JPH08313316A - Ultrasonic wave type flow meter - Google Patents

Ultrasonic wave type flow meter

Info

Publication number
JPH08313316A
JPH08313316A JP7120977A JP12097795A JPH08313316A JP H08313316 A JPH08313316 A JP H08313316A JP 7120977 A JP7120977 A JP 7120977A JP 12097795 A JP12097795 A JP 12097795A JP H08313316 A JPH08313316 A JP H08313316A
Authority
JP
Japan
Prior art keywords
flow rate
section
flow
ultrasonic
rate measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7120977A
Other languages
Japanese (ja)
Inventor
Motoyuki Nawa
基之 名和
Yukio Nagaoka
行夫 長岡
Kenzo Ochi
謙三 黄地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7120977A priority Critical patent/JPH08313316A/en
Publication of JPH08313316A publication Critical patent/JPH08313316A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE: To take flow rate measurement with high precision without increasing a pressure loss by using a flow rate measuring portion having a rectangular cross section. CONSTITUTION: A ultrasonic wave flow meter is equipped with a flow rate measuring portion 4 having a rectangular cross section, first ultrasonic wave vibrator 9 arranged sandwiching the flow rate measuring portion 4, second ultrasonic wave vibrator, and a flow rate computing portion computing a flow rate on the basis of the signal of the vibrator, and the short side length of the rectangular cross section of the flow rate measuring portion 4 is set so that the Reynolds number becomes within a laminar flow range when the Reynolds number is computed taking the length as a representative length, Thereby, the flow in the flow rate measuring portion 4 becomes a laminar flow without increasing a pressure loss so that flow rate measurement with high precision can be taken.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超音波により流量の計
測を行う超音波式流量計に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic flowmeter for measuring a flow rate by ultrasonic waves.

【0002】[0002]

【従来の技術】従来のこの種の計測装置は、図8に示す
ように、円形断面を有する測定部1の両端に超音波振動
子2と3を対向する様に設置し、この円形断面内での流
れが層流状態を維持するような寸法に半径を設定し、振
動子2から発した超音波を振動子3で検出するまでの時
間を計測し、この時間から流体の速度を演算し流量を算
出していた。
2. Description of the Related Art In a conventional measuring device of this type, as shown in FIG. 8, ultrasonic transducers 2 and 3 are installed so as to face each other at both ends of a measuring section 1 having a circular cross section. The radius is set so that the flow in Fig. 2 maintains a laminar flow state, the time until the ultrasonic wave emitted from the vibrator 2 is detected by the vibrator 3 is measured, and the velocity of the fluid is calculated from this time. The flow rate was calculated.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、円形断
面の流路を用いる場合、層流化を達成するためには半径
を小さくする必要があり、このため、断面積が小さくな
り圧力損失が大きくなるものであった。
However, when using a flow path having a circular cross section, it is necessary to make the radius small in order to achieve laminar flow, which results in a small cross-sectional area and a large pressure loss. It was a thing.

【0004】本発明は上記課題を解決するもので、測定
流路の断面を矩形状に形成し、その断面における短辺側
の長さを、この長さを用いて計算したレイノルズ数が層
流域になるように設定することにより、測定流路におけ
る流れの圧力損失を増加する事なく、しかも流れの層流
状態を維持しつつ乱流域への遷移状態を発生する事な
く、精度の良い流量計測を行うことを目的としている。
The present invention is to solve the above-mentioned problems. The measurement channel is formed in a rectangular cross section, and the length on the short side of the cross section is calculated by using this length. By setting so that the flow rate can be measured accurately without increasing the pressure loss of the flow in the measurement flow path, and without generating the transition state to the turbulent region while maintaining the laminar flow state of the flow. Is intended to do.

【0005】[0005]

【課題を解決するための手段】本発明は上記目的を達成
するために、断面が矩形状の流量測定部と、前記流量測
定部を挟んで配置された第一及び第二の超音波振動子
と、前記超音波振動子の信号を基に流量を算出する流量
演算部とを備え、前記流量測定部の矩形断面における短
辺の長さを、前記長さを代表長さとして計算したレイノ
ルズ数が層流域になる様に設定したものである。
In order to achieve the above object, the present invention provides a flow rate measuring section having a rectangular cross section, and first and second ultrasonic transducers arranged so as to sandwich the flow rate measuring section. And a flow rate calculation unit that calculates a flow rate based on the signal of the ultrasonic transducer, and the Reynolds number calculated by using the length as a representative length for the length of the short side in the rectangular cross section of the flow rate measurement unit. Is set so that it becomes a laminar basin.

【0006】また、流量測定部の流入口、および流出口
を滑らかな曲面で形成したものである。
Further, the inflow port and the outflow port of the flow rate measuring section are formed by smooth curved surfaces.

【0007】また、断面が矩形状の流量測定部と、前記
流量測定部の一方側に配置された第一及び第二の超音波
振動子と、前記流量測定部の他方側に配置され第一の超
音波振動子から発せられた超音波を第二の超音波振動子
に反射させる反射板と、前記振動子の信号を基に流量を
算出する流量演算部とを備え、前記流量測定部の矩形断
面における短辺の長さを、前記長さを代表長さとして計
算したレイノルズ数が層流域になる様に設定したもので
ある。
Further, the flow rate measuring section having a rectangular cross section, the first and second ultrasonic transducers arranged on one side of the flow rate measuring section, and the first and second ultrasonic transducers arranged on the other side of the flow rate measuring section. The ultrasonic wave emitted from the ultrasonic oscillator of the second ultrasonic oscillator is reflected by a reflector, and a flow rate calculation unit that calculates a flow rate based on the signal of the oscillator is provided, The length of the short side in the rectangular cross section is set so that the Reynolds number calculated by using the length as a representative length is a laminar flow region.

【0008】また、断面が矩形状の流量測定部と、前記
流量測定部の上流および下流に配置された上流、下流室
と、前記それぞれの室に配置された第一及び第二の超音
波振動子と、前記振動子の信号を基に流量を算出する流
量演算部とを備え、前記流量測定部の矩形断面における
短辺の長さを、前記長さを代表長さとして計算したレイ
ノルズ数が層流域になる様に設定したものである。
Further, a flow rate measuring section having a rectangular cross section, upstream and downstream chambers disposed upstream and downstream of the flow rate measuring section, and first and second ultrasonic vibrations disposed in the respective chambers. A flow rate calculation unit that calculates a flow rate based on the signal of the vibrator, and the Reynolds number calculated by using the length as a representative length for the length of the short side in the rectangular cross section of the flow rate measurement unit. It is set so that it becomes a laminar basin.

【0009】[0009]

【作用】本発明は上記した構成により、流量測定部にお
ける流量測定が圧力損失を増加させることなく層流状態
にて行われ、乱流への遷移状態という流速分布が不規則
に変動する状態を経ずに計測が行われ、精度の良い計測
を行うことができるものである。
According to the present invention, with the above configuration, the flow rate measurement in the flow rate measuring section is performed in the laminar flow state without increasing the pressure loss, and the transition state to the turbulent flow state in which the flow velocity distribution fluctuates irregularly. The measurement can be performed without passing through, and accurate measurement can be performed.

【0010】[0010]

【実施例】以下、本発明の第1の実施例を図1〜図4を
参照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to FIGS.

【0011】図1〜図3において、4は流量測定部であ
り、5は流量測定部4の上流に設けられた上流室、6は
流量測定部4の下流に設けられた下流室である。7は上
流室5に接続された入口部、8は下流室6に接続された
出口部である。
1 to 3, 4 is a flow rate measuring unit, 5 is an upstream chamber provided upstream of the flow rate measuring unit 4, and 6 is a downstream chamber provided downstream of the flow rate measuring unit 4. Reference numeral 7 is an inlet portion connected to the upstream chamber 5, and 8 is an outlet portion connected to the downstream chamber 6.

【0012】9は第一の超音波振動子であり、10は第
二の超音波振動子である。11は第一の超音波振動子9
の配置により生じる窪みであり、12は第二の超音波振
動子10の配置により生じる窪みである。
Reference numeral 9 is a first ultrasonic vibrator, and 10 is a second ultrasonic vibrator. 11 is the first ultrasonic transducer 9
Is a dent caused by the arrangement, and 12 is a dent caused by the arrangement of the second ultrasonic transducer 10.

【0013】13は流量計測部4の流入口、14は流出
口である。図4において、15は第一、および第二の超
音波振動子9および10からの信号を受けて流量演算を
行う流量演算部である。その中で16はスタート信号発
生部、17は送信部、18は受信部、19は切換部であ
る。
Reference numeral 13 is an inflow port of the flow rate measuring unit 4, and 14 is an outflow port. In FIG. 4, reference numeral 15 is a flow rate calculation unit that receives signals from the first and second ultrasonic transducers 9 and 10 and performs flow rate calculation. Among them, 16 is a start signal generating section, 17 is a transmitting section, 18 is a receiving section, and 19 is a switching section.

【0014】送信部17はトリガ信号発生部20、およ
び発振部21から成立っている。受信部18は受信信号
の増幅部22、および基準値との比較部23から成立っ
ている。
The transmission section 17 comprises a trigger signal generation section 20 and an oscillation section 21. The receiving unit 18 includes an amplifying unit 22 for a received signal and a comparing unit 23 with a reference value.

【0015】24は繰返し部、25は計時部、26は演
算部である。次に作動を述べる。
Reference numeral 24 is a repeating unit, 25 is a time counting unit, and 26 is an arithmetic unit. Next, the operation will be described.

【0016】流体は入口部7より流入し、上流室5を経
た後、流量測定部4に入り、その後下流室6を経て、出
口部8より流出する。
The fluid flows in through the inlet portion 7, passes through the upstream chamber 5, enters the flow rate measuring portion 4, and then passes through the downstream chamber 6 and flows out through the outlet portion 8.

【0017】流量測定部4はその断面が矩形状に形成さ
れており、その短辺の長さ(h)を、前記長さを代表長
さとして計算したレイノルズ数が層流域になる様に設定
してある。
The flow rate measuring unit 4 has a rectangular cross section, and the length (h) of its short side is set so that the Reynolds number calculated by using the length as a representative length will be a laminar flow region. I am doing it.

【0018】すなわち、計測される最大の流速をv(m
ax)としたとき、動粘性係数をνとするとレイノルズ
数(Re)は次式により定まる。
That is, the maximum flow velocity measured is v (m
ax), the Reynolds number (Re) is determined by the following equation, where kinematic viscosity coefficient is ν.

【0019】 Re=v(max)h/ν (1) 一方、流れが層流域になるためには、次式が満足される
ことが必要である。
Re = v (max) h / ν (1) On the other hand, in order for the flow to reach the laminar flow region, it is necessary to satisfy the following equation.

【0020】 Re≦2300 (2) したがって、(1)、(2)を満たす短辺長さ(h)は
次式の範囲で定められる。
Re ≦ 2300 (2) Therefore, the short side length (h) satisfying (1) and (2) is determined within the range of the following equation.

【0021】h≦2300・ν/v(max) この様な状態でスタート信号発生部16から信号が入る
と、トリガ信号発生部20が働き、発振部21により信
号が切換部19に送られる。この切換部19は、当初は
第一の超音波振動子9に送信部17が、第二の超音波振
動子10に受信部18が接続される様設定されている。
従って、上記トリガ信号により第一の超音波振動子9よ
り超音波信号が流量測定部4内に発せられる。この信号
は第2の超音波振動子10により受けられ、増幅部22
により増幅され、比較部23にて基準信号と比較され、
基準値を越える信号が得られると、再度トリガ20を駆
動する。この過程は繰返し部24で設定された回数だけ
行われる。
H ≦ 2300 · ν / v (max) When a signal is input from the start signal generator 16 in such a state, the trigger signal generator 20 operates and the oscillator 21 sends the signal to the switching unit 19. The switching unit 19 is initially set so that the transmitting unit 17 is connected to the first ultrasonic transducer 9 and the receiving unit 18 is connected to the second ultrasonic transducer 10.
Therefore, an ultrasonic signal is emitted from the first ultrasonic transducer 9 into the flow rate measuring unit 4 by the trigger signal. This signal is received by the second ultrasonic transducer 10, and the amplification unit 22
Is amplified by and compared with the reference signal in the comparison unit 23,
When the signal exceeding the reference value is obtained, the trigger 20 is driven again. This process is performed the number of times set by the repeater 24.

【0022】所定の繰返し回数が終わると計時部25に
信号が送られ、トリガ信号発生からこのとき送られた信
号までの経過時間(T1)を計時する。また、一方、所
定の回数の繰返しが終了すると、繰返し部24より切換
え部19へ信号が送られ、送信部17を第2の超音波振
動子10に、受信部18を第1の超音波振動子9に接続
する。
When the predetermined number of repetitions has been completed, a signal is sent to the timer unit 25, and the elapsed time (T1) from the generation of the trigger signal to the signal sent at this time is counted. On the other hand, when the predetermined number of repetitions are completed, a signal is sent from the repeating unit 24 to the switching unit 19, and the transmitting unit 17 is used as the second ultrasonic transducer 10 and the receiving unit 18 is used as the first ultrasonic vibration. Connect to child 9.

【0023】また、これと同時に再度、トリガ信号発生
部20への駆動信号も送られ、上記と同様の動作が流れ
と逆方向に対して行われ、経過時間(T2)が計測され
る。
At the same time, the drive signal to the trigger signal generator 20 is also sent again, the same operation as above is performed in the opposite direction to the flow, and the elapsed time (T2) is measured.

【0024】この様にして測定された経過時間T1、お
よびT2をもとに以下の演算式により演算部26にて流
量が算出される。
Based on the elapsed times T1 and T2 measured in this way, the flow rate is calculated by the calculation unit 26 by the following calculation formula.

【0025】いま、流れと超音波伝搬経路とのなす角を
θとし、また流量測定部の長さをLとすると、流速vは
以下の式にて算出される。
Now, assuming that the angle between the flow and the ultrasonic wave propagation path is θ and the length of the flow rate measuring portion is L, the flow velocity v is calculated by the following equation.

【0026】 v=L/2cosθ(1/T1−1/T2) 流量(Q)はこの流速に流量測定部4の断面積(s)を
乗じて算出される。
V = L / 2cos θ (1 / T1-1 / T2) The flow rate (Q) is calculated by multiplying this flow rate by the cross-sectional area (s) of the flow rate measuring unit 4.

【0027】Q=k・v・s ここでkは測定流速から平均流速を求めるための流量補
正係数である。
Q = k · v · s Here, k is a flow rate correction coefficient for obtaining the average flow rate from the measured flow rate.

【0028】この様に流量測定部4の短辺長さを設定す
ることにより、流量計測を層流状態で行うことができ、
流速分布形状が不安定な遷移状態での計測を避けること
が出来るため、測定域全域にわたり流量補正係数として
層流域の値を一定して用いることができ、圧力損失を増
加させることなく精度の良い流量測定が実現するもので
ある。
By setting the short side length of the flow rate measuring unit 4 in this manner, the flow rate can be measured in a laminar flow state,
Since it is possible to avoid measurement in the transition state where the flow velocity distribution shape is unstable, it is possible to use a constant value in the laminar flow region as the flow rate correction coefficient over the entire measurement region, and it is highly accurate without increasing pressure loss. Flow rate measurement is realized.

【0029】次に第2の実施例について説明する。図5
において、流量計測部4の流入口27、および流出口2
8が円弧状になっているところ以外は第一の実施例と同
じである。
Next, a second embodiment will be described. Figure 5
In, the inflow port 27 of the flow rate measuring unit 4 and the outflow port 2
It is the same as the first embodiment except that 8 is arcuate.

【0030】次に作動を述べる。流体の計測は流量測定
部4にて行われるが、その際、流量計測部4の流入口2
7が円弧状に形成されているため、上流室5から流量測
定部4への流入に際して乱れを生じることなく流量測定
部4への導入が行なわれる。これにより測定が層流状態
で行なわれることをより保証するものである。
Next, the operation will be described. The fluid is measured by the flow rate measuring unit 4, and at that time, the inflow port 2 of the flow rate measuring unit 4
Since 7 is formed in an arc shape, introduction into the flow rate measuring unit 4 is performed without causing turbulence when flowing into the flow rate measuring unit 4 from the upstream chamber 5. This further ensures that the measurement is carried out in laminar flow.

【0031】次に第3の実施例について説明する。図6
において、流量計測部4の同一側に第一の超音波振動子
29、および第2の超音波振動子30があり、反対側に
反射板31が設置されているところ以外は第一の実施例
と同じである。
Next, a third embodiment will be described. Figure 6
In the first embodiment, except that the first ultrasonic transducer 29 and the second ultrasonic transducer 30 are provided on the same side of the flow rate measuring unit 4 and the reflecting plate 31 is provided on the opposite side thereof. Is the same as.

【0032】次に作動を述べる。流体の計測は流量測定
部4にて行われるが、その際、流量計測部4における超
音波伝搬経路は、第一の超音波振動子29からでて、反
射板31により反射され、その後第二の超音波振動子3
0に到達する。これにより流速vは流量計測部4の断面
を2度通過するため、より平均化された流速を得ること
ができるものである。
Next, the operation will be described. The measurement of the fluid is performed by the flow rate measurement unit 4, and at that time, the ultrasonic wave propagation path in the flow rate measurement unit 4 is emitted from the first ultrasonic transducer 29, reflected by the reflection plate 31, and then the second ultrasonic wave. Ultrasonic transducer 3
Reach 0. As a result, the flow velocity v passes through the cross section of the flow rate measurement unit 4 twice, so that a more averaged flow velocity can be obtained.

【0033】次に第4の実施例について説明する。図7
において、第一の超音波振動子32、および第2の超音
波振動子33をそれぞれ、上流室5、および下流室6に
配置してあるところ以外は第一の実施例と同じである。
Next, a fourth embodiment will be described. Figure 7
2 is the same as that of the first embodiment except that the first ultrasonic transducer 32 and the second ultrasonic transducer 33 are arranged in the upstream chamber 5 and the downstream chamber 6, respectively.

【0034】次に作動を述べる。流速の計測は上流室5
に配置した第一の超音波振動子32と下流室6に配置し
た第2の超音波振動子33との間で行われる。このとき
それぞれの振動子は流量測定部4から離れて設置されて
いるため、流量測定部4に超音波振動子を配置する場合
に形成される窪みが存在せず、流量測定部4において流
れを乱流状態に遷移させてしまうようなことが起こらな
い。したがって、より精度の高い計測を行うことができ
るものである。
Next, the operation will be described. Flow velocity is measured in the upstream chamber 5
Between the first ultrasonic transducer 32 arranged in the lower chamber 6 and the second ultrasonic transducer 33 arranged in the downstream chamber 6. At this time, since the respective transducers are installed away from the flow rate measuring unit 4, there is no dent formed when the ultrasonic transducer is arranged in the flow rate measuring unit 4, and the flow is measured in the flow rate measuring unit 4. It does not cause a transition to a turbulent state. Therefore, more accurate measurement can be performed.

【0035】[0035]

【発明の効果】以上のように本発明によれば次の効果が
得られる。
As described above, according to the present invention, the following effects can be obtained.

【0036】(1)圧力損失を増加させることなく流量
計測を層流状態で行うことができ、流速分布の形状が不
安定な遷移状態を経過する事なく精度の良い流量測定が
実現する。
(1) The flow rate can be measured in a laminar flow state without increasing the pressure loss, and the flow rate distribution can be accurately measured without passing through an unstable transition state.

【0037】(2)流量計測部の流入口が円弧状に形成
されているため、流量測定部における層流の測定状態を
より保証することができる。
(2) Since the inflow port of the flow rate measuring section is formed in an arc shape, the state of laminar flow measurement in the flow rate measuring section can be more guaranteed.

【0038】(3)流量計測部における超音波伝搬経路
をv字状とすることにより超音波伝搬経路が流量計測部
の断面を2度通過することになり、より平均化された流
速を得ることができる。
(3) By making the ultrasonic wave propagation path in the flow rate measuring section into a V-shape, the ultrasonic wave propagation path will pass through the cross section of the flow rate measuring section twice, so that a more averaged flow velocity can be obtained. You can

【0039】(4)流速計測を上流室に配置した第一の
超音波振動子と下流室に配置した第2の超音波振動子間
で行うことにより、それぞれの振動子は流量測定部から
離れて設置されるため、流量測定部に超音波振動子を配
置する場合に形成される窪みが存在せず、流量測定部に
おいて流れを乱流状態に遷移させてしまうようなことが
起こらない。したがって、より精度の高い計測を行うこ
とができる。
(4) By measuring the flow velocity between the first ultrasonic transducer arranged in the upstream chamber and the second ultrasonic transducer arranged in the downstream chamber, each transducer is separated from the flow rate measuring section. Since there is no dent formed when the ultrasonic transducer is placed in the flow rate measurement unit, the flow rate measurement unit does not transition the flow to a turbulent state. Therefore, more accurate measurement can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の超音波式流量計の垂直
断面図
FIG. 1 is a vertical sectional view of an ultrasonic flowmeter according to a first embodiment of the present invention.

【図2】同流量計における水平断面図FIG. 2 is a horizontal sectional view of the same flow meter.

【図3】同流量計における斜視図FIG. 3 is a perspective view of the flow meter.

【図4】同流量計における制御ブロック図FIG. 4 is a control block diagram of the flow meter.

【図5】本発明の第2の実施例の超音波式流量計の水平
断面図
FIG. 5 is a horizontal sectional view of an ultrasonic flowmeter according to a second embodiment of the present invention.

【図6】本発明の第3の実施例の超音波式流量計の水平
断面図
FIG. 6 is a horizontal sectional view of an ultrasonic flowmeter according to a third embodiment of the present invention.

【図7】本発明の第4の実施例の超音波式流量計の水平
断面図
FIG. 7 is a horizontal sectional view of an ultrasonic flowmeter according to a fourth embodiment of the present invention.

【図8】従来の超音波式流量計の垂直断面図FIG. 8 is a vertical sectional view of a conventional ultrasonic flowmeter.

【符号の説明】[Explanation of symbols]

4 流量測定部 5 上流室 6 下流室 9、29、32 第一の超音波振動子 10、30、33 第二の超音波振動子 15 流量演算部 27 流入口 28 流出口 31 反射板 4 Flow Rate Measuring Section 5 Upstream Chamber 6 Downstream Chamber 9, 29, 32 First Ultrasonic Transducer 10, 30, 33 Second Ultrasonic Transducer 15 Flow Rate Calculator 27 Inlet 28 Outlet 31 Reflector

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】断面が矩形状の流量測定部と、前記流量測
定部を挟んで配置された第一及び第二の超音波振動子
と、前記超音波振動子の信号を基に流量を算出する流量
演算部とを備え、前記流量測定部の矩形断面における短
辺の長さを、前記長さを代表長さとして計算したレイノ
ルズ数が層流域になる様に設定した超音波式流量計。
1. A flow rate measuring section having a rectangular cross section, first and second ultrasonic transducers arranged with the flow rate measuring section sandwiched therebetween, and a flow rate calculated based on signals from the ultrasonic transducers. An ultrasonic flowmeter, comprising: a flow rate calculating section for controlling the flow rate measuring section so that the Reynolds number calculated with the length as a representative length is a laminar flow region.
【請求項2】流量測定部の流入口、および流出口を滑ら
かな曲面で形成した請求項1記載の超音波式流量計。
2. The ultrasonic flowmeter according to claim 1, wherein the inflow port and the outflow port of the flow rate measuring section are formed by smooth curved surfaces.
【請求項3】断面が矩形状の流量測定部と、前記流量測
定部の一方側に配置された第一及びの第二超音波振動子
と、前記流量測定部の他方側に配置され第一の超音波振
動子から発せられた超音波を第二の超音波振動子に反射
させる反射板と、前記振動子の信号を基に流量を算出す
る流量演算部とを備え、前記流量測定部の矩形断面にお
ける短辺の長さを、前記長さを代表長さとして計算した
レイノルズ数が層流域になる様に設定した超音波式流量
計。
3. A flow rate measuring section having a rectangular cross section, first and second ultrasonic transducers arranged on one side of the flow rate measuring section, and a first flow rate measuring section arranged on the other side of the flow rate measuring section. The ultrasonic wave emitted from the ultrasonic oscillator of the second ultrasonic oscillator is reflected by a reflector, and a flow rate calculation unit that calculates a flow rate based on the signal of the oscillator is provided, An ultrasonic flowmeter in which the length of the short side in a rectangular cross section is set such that the Reynolds number calculated by using the length as a representative length is a laminar flow region.
【請求項4】断面が矩形状の流量測定部と、前記流量測
定部の上流および下流に配置された上流、下流室と、前
記それぞれの室に配置された第一及び第二の超音波振動
子と、前記振動子の信号を基に流量を算出する流量演算
部とを備え、前記流量測定部の矩形断面における短辺の
長さを、前記長さを代表長さとして計算したレイノルズ
数が層流域になる様に設定した超音波式流量計。
4. A flow measuring unit having a rectangular cross section, upstream and downstream chambers arranged upstream and downstream of the flow measuring unit, and first and second ultrasonic vibrations arranged in the respective chambers. A flow rate calculation unit that calculates a flow rate based on the signal of the vibrator, and the Reynolds number calculated by using the length as a representative length for the length of the short side in the rectangular cross section of the flow rate measurement unit. An ultrasonic flow meter set to be in the laminar flow region.
JP7120977A 1995-05-19 1995-05-19 Ultrasonic wave type flow meter Pending JPH08313316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7120977A JPH08313316A (en) 1995-05-19 1995-05-19 Ultrasonic wave type flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7120977A JPH08313316A (en) 1995-05-19 1995-05-19 Ultrasonic wave type flow meter

Publications (1)

Publication Number Publication Date
JPH08313316A true JPH08313316A (en) 1996-11-29

Family

ID=14799732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7120977A Pending JPH08313316A (en) 1995-05-19 1995-05-19 Ultrasonic wave type flow meter

Country Status (1)

Country Link
JP (1) JPH08313316A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998048247A1 (en) * 1997-04-18 1998-10-29 Matsushita Electric Industrial Co., Ltd. Ultrasonic flowmeter
JP2013186032A (en) * 2012-03-09 2013-09-19 Panasonic Corp Flow rate measurement unit
WO2021086699A1 (en) * 2019-10-28 2021-05-06 Edwards Lifesciences Corporation In-line intravenous flow probe utilizing thermal mass flow characterization

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60115810A (en) * 1983-11-28 1985-06-22 Hitachi Ltd Ultrasonic flowmeter
JPH05180677A (en) * 1991-12-28 1993-07-23 Tokyo Gas Co Ltd Ultrasonic flow meter
JPH05506092A (en) * 1990-03-29 1993-09-02 シーメンス アクチエンゲゼルシヤフト Improvement of ultrasonic gas/liquid flow meter
JPH06249690A (en) * 1993-03-01 1994-09-09 Gomi Shingo Ultrasonic flowmeter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60115810A (en) * 1983-11-28 1985-06-22 Hitachi Ltd Ultrasonic flowmeter
JPH05506092A (en) * 1990-03-29 1993-09-02 シーメンス アクチエンゲゼルシヤフト Improvement of ultrasonic gas/liquid flow meter
JPH05180677A (en) * 1991-12-28 1993-07-23 Tokyo Gas Co Ltd Ultrasonic flow meter
JPH06249690A (en) * 1993-03-01 1994-09-09 Gomi Shingo Ultrasonic flowmeter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998048247A1 (en) * 1997-04-18 1998-10-29 Matsushita Electric Industrial Co., Ltd. Ultrasonic flowmeter
US6216544B1 (en) 1997-04-18 2001-04-17 Matsushita Electric Industrial Co., Ltd. Ultrasonic flowmeter having reduced phase difference
JP2013186032A (en) * 2012-03-09 2013-09-19 Panasonic Corp Flow rate measurement unit
WO2021086699A1 (en) * 2019-10-28 2021-05-06 Edwards Lifesciences Corporation In-line intravenous flow probe utilizing thermal mass flow characterization

Similar Documents

Publication Publication Date Title
JP4186645B2 (en) Ultrasonic flow measuring device
EP0391954B1 (en) Fluidic flowmeter
WO2004074783A1 (en) Ultrasonic type fluid measuring device
JP3528347B2 (en) Ultrasonic flow measurement device
JP2895704B2 (en) Ultrasonic flow meter
JPH08313316A (en) Ultrasonic wave type flow meter
JP3692560B2 (en) Ultrasonic flow meter
JP3521622B2 (en) Ultrasonic flow meter and ultrasonic flow meter
JP4045974B2 (en) Flow measuring device
JP3497279B2 (en) Ultrasonic flow meter
JP3689975B2 (en) Ultrasonic flow meter
JPH09189589A (en) Flow rate measuring apparatus
JP3528436B2 (en) Ultrasonic flow meter and current meter
JP2004251700A (en) Fluid measuring device
JP2021124358A (en) Ultrasonic flowmeter
RU27218U1 (en) PRIMARY TRANSMITTER OF ULTRASONIC FLOW METER
JP3383577B2 (en) Ultrasonic flow meter and ultrasonic flow measurement method
JP4048871B2 (en) Ultrasonic flow measuring device
JP3473491B2 (en) Ultrasonic flow meter
JP2001208585A (en) Flowmeter
JP3577058B2 (en) Ultrasonic flow velocity measuring device
JP3399938B2 (en) Flow measurement method and ultrasonic flow meter
SU1476311A1 (en) Ultrasonic flowmeter
JP2853508B2 (en) Gas flow meter
JP2002107194A (en) Ultrasonic wave flow meter

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040601

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040928