JPH05180677A - Ultrasonic flow meter - Google Patents

Ultrasonic flow meter

Info

Publication number
JPH05180677A
JPH05180677A JP3359507A JP35950791A JPH05180677A JP H05180677 A JPH05180677 A JP H05180677A JP 3359507 A JP3359507 A JP 3359507A JP 35950791 A JP35950791 A JP 35950791A JP H05180677 A JPH05180677 A JP H05180677A
Authority
JP
Japan
Prior art keywords
pipe
ultrasonic
branch pipe
flow
main pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3359507A
Other languages
Japanese (ja)
Other versions
JP2956804B2 (en
Inventor
Takashi Ueki
孝 植木
Kazumitsu Nukui
一光 温井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP3359507A priority Critical patent/JP2956804B2/en
Publication of JPH05180677A publication Critical patent/JPH05180677A/en
Application granted granted Critical
Publication of JP2956804B2 publication Critical patent/JP2956804B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To enable an accuracy for measuring flow rate to be improved by providing a branch pipe at a main pipe for circulating a fluid and then placing a pair of ultrasonic transmitter/receiver oppositely on a pipe wall of the branch pipe. CONSTITUTION:In an ultrasonic flow meter 10, a branch pipe 12 is provided at a main pipe 11 for circulating fluid and a pair of ultrasonic transmitter/ receiver 13 are placed oppositely on a pipe wall of the branch pipe 12. In this case, an introduction pipe 14 is branched at right angle for a pipe axis in the branch pipe 12, a flow-dividing part 15 is in parallel to the pipe axis of the main pipe 11, and a reflex part 16 is formed to be at right angle for the pipe axis of the main pipe 11. Also, the ultrasonic transmitter/receiver 13 is mounted so that an ultrasonic propagation path at a specified angle theta for the pipe axis. An inner diameter (d) of the flow-dividing part 15 is set so that 2320>Re=V0.d/nu, where R3: Reynolds number, V0: face average flow rate of pipe, nu: kinetic viscosity coefficient), thus resulting in measurement in laminar flow and enabling the flow rate to be measured highly accurately.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超音波を用いて管内の
流速を測定することにより、流体の流量を求めるように
した超音波流量計に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic flowmeter for measuring the flow rate of a fluid by measuring the flow velocity in a pipe using ultrasonic waves.

【0002】[0002]

【従来の技術】通常、管内の流体の流量は管の面平均流
速V0に、管断面積等を乗ずることにより得られるが、
流量測定手段のうちの一つとして、例えば、図9に示す
ように、超音波流量計1は、一対の超音波送受波器2を
管壁3に相対して取り付け、交互に超音波パルスを伝播
させて流速を測定するようにした流速測定型の流量計で
ある。この測定される流速は、超音波の伝播路(測線)の
線平均流速V1である。なお、管内における流体の面平
均流速分布は Re=V0・D/ν…………(1) (ただし、Re:レイノルズ数、D:管内径、ν:動粘
性係数)により求められる。ここで、Re<2320の
流れは層流であり、Re≒4000以上の流れは乱流と
いわれ、図10にその分布の一例を示す。層流におい
て、線平均流速V1と面平均流速V0の比をκとすると、 κ=V1/V0………(2) この場合、κ=4/3で一定である。乱流においては、
いくつかの報告があるが、ここではゲ・イ・ビルゲルに
よるものを適用するものとする。レイノルズ数Reとκ
の関係を図示すると、図11の通りである。
2. Description of the Related Art Normally, the flow rate of a fluid in a pipe is obtained by multiplying the surface average flow velocity V 0 of the pipe by a pipe cross-sectional area or the like.
As one of the flow rate measuring means, for example, as shown in FIG. 9, an ultrasonic flow meter 1 has a pair of ultrasonic wave transmitters / receivers 2 mounted on a tube wall 3 so as to face each other and alternately generate ultrasonic pulses. It is a flow velocity measurement type flow meter that is made to propagate and measure the flow velocity. The measured flow velocity is the line average flow velocity V 1 of the ultrasonic propagation path (measurement line). The surface average flow velocity distribution of the fluid in the pipe is obtained by Re = V 0 · D / ν (1) (where Re: Reynolds number, D: pipe inner diameter, ν: kinematic viscosity coefficient). Here, the flow of Re <2320 is a laminar flow, and the flow of Re≈4000 or more is called turbulent flow. An example of the distribution is shown in FIG. In the laminar flow, if the ratio of the linear average flow velocity V 1 to the surface average flow velocity V 0 is κ, κ = V 1 / V 0 (2) In this case, κ = 4/3, which is constant. In turbulence,
There are several reports, but here, the one by Ge i Birgel is applied. Reynolds number Re and κ
FIG. 11 shows the relationship of the above.

【0003】ところで、実際の流量測定では、通常、乱
流域での計測となり、その乱流域での流量Qは、 Q=V0・S・3600=V1/κ・πD2/4・3600(m3/H)……(3) (ただし、V0:面平均流速、S:断面積、V1:線平均
流速、κ:レイノルズ数に応じた流速補正係数)より求
められる。
[0003] In the actual flow rate measurement, usually, it becomes a measure of the turbulent basin, the flow rate Q in the turbulent basin, Q = V 0 · S · 3600 = V 1 / κ · πD 2/4 · 3600 ( m 3 / H) (3) (where, V 0 : surface average flow velocity, S: cross-sectional area, V 1 : linear average flow velocity, κ: flow velocity correction coefficient according to Reynolds number).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、(3)式
におけるκは、乱流域では、図11に示すようにレイノ
ルズ数Re、すなわち面平均流速V0により変化するた
め、広い流量範囲にわたつて高い精度の値を求めること
は困難である。本発明はかかる課題を鑑みてなされたも
のであって、κが一定である層流域で計測できるように
超音波流量計を構成することにより、流量の測定値の精
度を向上させることを目的とする。
However, in the turbulent flow range, κ in the equation (3) varies depending on the Reynolds number Re, that is, the surface average flow velocity V 0 , as shown in FIG. It is difficult to obtain a highly accurate value. The present invention has been made in view of the above problems, and an object thereof is to improve the accuracy of the measured value of the flow rate by configuring the ultrasonic flow meter so that it can be measured in the laminar flow region where κ is constant. To do.

【0005】[0005]

【課題を解決するための手段】前記した課題を解決する
ために、本発明は、流体を流通させる主管に、分岐管を
設け、この分岐管の管壁に一対の超音波送受波器を相対
して配置することを特徴とする。また、本発明は、流体
を流通させる主管に、分岐管を設け、この分岐管におい
て、分岐管の管軸に一致するように一対の超音波送受波
器を配設することを特徴とする。また、前記分岐管にお
いて、流体の導入部を主管中間部に突出させてなること
を特徴とするものである。また、前記分岐管の上流側を
主管内において、直径方向に延在させると共に、分岐管
の上流面に流体の導入穴を穿設することを特徴とするも
のである。さらに、前記主管に、ハネカム状に分隔した
層流管を配置したことを特徴とするものである。
In order to solve the above-mentioned problems, the present invention provides a branch pipe in a main pipe through which a fluid circulates, and a pair of ultrasonic transducers are provided on the pipe wall of the branch pipe. It is characterized by being arranged. Further, the present invention is characterized in that a branch pipe is provided in a main pipe through which a fluid flows, and in this branch pipe, a pair of ultrasonic transducers is arranged so as to match the pipe axis of the branch pipe. Further, in the above-mentioned branch pipe, a fluid introduction portion is projected to an intermediate portion of the main pipe. Further, the present invention is characterized in that the upstream side of the branch pipe is diametrically extended in the main pipe, and a fluid introduction hole is formed in the upstream surface of the branch pipe. Further, a laminar flow pipe separated in a honeycomb shape is arranged in the main pipe.

【0006】[0006]

【作用】Re=V0・D/νの関係から、主管の内径D
を大きくすることなく、主管に設けた内径の小さい分岐
管に超音波送受波器を配設するようにすれば、Reの値
が2320未満である層流域での流量測定が可能とな
る。層流域では、κの値が一定となるため、高い精度の
流量を求めることができる。
[Function] From the relation of Re = V 0 · D / ν, the inner diameter D of the main pipe
If the ultrasonic wave transmitter / receiver is arranged in a branch pipe having a small inner diameter provided in the main pipe without increasing the value, the flow rate can be measured in the laminar flow region in which the value of Re is less than 2320. Since the value of κ is constant in the laminar flow region, it is possible to obtain a highly accurate flow rate.

【0007】[0007]

【実施例】次に、本発明にかかる超音波流量計につい
て、添付の図面を参照しながら以下説明する。図1にお
いて、参照符号10は第1の実施例にかかる超音波流量
計10を示し、超音波流量計10は、流体を流通させる
主管11に、分岐管12を設け、この分岐管12の管壁
に一対の超音波送受波器13を相対して配置する構成の
ものである。この場合、分岐管12において、導入部1
4は主管11の管軸に対して直角状に分岐形成され、分
流部15は主管11の管軸に平行であり、還流部16は
主管11の管軸に対して直角状に形成される。また、前
記超音波送受波器13は、管軸に対して超音波伝播路を
所定角度θをなすように取り付けられる。なお、前記分
流部15の内径dは、2320>Re=V0・d/νを
満たすように設定される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an ultrasonic flowmeter according to the present invention will be described below with reference to the accompanying drawings. In FIG. 1, reference numeral 10 indicates an ultrasonic flowmeter 10 according to a first embodiment. The ultrasonic flowmeter 10 includes a branch pipe 12 in a main pipe 11 through which a fluid flows, and a pipe of the branch pipe 12 is provided. This is a configuration in which a pair of ultrasonic wave transmitters / receivers 13 are arranged to face each other on a wall. In this case, in the branch pipe 12, the introduction part 1
4 is branched and formed at a right angle to the pipe axis of the main pipe 11, the flow dividing portion 15 is parallel to the pipe axis of the main pipe 11, and the reflux portion 16 is formed at a right angle to the pipe axis of the main pipe 11. The ultrasonic wave transmitter / receiver 13 is attached so that the ultrasonic wave propagation path forms a predetermined angle θ with respect to the tube axis. The inner diameter d of the flow dividing portion 15 is set so as to satisfy 2320> Re = V 0 · d / ν.

【0008】かかる超音波流量計10において、分岐管
12に導入されて、分流部15を流れる流体の流速は、
ほぼ、主管11における流速と同一である。しかも、分
流部15内径dを2320>Re=V0・d/νを満た
すように設定すれば、層流における測定となり、κは略
一定であるので、流量を高い精度で、計測することがで
きる。
In such an ultrasonic flowmeter 10, the flow velocity of the fluid introduced into the branch pipe 12 and flowing through the flow dividing portion 15 is
It is almost the same as the flow velocity in the main pipe 11. Moreover, if the inner diameter d of the flow dividing portion 15 is set so as to satisfy 2320> Re = V 0 · d / ν, the measurement becomes a laminar flow, and κ is substantially constant, so that the flow rate can be measured with high accuracy. it can.

【0009】次に、図2に、第2の実施例を示す。この
場合の超音波流量計20では、超音波送受波器13を分
岐管12の分流部15の両端部に、相対するように、超
音波伝播路を管軸方向と一致させるように配設したもの
である。超音波送受波器13間に形成される超音波伝播
路は、分流部15の長さLに相当する距離を有する。
Next, FIG. 2 shows a second embodiment. In the ultrasonic flowmeter 20 in this case, the ultrasonic wave transmitter / receiver 13 is arranged at both ends of the flow dividing portion 15 of the branch pipe 12 so that the ultrasonic wave propagation path is aligned with the pipe axis direction so as to face each other. It is a thing. The ultrasonic wave propagation path formed between the ultrasonic wave transmitters / receivers 13 has a distance corresponding to the length L of the flow dividing unit 15.

【0010】このような超音波流量計20によれば、超
音波伝播路を大きく採ることにより、時間計測の分解能
を高め、高精度な計測が可能となる。
According to such an ultrasonic flowmeter 20, by adopting a large ultrasonic wave propagation path, the resolution of time measurement can be improved and highly accurate measurement can be performed.

【0011】また、図3に第3の実施例を示す。この場
合、超音波流量計30では、前記分岐管12における流
体の導入部14を先端部が主管11中間部に位置するよ
うに設けられたものである(図4参照)。なお、超音波送
受波器13は、第1の実施例と同様の位置に設けられ
る。
Further, FIG. 3 shows a third embodiment. In this case, in the ultrasonic flowmeter 30, the fluid introduction portion 14 of the branch pipe 12 is provided so that the tip portion thereof is located at the middle portion of the main pipe 11 (see FIG. 4). The ultrasonic wave transmitter / receiver 13 is provided at the same position as in the first embodiment.

【0012】かかる超音波流量計30によれば、流速の
大きい主管11中間部から、分岐管12に導入するよう
にしたので、分流比の安定度合いが増す。
According to the ultrasonic flowmeter 30, since the main pipe 11 having a large flow velocity is introduced into the branch pipe 12, the degree of stability of the diversion ratio is increased.

【0013】次に、図5は第4の実施例を示す。この場
合の超音波流量計40では、分岐管12の導入部14を
主管11内において、直径方向に延在させると共に、導
入部14の上流面に流体の導入穴41を一定間隔をもた
せるようにして複数個穿設するようにしたものである
(図6参照)。超音波送受波器13は、第1の実施例と同
様の位置に設けられる。
Next, FIG. 5 shows a fourth embodiment. In the ultrasonic flowmeter 40 in this case, the introduction portion 14 of the branch pipe 12 is made to extend in the diametrical direction in the main pipe 11, and the introduction holes 41 for the fluid are provided at a constant interval on the upstream surface of the introduction portion 14. It is designed so that multiple holes are drilled.
(See Figure 6). The ultrasonic wave transmitter / receiver 13 is provided at the same position as in the first embodiment.

【0014】かかる超音波流量計40によれば、主管1
1内の一定間隔ごとの導入穴41から流体を導入するこ
とによって、主管11の流速分布が平均化し、分流比の
安定度合いが増す。
According to such an ultrasonic flowmeter 40, the main pipe 1
By introducing the fluid from the introduction holes 41 at regular intervals within 1, the flow velocity distribution of the main pipe 11 is averaged and the degree of stability of the diversion ratio is increased.

【0015】さらに、図7および図8に第5の実施例を
示す。この場合、超音波流量計50では、主管11に、
断面ハネカム状の管に分割形成された層流管51を配置
する構成のものである。
Further, FIGS. 7 and 8 show a fifth embodiment. In this case, in the ultrasonic flow meter 50, in the main pipe 11,
This is a configuration in which the laminar flow pipe 51 that is divided and formed into a pipe having a honeycomb-shaped cross section is arranged.

【0016】かかる超音波流量計50によれば、それぞ
れのハネカム状の管を流れる流速は、均等化し、分流比
の安定化を図ることができる。
According to the ultrasonic flowmeter 50, the flow velocities flowing through the respective honeycomb tubes can be equalized, and the diversion ratio can be stabilized.

【0017】(発明の効果)以上のとおり本発明によれ
ば、分岐管を用いて、層流域での流量計測が行うことが
できる。そのため、層流域での線平均流速と面平均流速
の比が一定となるため、流量測定精度を高めることがで
きる。
As described above, according to the present invention, the flow rate can be measured in the laminar flow region by using the branch pipe. Therefore, since the ratio of the linear average flow velocity to the surface average flow velocity in the laminar flow region is constant, the flow rate measurement accuracy can be improved.

【0018】[0018]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる超音波流量計の模式的な説明図
である。
FIG. 1 is a schematic explanatory view of an ultrasonic flowmeter according to the present invention.

【図2】本発明にかかる超音波流量計の第2の実施例の
模式的な説明図である。
FIG. 2 is a schematic explanatory view of a second embodiment of the ultrasonic flowmeter according to the present invention.

【図3】本発明にかかる超音波流量計の第3の実施例の
模式的な説明図である。
FIG. 3 is a schematic explanatory view of a third embodiment of the ultrasonic flowmeter according to the present invention.

【図4】図3に示す超音波流量計の模式的な横断面説明
図である。
FIG. 4 is a schematic cross-sectional explanatory view of the ultrasonic flow meter shown in FIG.

【図5】本発明にかかる超音波流量計の第4の実施例の
模式的な説明図である。
FIG. 5 is a schematic explanatory view of a fourth embodiment of the ultrasonic flowmeter according to the present invention.

【図6】図5に示す超音波流量計の模式的な横断面説明
図である。
6 is a schematic cross-sectional explanatory view of the ultrasonic flowmeter shown in FIG.

【図7】本発明にかかる超音波流量計の第5の実施例の
模式的な説明図である。
FIG. 7 is a schematic explanatory view of a fifth embodiment of the ultrasonic flowmeter according to the present invention.

【図8】図7に示す超音波流量計の模式的な横断面説明
図である。
8 is a schematic cross-sectional explanatory view of the ultrasonic flow meter shown in FIG.

【図9】従来における超音波流量計の模式的な説明図で
ある。
FIG. 9 is a schematic explanatory view of a conventional ultrasonic flow meter.

【図10】円管内の流速分布を示すグラフである。FIG. 10 is a graph showing a flow velocity distribution in a circular pipe.

【図11】円管内の流速と流速補正係数の関係を示すグ
ラフである。
FIG. 11 is a graph showing a relationship between a flow velocity in a circular pipe and a flow velocity correction coefficient.

【符号の説明】[Explanation of symbols]

10、20、30、40、50 超音波流量計 11 主管 12 分岐管 13 超音波送受波器 14 導入部 15 分流部 16 還流部 41 導入穴 51 層流管 10, 20, 30, 40, 50 Ultrasonic flowmeter 11 Main pipe 12 Branch pipe 13 Ultrasonic wave transmitter / receiver 14 Introducing part 15 Flow dividing part 16 Refluxing part 41 Introducing hole 51 Laminar flow pipe

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 流体を流通させる主管に、分岐管を設
け、この分岐管の管壁に一対の超音波送受波器を相対し
て配置することを特徴とする超音波流量計。
1. An ultrasonic flowmeter, characterized in that a main pipe through which a fluid flows is provided with a branch pipe, and a pair of ultrasonic transducers are arranged opposite to each other on the pipe wall of the branch pipe.
【請求項2】 流体を流通させる主管に、分岐管を設
け、この分岐管において、分岐管の管軸に一致するよう
に一対の超音波送受波器を配設することを特徴とする超
音波流量計。
2. An ultrasonic wave, characterized in that a branch pipe is provided in a main pipe through which a fluid flows, and in this branch pipe, a pair of ultrasonic transducers are arranged so as to coincide with the pipe axis of the branch pipe. Flowmeter.
【請求項3】 請求項1記載の分岐管において、流体
の導入部を主管中間部に突出させてなることを特徴とす
る超音波流量計。
3. The ultrasonic flowmeter according to claim 1, wherein the fluid introduction part is projected to the middle part of the main pipe.
【請求項4】 請求項1記載の分岐管の上流側を主管
内において、直径方向に延在させると共に、分岐管の上
流面に流体の導入穴を穿設することを特徴とする超音波
流量計。
4. An ultrasonic flow rate characterized in that the upstream side of the branch pipe according to claim 1 is diametrically extended in the main pipe, and a fluid introduction hole is formed in the upstream surface of the branch pipe. Total.
【請求項5】 請求項1記載の主管に、ハネカム状に
分隔した層流管を配置したことを特徴とする超音波流量
計。
5. An ultrasonic flowmeter characterized in that a laminar flow pipe divided into a honeycomb shape is arranged on the main pipe according to claim 1.
JP3359507A 1991-12-28 1991-12-28 Ultrasonic flow meter Expired - Fee Related JP2956804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3359507A JP2956804B2 (en) 1991-12-28 1991-12-28 Ultrasonic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3359507A JP2956804B2 (en) 1991-12-28 1991-12-28 Ultrasonic flow meter

Publications (2)

Publication Number Publication Date
JPH05180677A true JPH05180677A (en) 1993-07-23
JP2956804B2 JP2956804B2 (en) 1999-10-04

Family

ID=18464859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3359507A Expired - Fee Related JP2956804B2 (en) 1991-12-28 1991-12-28 Ultrasonic flow meter

Country Status (1)

Country Link
JP (1) JP2956804B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08313316A (en) * 1995-05-19 1996-11-29 Matsushita Electric Ind Co Ltd Ultrasonic wave type flow meter
JP2004251686A (en) * 2003-02-19 2004-09-09 Toyo Keiki Co Ltd Gas flow measuring method using ultrasonic gas meter
CN108955790A (en) * 2018-08-23 2018-12-07 苏州东剑智能科技有限公司 A kind of drainage type ultrasonic instrument
CN115060331A (en) * 2022-04-13 2022-09-16 江苏商贸职业学院 Flow sensor of hydraulic system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08313316A (en) * 1995-05-19 1996-11-29 Matsushita Electric Ind Co Ltd Ultrasonic wave type flow meter
JP2004251686A (en) * 2003-02-19 2004-09-09 Toyo Keiki Co Ltd Gas flow measuring method using ultrasonic gas meter
CN100360907C (en) * 2003-02-19 2008-01-09 东洋计器株式会社 Method for measuring gas flux using ultrasonic air volume meter
CN108955790A (en) * 2018-08-23 2018-12-07 苏州东剑智能科技有限公司 A kind of drainage type ultrasonic instrument
CN115060331A (en) * 2022-04-13 2022-09-16 江苏商贸职业学院 Flow sensor of hydraulic system

Also Published As

Publication number Publication date
JP2956804B2 (en) 1999-10-04

Similar Documents

Publication Publication Date Title
US4365518A (en) Flow straighteners in axial flowmeters
US6460419B2 (en) Ultrasonic flow measuring method
RU2354938C2 (en) Device for defining and/or control of volume and/or weight flow rate for measured medium
US6931945B2 (en) Doppler ultrasonic flowmeter
JP3246851B2 (en) Ultrasonic flowmeter detector
JP3283524B2 (en) Bypass flow meter
US7870793B1 (en) Transit time flow sensor with enhanced accuracy
GB2139755A (en) Ultrasonic flowmeter
JP2895704B2 (en) Ultrasonic flow meter
CN114088151A (en) External clamping type multi-channel ultrasonic flow detection device and detection method
JP2002520583A (en) Multi-code flow meter
WO2009074162A1 (en) Ultrasonic type fluid flow measurement apparatus
WO2013157990A1 (en) Ultrasonic flow meter
JPH05180677A (en) Ultrasonic flow meter
JP2956805B2 (en) Ultrasonic flow meter
JP3732570B2 (en) Ultrasonic flow meter
JPH05180679A (en) Ultrasonic flow meter
JPH10239125A (en) Ultrasonic flowmeter
JP4675490B2 (en) Ultrasonic flow meter
JP3398251B2 (en) Flowmeter
JPS6021771Y2 (en) vortex flow meter
US11761805B2 (en) Flowmeter
JP3194270B2 (en) Ultrasonic flow meter
CN105890684A (en) Novel setting method for determining sound channel positions by adopting Gauss-Jacobi polynomial
JP2006126019A (en) Ultrasonic flowmeter

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees