That is, when the flow velocity is small and the flow is laminar, the main pipe 11
The flow is measured by the ultrasonic transducer 13 in the above, and if the flow velocity is large and the flow is in a turbulent region, the procedure is performed so as to be measured by the ultrasonic transducer 14 in the branch pipe 12.

【0009】以上のような超音波流量計10において、
Re=V0・D/ν(この場合、Dは、主管11の内
径)の関係から、主管11内の流速が小さく層流の範囲
では、κが一定であるため、主管11における超音波送
受波器13によって、計測することができる。流速が大
きくなって、乱流となると、内径の小さい分岐管12に
おける超音波送受波器14によって計測するようにした
ので、高い精度の流量を求めることができる。
In the above ultrasonic flow meter 10,
Re = V 0 · D / ν (in this case, D is
From the relationship ( diameter) , in the range where the flow velocity in the main pipe 11 is small and laminar flow is constant, κ is constant, so that measurement can be performed by the ultrasonic transducer 13 in the main pipe 11. When the flow velocity increases and the turbulent flow occurs, the turbulence is measured by the ultrasonic transducer 14 in the branch pipe 12 having a small inner diameter, so that a highly accurate flow rate can be obtained.

【0010】次に、図2に、第2の実施例を示す。この
場合の超音波流量計20では、超音波送受波器14を分
岐管12の分流部16の両端部に、相対するように、超
音波伝播路を管軸方向と一致させるように配設したもの
である。超音波送受波器14間に形成される超音波伝播
路長Lは、分流部16の長さに相当する距離を有する。
Next, FIG. 2 shows a second embodiment. In the ultrasonic flow meter 20 in this case, the ultrasonic transducer 14 is disposed at both ends of the branching section 16 of the branch pipe 12 so that the ultrasonic propagation path is aligned with the pipe axis direction. Things. The ultrasonic wave propagation path length L formed between the ultrasonic transducers 14 has a distance corresponding to the length of the branching section 16.

【0011】このような超音波流量計20によれば、超
音波伝播路長Lを大きく採ることにより、時間計測の分
解能を高め、一層高精度な計測が可能となる。
According to such an ultrasonic flowmeter 20, the resolution of time measurement can be increased and the measurement can be performed with higher accuracy by adopting a longer ultrasonic wave propagation path length L.

【0012】(発明の効果)以上の通り本発明によれ
ば、主管および分岐管双方に超音波送受波器を配設し、
流速に応じていずれかの超音波送受波器を動作させ、層
流域での流量計測が行うことができる。そのため、線平
均流速と面平均流速の比が一定値の基に計測することに
なるため、高精度な流量測定値を得ることができる。
(Effects of the Invention) As described above, according to the present invention, ultrasonic transducers are provided in both the main pipe and the branch pipe,
By operating any of the ultrasonic transducers according to the flow velocity, flow measurement in a laminar flow region can be performed. Therefore, since the ratio between the linear average flow velocity and the surface average flow velocity is measured based on a constant value, a highly accurate flow measurement value can be obtained.

【0013】[0013]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる超音波流量計の一実施例を示す
模式的な説明図である。
FIG. 1 is a schematic explanatory view showing one embodiment of an ultrasonic flowmeter according to the present invention.

【図2】本発明にかかる超音波流量計の第2の実施例を
示す模式的な説明図である。
FIG. 2 is a schematic explanatory view showing a second embodiment of the ultrasonic flowmeter according to the present invention.

【図3】従来における超音波流量計の模式的な説明図で
ある。
FIG. 3 is a schematic explanatory view of a conventional ultrasonic flowmeter.

【図4】円管内の流速分布を示すグラフである。FIG. 4 is a graph showing a flow velocity distribution in a circular pipe.

【図5】円管内の流速と流速補正係数の関係を示すグラ
フである。
FIG. 5 is a graph showing a relationship between a flow velocity in a circular pipe and a flow velocity correction coefficient.

【符号の説明】[Explanation of symbols]

10、20 超音波流量計 11 主管 12 分岐管 13、14 超音波送受波器 15 導入部 16 分流部 17 還流部 10, 20 Ultrasonic flowmeter 11 Main pipe 12 Branch pipe 13, 14 Ultrasonic transducer 15 Introducing section 16 Dividing section 17 Reflux section

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 流体を流通させる主管に、分岐管を設
け、前記主管および分岐管に、それぞれ一対の超音波送
受波器を相対して配設し、前記分岐管の内径を、232
0>Re=V 0 ・d/ν(ただし、V 0 :管の面平均流
速、Re:レイノルズ数、d:管内径、ν:流体の動粘
性係数)を満たすように設定することを特徴とする超音
波流量計。
To 1. A main pipe for circulating the fluid, a branch pipe provided in the main pipe and branch pipes, respectively disposed relative to the pair of ultrasonic transducer, the internal diameter of the branch pipe, 232
0> Re = V 0 · d / ν (where V 0 : plane average flow of the pipe)
Speed, Re: Reynolds number, d: pipe inner diameter, ν: kinematic viscosity of fluid
( Ultrasonic coefficient) .
【請求項2】 流速に応じて、主管および分岐管にお
ける超音波送受波器により切り換えて計測することを特
徴とする請求項1記載の超音波流量計
2. The ultrasonic flowmeter according to claim 1, wherein the measurement is carried out by switching between ultrasonic transducers in the main pipe and the branch pipe according to the flow velocity.
【請求項3】 流体を流通させる主管に、分岐管を設
け、前記主管および分岐管に、それぞれ一対の超音波送
受波器を相対して配設し、前記分岐管に配設される超音
波送受波器は管軸方向に相対するようにし、分岐管の内
径を、2320>Re=V 0 ・d/ν(ただし、V 0 :管
の面平均流速、Re:レイノルズ数、d:管内径、ν:
流体の動粘性係数)を満たすように設定することを特徴
とする超音波流量計。
To 3. A main pipe for circulating the fluid, ultrasonic the branch pipe provided in the main pipe and branch pipes, respectively disposed relative to the pair of ultrasonic transducer, is disposed in the branch pipe
Wave transmitters and receivers should face each other in the direction of the pipe axis.
The diameter is 2320> Re = V 0 · d / ν (where V 0 : tube
, Re: Reynolds number, d: tube inner diameter, ν:
An ultrasonic flowmeter which is set so as to satisfy a kinetic viscosity coefficient of a fluid .
JP3359508A 1991-12-28 1991-12-28 Ultrasonic flow meter Expired - Fee Related JP2956805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3359508A JP2956805B2 (en) 1991-12-28 1991-12-28 Ultrasonic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3359508A JP2956805B2 (en) 1991-12-28 1991-12-28 Ultrasonic flow meter

Publications (2)

Publication Number Publication Date
JPH05180678A JPH05180678A (en) 1993-07-23
JP2956805B2 true JP2956805B2 (en) 1999-10-04

Family

ID=18464865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3359508A Expired - Fee Related JP2956805B2 (en) 1991-12-28 1991-12-28 Ultrasonic flow meter

Country Status (1)

Country Link
JP (1) JP2956805B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103245384A (en) * 2013-03-18 2013-08-14 武汉四方光电科技有限公司 Ultrasonic flow gas chamber for ultrasonic gas meter

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4675490B2 (en) * 2001-03-14 2011-04-20 愛知時計電機株式会社 Ultrasonic flow meter
JP2009014601A (en) * 2007-07-06 2009-01-22 Yamatake Corp Flow meter
JP5282955B2 (en) * 2008-12-10 2013-09-04 本多電子株式会社 Ultrasonic flow meter correction method and ultrasonic flow meter
JP5422015B2 (en) * 2012-04-16 2014-02-19 アズビル株式会社 Flowmeter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103245384A (en) * 2013-03-18 2013-08-14 武汉四方光电科技有限公司 Ultrasonic flow gas chamber for ultrasonic gas meter

Also Published As

Publication number Publication date
JPH05180678A (en) 1993-07-23

Similar Documents

Publication Publication Date Title
JP3246851B2 (en) Ultrasonic flowmeter detector
US6931945B2 (en) Doppler ultrasonic flowmeter
US4365518A (en) Flow straighteners in axial flowmeters
US7363174B2 (en) Apparatus and method for measuring a fluid flow rate profile using acoustic doppler effect
US6460419B2 (en) Ultrasonic flow measuring method
US20040176917A1 (en) Ultrasonic flow-measuring method
JP2895704B2 (en) Ultrasonic flow meter
JP2002520583A (en) Multi-code flow meter
CN114088151A (en) External clamping type multi-channel ultrasonic flow detection device and detection method
JPWO2005083371A1 (en) Doppler ultrasonic flow meter
JP2956805B2 (en) Ultrasonic flow meter
JP2956804B2 (en) Ultrasonic flow meter
JPH09287989A (en) Ultrasonic flowmeter
JPH10239125A (en) Ultrasonic flowmeter
JP3732570B2 (en) Ultrasonic flow meter
JP3194270B2 (en) Ultrasonic flow meter
JP4604520B2 (en) Flow measuring device
JP4675490B2 (en) Ultrasonic flow meter
CN111473827A (en) V-shaped sound channel zero drift elimination method
JPH05180679A (en) Ultrasonic flow meter
KR20090061144A (en) Method of measuring flow velocity by ultrasonic waves and method of measuring flux by ultrasonic waves
KR100562266B1 (en) Methode of measuring fluid velocity in ultrasonic multi-beam flowmeter by double integral calculus
JPH0447768B2 (en)
JPH1144561A (en) Ultrasonic flow rate and flow velocity meter
JP3217021B2 (en) Ultrasonic flow meter

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees