JP4675490B2 - Ultrasonic flow meter - Google Patents

Ultrasonic flow meter Download PDF

Info

Publication number
JP4675490B2
JP4675490B2 JP2001071824A JP2001071824A JP4675490B2 JP 4675490 B2 JP4675490 B2 JP 4675490B2 JP 2001071824 A JP2001071824 A JP 2001071824A JP 2001071824 A JP2001071824 A JP 2001071824A JP 4675490 B2 JP4675490 B2 JP 4675490B2
Authority
JP
Japan
Prior art keywords
flow
flow path
flow rate
ultrasonic
transducer pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001071824A
Other languages
Japanese (ja)
Other versions
JP2002267513A (en
Inventor
豊 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Tokei Denki Co Ltd
Original Assignee
Aichi Tokei Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Tokei Denki Co Ltd filed Critical Aichi Tokei Denki Co Ltd
Priority to JP2001071824A priority Critical patent/JP4675490B2/en
Publication of JP2002267513A publication Critical patent/JP2002267513A/en
Application granted granted Critical
Publication of JP4675490B2 publication Critical patent/JP4675490B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は超音波流量計に関する。
【0002】
【従来の技術】
流路内を流れる流体の流れ中を流れと斜め方向に超音波ビームの送受信を行う1対の送受波器を管壁に配設し、超音波の順方向伝搬時間と逆方向伝搬時間に基づいて流体の流速や流量を計測する超音波流量計では、順方向伝搬時間と逆方向伝搬時間の差とか、順方向伝搬時間の逆数と逆方向伝搬時間の逆数との差から流速や流量を演算して求めている。
【0003】
【発明が解決しようとする課題】
前記従来の技術では、順方向や逆方向の伝搬時間の測定精度とか測定の分解能によって測定下限値が決まり、流量計としての測定精度やレンジャビリティの向上が困難であるという問題点があった。
【0004】
そこで本発明は、かかる問題点を解消し、流量計としての測定精度の向上やレンジャビリティの拡大ができる超音波流量計を提供することを目的とするものである。
【0005】
【課題を解決するための手段】
前記目的を達成するために、請求項1の発明は、流路を流れる流体の流れ中を、流れと斜め方向に超音波の送受を行う第1の送受波器対と、流路の軸線に沿って超音波の送受を行う第2の送受波器対とを具備し、
一定以上の流量域では第1の送受波器対で測定した伝搬時間に基づいて流量を計測し、一定未満の流量域では第2の送受波器対で測定した伝搬時間に基づいて流量を計測することを特徴とする超音波流量計である。
【0006】
請求項2記載の発明は、請求項1の超音波流量計において、流れに直角な流路断面がほぼ矩形で、第1の送受波器対を構成する送受波器間を結ぶ直線が、流路の軸線に対して、流れに直角な前記流路断面の矩形長辺方向に傾斜していることを特徴とするものである。
【0007】
請求項3記載の発明は、請求項1又は2の超音波流量計において、第2の送受波器対を構成する送受波器が、超音波ビームの広がりを抑制する手段を備えていることを特徴とするものである。
【0008】
請求項4記載の発明は、請求項2の超音波流量計において、流れに直角な流路断面のほぼ矩形の中央付近の幅を広くしたことを特徴とするものである。
【0009】
【発明の実施の形態】
次に本発明の好ましい実施の形態を図面の実施例に従って説明する。
【0010】
〔実施例1〕
図1に示すように流路断面が円形の流管1の管壁に設けた第1の超音波送受波器対2,3は、互いに両送受波器間を結ぶ直線4に沿って、流体の流れ方向に対して斜めに超音波の送受を行う。直線4上での線平均流速は、送受波器2から3までの超音波の順方向伝搬時間と、送受波器3から2までの超音波の逆方向伝搬時間とから、時間逆数差法または時間差法を用いて周知の方法で測定する。線平均流速を流管断面での平均流速に変換する計算式は周知の式を用いることができる。そして、こうして求めた流管断面での平均流速に流管断面積を乗算して流量を算出するのも周知の計算を用いる。
【0011】
流管内の流速分布は、流量が小さい層流領域と、流量が大きい乱流領域とでは流速分布が異なるため、線平均流速を流管断面での平均流速に変換する周知の前記計算式は異なる。層流領域では、図2に示すように、流路の軸線X−X方向の座標をxとすると半径方向の座標rの関数として流速Vが、
V(r)=(R2 /4μ)(−dp/dx){1−(r/R)2 }…(1)
で表される。
【0012】
但し、R:流管1の半径
μ:流体の粘度
−dp/dx:管壁による摩擦損失
である。
【0013】
この流速V(r)の分布は、図2のように放物線状になり、軸線X−X上で最大値となり、計算上、断面平均流速の2倍となる。また、直線4上での線平均流速は、断面平均流速の1.5倍となる。そこで、図1の流量計で第1の送受波器対2,3で計測した流量が層流領域での比較的小さい値である一定未満の微流量となったら、流路の軸線X−X上に配置した第2の送受波器対5,6に切り換えて、両送受波器を結ぶ直線7上で超音波の送受を行い、直線7上での順方向伝搬時間と逆方向伝搬時間に基づいて最大流速Vmax を測定する。この測定値は、同じ流量時での直線4上での前記平均流速の(2/1.5)倍である1.33倍となるため、伝搬時間差の測定精度が30%以上向上し、その分流量測定精度が向上するので、測定下限流量を第1の送受波器対2,3で測定した場合に比較して下げられる。従って、流量計としてのレンジャビリティも拡大する。なお、8は流路である。
【0014】
このようにして、小・大流量の流量域では流れ方向に対して斜めに設けた第1の送受波器対2,3で計測し、一定未満の微小流量域では、流路の軸線上に設けた第2の送受波器対5,6で計測する。そのため、微小流量域での計測精度と計測可能な下限流量を第1の送受波器対だけで計測する場合に比較して改善できる。
【0015】
〔実施例2〕
図3(a)(b)と図4に原理図を、図5(a)(b)に具体例を示す。この実施例2では、図3,4のように流路8Aの軸線X−Xを含む流路の垂直な断面が符号9で示す高さH、長さLの矩形で、流路8Aの断面が図1(b)に示すように高さH、幅Wの矩形に形成され、流路8Aの軸線X−Xに対して角度θだけ斜めに第1の超音波送受波器対を構成する送受波器2と3が両送受波器を結ぶ直線4を挟んで対向配置されている。直線4は矩形9を含む平面内にある。また軸線X−X上に第2の超音波送受波器対を構成する送受波器5と6が対向配置されている。7は送受波器5と6を結ぶ直線である。
【0016】
図5(a)(b)は実施例2の具体的構造を示す。この具体例では、直線4を水平に設け、流路8Aの軸線と直線7を傾けている。被計測流体は流入部10から計量室11に入り、矩形流路部12の流路8Aに矢印Aのように左から入る。流路8Aを図示右方へ直線7に沿って流れ、流路8Aの右方から出て、矢印Bのように流出する。13は流入部側と流出部側を仕切る仕切り壁で、矩形流路部12がこの仕切り壁13を貫通して固定されている。計量室11の相対する左右の各壁面14,15には送受波器2,5と3,6が対向配置されている。
【0017】
矩形流路部12は流路8Aの前記軸線X−X上の直線4が送受波器5,6を結ぶ直線7に対し、角度θをなすように傾斜して取り付けられている。この実施例でも、第1の送受波器対2,3は互いに超音波の送受を行うことで、流れに斜め直線4上の線平均流速を順方向伝搬時間と逆方向伝搬時間に基づいて求める。また、第2の送受波器対5,6は互いに超音波の送受を行うことで、微流量域での直線7上の層流時の最大流速を求める。第1の送受波器による測定から第2の送受波器の測定への切り換えは、第1の送受波器によって測定した流量が層流領域での一定未満の微流量になったときに自動的に切り換えるように構成しておく。なお切換時期は、流量の大小による代りに、順方向と逆方向の超音波の伝搬時間の差に基づいて行っても良い。各送受波器2,3,5,6の発受信口16,17,18,19はそれぞれ全周に流速が発生するように壁面14,15から突き出ている。
【0018】
この実施例2の矩形流路は、層流と乱流の流速分布状態の差が小さい流路であり、その矩形流路に超音波送受波器を流路断面の長辺(H)方向に斜めに設置することでその差がより小さくなって測定精度の向上等に効果がある。
【0019】
層流の微流量域で、流路の軸線上の最大流速を効果的に計測するには、第2の送受波器対による超音波の伝搬領域を狭くして、超音波ビームの広がりを抑えるのが好ましく、そのためには、超音波送受波器の指向性を高めたり、発射面を小さくしたり、送受波器の前方に設けた発受信口を小さくする。
【0020】
〔実施例3〕
図6(a)は前記実施例2における図3(b)と同じ図で、実施例2の流路8Aの断面を示し、高さがHで幅がWの矩形断面である。図6(b)(c)及び(d)は同図(a)と比較した他の実施例での断面形状で、すべて高さHは実施例と同じであるが、高さHの中央付近の幅を広くし、更に同図(b)(c)の例では高さHの上部と下部における幅を同図(a)と比較して小さくしている。こうすることで、微小流量の層流領域における流路の軸線上の最大流速をより大きくできるため、微流量域での測定精度の向上と測定下限流量の拡大が図れる(請求項4)。
【0021】
【発明の効果】
本発明の超音波流量計は上述のように構成されているので、微小流量での測定精度が向上し、更に微小流量側の測定下限流量計量が小さくなり、レンジャビリティが拡大する。
【0022】
また、第2の送受波器対に用いる送受波器は微小流量の計測に特化しているので、第1の送受波器対の間を流れる小〜大流量の流れに悪影響を与えないようにし、微小流量域では流れが超音波の伝搬を乱すこともなく、安定した受信波を得られ、伝搬領域を絞った弱い超音波ビームでも確実に受信可能となる。
【0023】
そして、請求項2の発明では、矩形流路断面を使うことで、第1の送受波器対による送信波は流路全体に広がり、流路の断面平均流速に相関した伝搬状態となるため、層流と乱流状態等の流速分布変化に関係なく、求めたい断面平均流速が直接得られ易く、この面からも流量計の精度向上に寄与する。また、流路の高さ方向の制約が緩和され、より大流量の計測が可能になった。
【0024】
請求項3の発明では、微小流量域での流量軸線上の最大流速を確実に計測取得できるため、その面からの計測精度の向上が図れる。
【0025】
そして、請求項4の発明でも、層流微小流量域における流路軸線上の最大流速を大きくでき、その面からも計測精度の向上に寄与する。
【図面の簡単な説明】
【図1】本発明の実施例1の縦断面図。
【図2】図1の実施例における層流領域での流速分布を説明する図。
【図3】本発明の第2実施例の流路形状と超音波送受波器の配置関係を説明する略図で、(a)は縦断面図、(b)は横断面図。
【図4】図3の実施例の超音波の伝搬状態を説明する略図。
【図5】本発明の第2実施例の具体例で、同図(a)は縦断平面図、(b)は縦断正面図。
【図6】流路の矩形状断面の各種を示す略図で、(a)(b)(c)(d)はそれぞれ異なる断面形状を示す。
【符号の説明】
1 流管
2,3,5,6 超音波送受波器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ultrasonic flow meter.
[0002]
[Prior art]
A pair of transducers that transmit and receive an ultrasonic beam in the flow direction and obliquely in the flow of fluid flowing in the flow path are arranged on the tube wall, and are based on the forward propagation time and backward propagation time of the ultrasonic wave. In an ultrasonic flowmeter that measures the flow velocity and flow rate of a fluid, the flow velocity and flow rate are calculated from the difference between the forward propagation time and the reverse propagation time, or the difference between the inverse of the forward propagation time and the inverse of the reverse propagation time. And ask.
[0003]
[Problems to be solved by the invention]
The conventional technique has a problem that the measurement lower limit value is determined by the measurement accuracy of the forward and reverse propagation times and the measurement resolution, and it is difficult to improve the measurement accuracy and rangeability as a flow meter.
[0004]
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an ultrasonic flowmeter capable of solving such problems and improving measurement accuracy and rangeability as a flowmeter.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the invention of claim 1 is characterized in that a first transducer pair for transmitting and receiving ultrasonic waves in an oblique direction to the flow in the flow of fluid flowing through the flow channel, and an axis of the flow channel. A second transducer pair for transmitting and receiving ultrasonic waves along the
In the flow rate range above a certain level, the flow rate is measured based on the propagation time measured by the first transducer pair, and in the flow rate range below a certain level, the flow rate is measured based on the propagation time measured by the second transducer pair. This is an ultrasonic flowmeter.
[0006]
The invention according to claim 2 is the ultrasonic flowmeter according to claim 1, wherein the cross section of the flow path perpendicular to the flow is substantially rectangular, and the straight line connecting the transducers constituting the first transducer pair is a flow It is characterized in that it is inclined in the rectangular long side direction of the flow path cross section perpendicular to the flow with respect to the axis of the path.
[0007]
According to a third aspect of the present invention, in the ultrasonic flowmeter according to the first or second aspect, the transducer constituting the second transducer pair includes means for suppressing the spread of the ultrasonic beam. It is a feature.
[0008]
According to a fourth aspect of the present invention, in the ultrasonic flowmeter of the second aspect, the width near the center of a substantially rectangular section of the flow path cross section perpendicular to the flow is widened.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Next, preferred embodiments of the present invention will be described with reference to examples of the drawings.
[0010]
[Example 1]
As shown in FIG. 1, the first ultrasonic transducer pair 2 and 3 provided on the tube wall of the flow tube 1 having a circular channel cross section are arranged along a straight line 4 connecting the two transducers. The ultrasonic waves are transmitted and received obliquely with respect to the flow direction. The linear average flow velocity on the straight line 4 can be calculated from the forward propagation time of the ultrasonic waves from the transducers 2 to 3 and the backward propagation time of the ultrasonic waves from the transducers 3 to 2 by the time reciprocal difference method or Measurement is performed by a well-known method using a time difference method. As a calculation formula for converting the linear average flow velocity into the average flow velocity at the cross section of the flow tube, a well-known equation can be used. A well-known calculation is used to calculate the flow rate by multiplying the average flow velocity at the cross section of the flow tube thus obtained by the cross sectional area of the flow tube.
[0011]
The flow velocity distribution in the flow tube differs between the laminar flow region where the flow rate is small and the turbulent flow region where the flow rate is large. Therefore, the well-known calculation formula for converting the linear average flow velocity into the average flow velocity in the cross section of the flow tube is different. . In the laminar flow region, as shown in FIG. 2, when the coordinate in the direction of the axis XX of the flow path is x, the flow velocity V as a function of the coordinate r in the radial direction is
V (r) = (R 2 / 4μ) (- dp / dx) {1- (r / R) 2} ... (1)
It is represented by
[0012]
Where R: radius of flow tube 1 μ: fluid viscosity −dp / dx: friction loss due to tube wall.
[0013]
The distribution of the flow velocity V (r) is parabolic as shown in FIG. 2, has a maximum value on the axis XX, and is calculated to be twice the cross-sectional average flow velocity. Further, the linear average flow velocity on the straight line 4 is 1.5 times the cross-sectional average flow velocity. Therefore, when the flow rate measured by the first transducer pair 2 and 3 with the flow meter of FIG. 1 becomes a minute flow rate less than a certain value which is a relatively small value in the laminar flow region, the axis XX of the flow path By switching to the second transducer pair 5 and 6 arranged above, ultrasonic waves are transmitted and received on the straight line 7 connecting both transducers, and the forward propagation time and the reverse propagation time on the straight line 7 are changed. Based on this, the maximum flow velocity Vmax is measured. Since this measured value is 1.33 times that is (2 / 1.5) times the average flow velocity on the straight line 4 at the same flow rate, the measurement accuracy of the propagation time difference is improved by 30% or more. Since the flow rate measurement accuracy is improved, the measurement lower limit flow rate is lowered as compared with the case where the first transducer pair 2 and 3 are measured. Therefore, the rangeability as a flow meter is also expanded. In addition, 8 is a flow path.
[0014]
In this way, measurement is performed by the first transducer pair 2 and 3 provided obliquely with respect to the flow direction in the flow region of small and large flow rates, and on the axis of the flow path in a minute flow region of less than a certain amount. Measurement is performed by the provided second transducer pair 5 and 6. Therefore, the measurement accuracy in the minute flow rate region and the lower limit flow rate that can be measured can be improved as compared with the case where only the first transducer pair is measured.
[0015]
[Example 2]
FIGS. 3A and 3B and FIG. 4 show principle diagrams, and FIGS. 5A and 5B show specific examples. In the second embodiment, as shown in FIGS. 3 and 4, the vertical cross section of the flow path including the axis XX of the flow path 8A is a rectangle having a height H and a length L indicated by reference numeral 9, and the cross section of the flow path 8A. Is formed in a rectangular shape having a height H and a width W as shown in FIG. 1B, and constitutes a first ultrasonic transducer pair obliquely by an angle θ with respect to the axis XX of the flow path 8A. The transducers 2 and 3 are arranged so as to face each other across a straight line 4 connecting both transducers. The straight line 4 is in a plane including the rectangle 9. Further, on the axis XX, the transducers 5 and 6 constituting the second ultrasonic transducer pair are arranged to face each other. 7 is a straight line connecting the transducers 5 and 6.
[0016]
5A and 5B show a specific structure of the second embodiment. In this specific example, the straight line 4 is provided horizontally, and the axis of the flow path 8A and the straight line 7 are inclined. The fluid to be measured enters the measuring chamber 11 from the inflow part 10 and enters the flow path 8A of the rectangular flow path part 12 from the left as indicated by the arrow A. It flows along the straight line 7 in the flow path 8A to the right in the figure, exits from the right side of the flow path 8A, and flows out as indicated by the arrow B. Reference numeral 13 denotes a partition wall that partitions the inflow portion side and the outflow portion side, and the rectangular flow path portion 12 is fixed through the partition wall 13. Transceivers 2, 5, 3, and 6 are disposed opposite to the opposite left and right wall surfaces 14 and 15 of the measuring chamber 11.
[0017]
The rectangular channel portion 12 is attached so as to be inclined so that the straight line 4 on the axis XX of the flow channel 8A forms an angle θ with respect to the straight line 7 connecting the transducers 5 and 6. Also in this embodiment, the first transducer pair 2 and 3 transmit and receive ultrasonic waves to each other, thereby obtaining the line average flow velocity on the oblique straight line 4 based on the forward propagation time and the backward propagation time. . The second transducer pair 5 and 6 obtains the maximum flow velocity during laminar flow on the straight line 7 in the minute flow rate region by transmitting and receiving ultrasonic waves to each other. Switching from measurement by the first transducer to measurement by the second transducer is automatically performed when the flow rate measured by the first transducer is less than a constant flow rate in the laminar flow region. It is configured to switch to Note that the switching time may be based on the difference between the propagation times of the ultrasonic waves in the forward direction and the reverse direction, instead of depending on the magnitude of the flow rate. The transmitting and receiving ports 16, 17, 18, and 19 of the transducers 2, 3, 5, and 6 protrude from the wall surfaces 14 and 15 so that a flow velocity is generated around the entire circumference.
[0018]
The rectangular flow path of Example 2 is a flow path with a small difference in flow velocity distribution state between laminar flow and turbulent flow, and an ultrasonic transducer is placed in the rectangular flow path in the long side (H) direction of the cross section of the flow path. By installing it diagonally, the difference becomes smaller, and the measurement accuracy is improved.
[0019]
In order to effectively measure the maximum flow velocity on the axis of the flow path in the laminar flow area, the ultrasonic wave propagation area by the second transducer pair is narrowed to suppress the spread of the ultrasonic beam. For this purpose, the directivity of the ultrasonic transmitter / receiver is increased, the launch surface is reduced, or the transmitter / receiver port provided in front of the transmitter / receiver is reduced.
[0020]
Example 3
FIG. 6A is the same view as FIG. 3B in the second embodiment, showing a cross section of the flow path 8A of the second embodiment, and is a rectangular cross section having a height H and a width W. 6 (b), 6 (c) and 6 (d) are cross-sectional shapes in another embodiment compared with FIG. 6 (a), and all the heights H are the same as those in the embodiment, but the vicinity of the center of the height H The widths of the upper part and the lower part of the height H are made smaller than those of FIG. By doing so, the maximum flow velocity on the axis of the flow path in the laminar flow region with a minute flow rate can be further increased, so that the measurement accuracy in the minute flow region can be improved and the measurement lower limit flow rate can be increased.
[0021]
【The invention's effect】
Since the ultrasonic flowmeter of the present invention is configured as described above, the measurement accuracy at a minute flow rate is improved, the measurement lower limit flow rate measurement on the minute flow rate side is further reduced, and the rangeability is expanded.
[0022]
In addition, since the transducer used for the second transducer pair is specialized in the measurement of a minute flow rate, it should not adversely affect the flow of small to large flows flowing between the first transducer pair. In a minute flow rate region, the flow does not disturb the propagation of the ultrasonic wave, a stable received wave can be obtained, and even a weak ultrasonic beam with a narrowed propagation region can be reliably received.
[0023]
And in invention of Claim 2, since the transmission wave by the 1st transducer pair spreads to the whole channel by using a rectangular channel section, it will be in the propagation state correlated with the section average flow velocity of the channel, Regardless of changes in flow velocity distribution such as laminar flow and turbulent flow, it is easy to obtain the desired cross-sectional average flow velocity directly, which also contributes to improving the accuracy of the flow meter. In addition, restrictions on the height direction of the flow path have been relaxed, and a larger flow rate can be measured.
[0024]
In the invention of claim 3, since the maximum flow velocity on the flow axis in the minute flow rate region can be reliably measured and acquired, the measurement accuracy from the surface can be improved.
[0025]
In the invention of claim 4 as well, the maximum flow velocity on the flow path axis in the laminar micro flow rate region can be increased, and this also contributes to the improvement of measurement accuracy.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of Embodiment 1 of the present invention.
FIG. 2 is a diagram for explaining a flow velocity distribution in a laminar flow region in the embodiment of FIG.
FIGS. 3A and 3B are schematic diagrams for explaining a flow path shape and an arrangement relationship of ultrasonic transducers according to a second embodiment of the present invention, in which FIG. 3A is a longitudinal sectional view, and FIG. 3B is a transverse sectional view;
4 is a schematic diagram for explaining a propagation state of ultrasonic waves in the embodiment of FIG.
5A and 5B are specific examples of the second embodiment of the present invention, in which FIG. 5A is a longitudinal plan view, and FIG. 5B is a longitudinal front view.
FIGS. 6A and 6B are schematic diagrams showing various types of rectangular cross-sections of a flow path, wherein (a), (b), (c), and (d) show different cross-sectional shapes.
[Explanation of symbols]
1 Flow tube 2, 3, 5, 6 Ultrasonic transducer

Claims (4)

流路を流れる流体の流れ中を、流れと斜め方向に超音波の送受を行う第1の送受波器対と、流路の軸線に沿って超音波の送受を行う第2の送受波器対とを具備し、
一定以上の流量域では第1の送受波器対で測定した伝搬時間に基づいて流量を計測し、一定未満の流量域では第2の送受波器対で測定した伝搬時間に基づいて流量を計測することを特徴とする超音波流量計。
In the flow of the fluid flowing through the flow path, a first transducer pair that transmits and receives ultrasonic waves in a direction oblique to the flow, and a second transducer pair that transmits and receives ultrasonic waves along the axis of the flow path And
In the flow rate range above a certain level, the flow rate is measured based on the propagation time measured by the first transducer pair, and in the flow rate range below a certain level, the flow rate is measured based on the propagation time measured by the second transducer pair. An ultrasonic flowmeter characterized by:
流れに直角な流路断面がほぼ矩形で、第1の送受波器対を構成する送受波器間を結ぶ直線が、流路の軸線に対して、流れに直角な前記流路断面の矩形長辺方向に傾斜していることを特徴とする請求項1記載の超音波流量計。The cross section of the flow path perpendicular to the flow is substantially rectangular, and the straight line connecting the transducers constituting the first transducer pair is the rectangular length of the cross section of the flow path perpendicular to the flow with respect to the flow axis. The ultrasonic flowmeter according to claim 1, wherein the ultrasonic flowmeter is inclined in a side direction. 第2の送受波器対を構成する送受波器が、超音波ビームの広がりを抑制する手段を備えていることを特徴とする請求項1又は2記載の超音波流量計。The ultrasonic flowmeter according to claim 1 or 2, wherein the transmitter / receiver constituting the second transmitter / receiver pair includes means for suppressing the spread of the ultrasonic beam. 流れに直角な流路断面のほぼ矩形の中央付近の幅を広くしたことを特徴とする請求項2記載の超音波流量計。3. The ultrasonic flowmeter according to claim 2, wherein the width near the center of the rectangular shape of the flow path cross section perpendicular to the flow is widened.
JP2001071824A 2001-03-14 2001-03-14 Ultrasonic flow meter Expired - Fee Related JP4675490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001071824A JP4675490B2 (en) 2001-03-14 2001-03-14 Ultrasonic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001071824A JP4675490B2 (en) 2001-03-14 2001-03-14 Ultrasonic flow meter

Publications (2)

Publication Number Publication Date
JP2002267513A JP2002267513A (en) 2002-09-18
JP4675490B2 true JP4675490B2 (en) 2011-04-20

Family

ID=18929497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001071824A Expired - Fee Related JP4675490B2 (en) 2001-03-14 2001-03-14 Ultrasonic flow meter

Country Status (1)

Country Link
JP (1) JP4675490B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4579220B2 (en) 2006-11-08 2010-11-10 パナソニック株式会社 Ultrasonic fluid measuring device
JP2011085500A (en) * 2009-10-16 2011-04-28 Tokyo Gas Co Ltd Ultrasonic flowmeter
JP6375519B2 (en) * 2016-01-12 2018-08-22 パナソニックIpマネジメント株式会社 Gas meter
JP7023105B2 (en) * 2017-12-26 2022-02-21 アズビル金門株式会社 Flow measuring tube

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05180678A (en) * 1991-12-28 1993-07-23 Tokyo Gas Co Ltd Ultrasonic flowmeter and method of measuring flow velocity by ultrasonic flowmeter
JPH09280916A (en) * 1996-04-11 1997-10-31 Aichi Tokei Denki Co Ltd Ultrasonic flowmeter
JPH1038649A (en) * 1996-07-22 1998-02-13 Matsushita Electric Ind Co Ltd Ultrasonic flowmeter
JPH11101674A (en) * 1997-09-26 1999-04-13 Matsushita Electric Ind Co Ltd Flow rate measuring apparatus
JP2002228500A (en) * 2001-02-05 2002-08-14 Matsushita Electric Ind Co Ltd Ultrasonic flowmeter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05180678A (en) * 1991-12-28 1993-07-23 Tokyo Gas Co Ltd Ultrasonic flowmeter and method of measuring flow velocity by ultrasonic flowmeter
JPH09280916A (en) * 1996-04-11 1997-10-31 Aichi Tokei Denki Co Ltd Ultrasonic flowmeter
JPH1038649A (en) * 1996-07-22 1998-02-13 Matsushita Electric Ind Co Ltd Ultrasonic flowmeter
JPH11101674A (en) * 1997-09-26 1999-04-13 Matsushita Electric Ind Co Ltd Flow rate measuring apparatus
JP2002228500A (en) * 2001-02-05 2002-08-14 Matsushita Electric Ind Co Ltd Ultrasonic flowmeter

Also Published As

Publication number Publication date
JP2002267513A (en) 2002-09-18

Similar Documents

Publication Publication Date Title
TW504568B (en) Ultrasonic flowmeter
JP4675490B2 (en) Ultrasonic flow meter
JP4535065B2 (en) Doppler ultrasonic flow meter
JP2013250254A (en) Multiple reflection prevention rectifier tube for ultrasonic spirometer
JP2956805B2 (en) Ultrasonic flow meter
JP2956804B2 (en) Ultrasonic flow meter
JP3732570B2 (en) Ultrasonic flow meter
JP3689975B2 (en) Ultrasonic flow meter
JPH09287989A (en) Ultrasonic flowmeter
JP3194270B2 (en) Ultrasonic flow meter
JP4604520B2 (en) Flow measuring device
JP2017215182A (en) Ultrasonic flowmeter and method for setting up ultrasonic flowmeter
JP2002039824A (en) Flow rate measurement device
JP4092977B2 (en) Flow measuring device
JPS58811Y2 (en) ultrasonic flow meter
JP2004212180A (en) Flow measurement device
JP3503578B2 (en) Flow measurement device
JP4325922B2 (en) Ultrasonic flow meter
JPH05180679A (en) Ultrasonic flow meter
JP2006126019A (en) Ultrasonic flowmeter
JP2001208585A (en) Flowmeter
JP3627729B2 (en) Flow measuring device
JPH1144561A (en) Ultrasonic flow rate and flow velocity meter
KR20140128708A (en) Ultra sonic Flow measuring Device
CN119063802A (en) Ultrasonic water meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees