JP2011038870A - Ultrasonic flow meter and flow rate measuring method using the same - Google Patents

Ultrasonic flow meter and flow rate measuring method using the same Download PDF

Info

Publication number
JP2011038870A
JP2011038870A JP2009185514A JP2009185514A JP2011038870A JP 2011038870 A JP2011038870 A JP 2011038870A JP 2009185514 A JP2009185514 A JP 2009185514A JP 2009185514 A JP2009185514 A JP 2009185514A JP 2011038870 A JP2011038870 A JP 2011038870A
Authority
JP
Japan
Prior art keywords
ultrasonic
frequency
wave
ultrasonic transmitter
variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009185514A
Other languages
Japanese (ja)
Inventor
Satoshi Fukuhara
聡 福原
Kohei Itsu
耕平 伊津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2009185514A priority Critical patent/JP2011038870A/en
Publication of JP2011038870A publication Critical patent/JP2011038870A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic flow meter which can perform high-precision, stable flow rate measurement by determining a non-resonance condition by determining from a waveform obtained by changing an actual transmission frequency. <P>SOLUTION: The ultrasonic flow meter in an ultrasonic flow rate/flow measuring apparatus having an ultrasonic transmitter/receiver provided on a pipe under measurement includes: a frequency-variable ultrasonic transmitter; a plate-thickness propagation ultrasonic receiver which is provided in the vicinity of or integrally with the frequency-variable ultrasonic transmitter to receive an ultrasonic wave which has been transmitted from the frequency-variable ultrasonic transmitter and has propagated through the plate thickness of the pipe; and a waveform division means which divides a burst or pulse ultrasonic wave which has been oscillated with a preset frequency, has passed through the pipe wall, and has been received into at least three in the time domain. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、管体に伝播する超音波の伝播速度と共に流体の流量を測定する超音波を用いた流量計に関するものである。   The present invention relates to a flowmeter using ultrasonic waves that measures the flow rate of a fluid together with the propagation speed of ultrasonic waves propagating to a tube.

超音波を用いて流量を測定する超音波流量計が知られている。超音波流量計で最も広く使用されている原理は伝播時間差法であり、この伝播時間差法は流体の測定流速Vを、流体中の超音波の伝播速度の変化、即ち伝播時間差Δtとして計測し、既知の流水断面積Sと乗算することにより流量Qを測定する。   2. Description of the Related Art An ultrasonic flowmeter that measures flow rate using ultrasonic waves is known. The most widely used principle in ultrasonic flowmeters is the propagation time difference method, which measures the measured flow velocity V of the fluid as a change in the propagation speed of the ultrasonic wave in the fluid, that is, the propagation time difference Δt, The flow rate Q is measured by multiplying the known running water cross section S.

図4(a)は一般的な超音波流量計の構成を示す図である。図において、1は測定流体FLが流れる測定管、2は測定管1に設けられた超音波送信器、3は、測定管1に設けられた超音波受信器である。
4は、測定管1と超音波送信器2との間に設けられた超音波伝播材、5は、測定管1と超音波受信器3との間に設けられた超音波伝播材である。
FIG. 4A is a diagram showing a configuration of a general ultrasonic flow meter. In the figure, 1 is a measurement tube through which the measurement fluid FL flows, 2 is an ultrasonic transmitter provided in the measurement tube 1, and 3 is an ultrasonic receiver provided in the measurement tube 1.
4 is an ultrasonic wave propagation material provided between the measurement tube 1 and the ultrasonic transmitter 2, and 5 is an ultrasonic wave propagation material provided between the measurement tube 1 and the ultrasonic receiver 3.

上述の構成において、超音波送信器2から送信された超音波は、超音波伝播材4、測定管1を経て、対向して設置された超音波伝播材5を介して超音波受信器3へと伝搬する。
この場合、送信された超音波の一部は、音響インピーダンスの関係で測定管1と測定流体FLの境目で多重反射が生じ、その多重反射波も同様に超音波受信器3へと伝搬する。
In the above-described configuration, the ultrasonic wave transmitted from the ultrasonic transmitter 2 passes through the ultrasonic wave propagation material 4 and the measurement tube 1 to the ultrasonic wave receiver 3 via the ultrasonic wave propagation material 5 installed to face the ultrasonic wave. And propagate.
In this case, some of the transmitted ultrasonic waves undergo multiple reflection at the boundary between the measurement tube 1 and the measurement fluid FL due to the acoustic impedance, and the multiple reflected waves also propagate to the ultrasonic receiver 3 in the same manner.

図4(a)において、受信器3に伝搬した超音波a(正規波という)のみにより流速を測定すると、理想的な屈折角度から流速を計算することができる。
このときの屈折角をθとすると、流速Vの超音波パス方向成分は、V×sinθで求められる。
In FIG. 4A, when the flow velocity is measured only by the ultrasonic wave a (referred to as a normal wave) propagated to the receiver 3, the flow velocity can be calculated from an ideal refraction angle.
If the refraction angle at this time is θ, the ultrasonic path direction component of the flow velocity V is obtained by V × sin θ.

一方、多重反射を起こした超音波bが、超音波受信器3へ到達する際の液体への入射角度は正規波の入射角より小さくなるため、図4(b)に示すように、結果的に多重反射波により流速を測定すると、入射角θが正規波に比べ小さいことから、この多重反射波により測定された流速は正規波に比べ低く見積もられることになる。   On the other hand, since the incident angle to the liquid when the ultrasonic wave b that has caused multiple reflections reaches the ultrasonic receiver 3 is smaller than the incident angle of the normal wave, as a result, as shown in FIG. If the flow velocity is measured by multiple reflected waves, the incident angle θ is smaller than that of the normal wave, and therefore the flow velocity measured by the multiple reflected waves is estimated to be lower than that of the normal wave.

これらの受信波は図4(c)に示すように観測されるが、相関法を用いてこの両方の波の相関から流速を求めると、図4(b)に示すように正規波と多重反射波の重ね合わせの誤差(マイナス誤差)Eが生じることになる。   These received waves are observed as shown in FIG. 4 (c). When the flow velocity is obtained from the correlation between both waves using the correlation method, the normal wave and the multiple reflection are shown in FIG. 4 (b). A wave superposition error (minus error) E occurs.

このような誤差は、正規波と多重波が完全に時間軸上で分離可能であれば、サンプリングウィンドウを正規波のみに制限することで可能になるが、正規波と多重波が重なっていた場合、時間軸上ではじめに到達した波のみを検出するというような分離は困難になる。
測定流速は超音波パルスの流体中の伝播時間差Δtに比例し求められることから、平均流速をυ、測定流速Vと伝播時間差Δtとの比例係数をktとすると、流量Qは次式で表すことができる。
Q=υ・S=(V/k)・S
=(kt・Δt/k)・S
Such an error can be achieved by limiting the sampling window to only the normal wave if the normal wave and the multiple wave are completely separable on the time axis. Thus, separation such as detecting only the wave that reaches first on the time axis becomes difficult.
Since the measured flow velocity is determined in proportion to the propagation time difference Δt of the ultrasonic pulse in the fluid, if the average flow velocity is υ and the proportional coefficient between the measured flow velocity V and the propagation time difference Δt is kt, the flow rate Q is expressed by the following equation: Can do.
Q = υ · S = (V / k) · S
= (Kt · Δt / k) · S

このような原理による超音波を送受信するための超音波送受波器の取付方法には、超音波パルスを測定管内面で一旦反射させるV法、超音波パルスを一直径上で透過させるZ法などがある。   The ultrasonic transducer mounting method for transmitting and receiving ultrasonic waves based on such a principle includes a V method in which an ultrasonic pulse is once reflected on the inner surface of a measurement tube, a Z method in which an ultrasonic pulse is transmitted over one diameter, and the like. There is.

図5(a)の粒子や気泡からの反射信号を受信し、その受信した信号をもとに流速分布を求める超音波流量計において、測定管1内を伝播する正規波aにより検出される流速分布Aおよび多重波bにより検出される流速分布Bを示し、図5(b)は正規波と多重波で合成される流速分布を示す図であり、本来検出されるべき正規波のみの流速分布とは誤差を生じる状態を示している。   In the ultrasonic flowmeter that receives the reflection signal from the particles and bubbles in FIG. 5A and obtains the flow velocity distribution based on the received signal, the flow velocity detected by the normal wave a propagating in the measurement tube 1. FIG. 5 (b) is a diagram showing a flow velocity distribution synthesized with a normal wave and a multiple wave, and shows a flow velocity distribution of only the normal wave to be originally detected. Indicates a state in which an error occurs.

このように、配管の材料内部の多重反射があると、精度に問題が生じる。たとえば、透過法による測定では受信波形の伝播経路がずれ、測定値に誤差を生じさせたり、多重波を正規波(検出すべき波)と誤判断し大きな誤差を生じさせる。
また、反射法においても同様の現象により、正規波により観測された流速プロファイルに多重波により観測された流速プロファイルが重畳し誤った流速プロファイルを形成してしまう。
Thus, if there is multiple reflection inside the material of the pipe, a problem arises in accuracy. For example, in the measurement using the transmission method, the propagation path of the received waveform is shifted, causing an error in the measured value, or misjudging a multiplexed wave as a normal wave (wave to be detected) and causing a large error.
In the reflection method, a similar phenomenon causes a flow velocity profile observed with multiple waves to be superimposed on a flow velocity profile observed with normal waves to form an incorrect flow velocity profile.

以上の内容から、配管の内部で極力多重波を発生させないようにする必要がある。この多重波は、超音波の周波数が配管の材質の音速と板厚と超音波の入射角からなる共鳴条件を満たす場合に大きくなることがわかっている。したがって、共鳴条件を避けるためには超音波の送信周波数を変えて、非共鳴条件とすることが望ましい。
この、非共鳴条件を得るには配管の音速と板厚の情報を元に共鳴周波数を計算する事が行われる。
From the above contents, it is necessary to prevent multiple waves from being generated as much as possible inside the pipe. This multiple wave is known to increase when the frequency of the ultrasonic wave satisfies the resonance condition consisting of the speed of sound of the pipe material, the plate thickness, and the incident angle of the ultrasonic wave. Therefore, in order to avoid the resonance condition, it is desirable to change the transmission frequency of the ultrasonic wave to be a non-resonance condition.
In order to obtain this non-resonant condition, the resonance frequency is calculated based on the information on the sound speed and the thickness of the pipe.

特開2006−220534号公報JP 2006-220534 A 特開2006−250666号公報JP 2006-250666 A 特開平2−260532号公報JP-A-2-260532

非共鳴周波数を求めるには、板厚と音速を知る必要がある。厚さは一般的には超音波厚さ計を用いるが、この場合の音速は一般的にはデータベース化されている音速(固定値)を用いる。実際には音速は製法や微妙な材質の違い、温度によって配管により異なり、一般的に知られている音速とは違いがあるという課題がある。   In order to obtain the non-resonant frequency, it is necessary to know the thickness and speed of sound. Generally, an ultrasonic thickness meter is used for the thickness, but the sound speed in this case is generally a sound speed (fixed value) stored in a database. In practice, the speed of sound differs depending on the manufacturing method, subtle material differences, and piping depending on the temperature, and there is a problem that there is a difference from the generally known sound speed.

そのため正確な非共鳴条件を得ることは難しく誤った設定を行ってしまう場合がある。
また、音速が未知の(データベースに存在しない)材質については対応できないという課題があった。
従って本発明は、非共鳴条件を実際の送信周波数を変化させて得られた波形から判断して求める事により、精度が高く安定した流速測定が可能な超音波流量計を実現することを目的としている。
For this reason, it is difficult to obtain accurate non-resonance conditions, and incorrect settings may be made.
In addition, there is a problem that a material whose sound speed is unknown (not present in the database) cannot be handled.
Accordingly, an object of the present invention is to realize an ultrasonic flowmeter capable of measuring a flow rate with high accuracy and stability by determining non-resonance conditions by determining from a waveform obtained by changing an actual transmission frequency. Yes.

このような課題を達成するために、本発明のうち請求項1記載の発明は、
測定管に設けられた超音波送受信器を具備する超音波流速・流量測定装置において、
周波数可変超音波送信器と、この周波数可変超音波送信器の近傍若しくは一体に設けられ前記周波数可変超音波送信器から送信された超音波が配管の板厚を伝播した超音波を受信する板厚伝播超音波受信器と、初期設定値の周波数で発振され配管壁を伝播した後に受信されたバーストまたはパルス状の超音波を、時間領域に少なくとも3分割する波形分割手段と、を具備したことを特徴とする。
In order to achieve such a problem, the invention according to claim 1 of the present invention is:
In an ultrasonic flow velocity / flow rate measuring device equipped with an ultrasonic transmitter / receiver provided in a measurement tube,
Thickness to receive a frequency variable ultrasonic transmitter and an ultrasonic wave transmitted from the variable frequency ultrasonic transmitter provided near or integrally with the variable frequency ultrasonic transmitter through the thickness of the pipe. Providing a propagation ultrasonic receiver and a waveform dividing means for dividing a burst or pulsed ultrasonic wave oscillated at a frequency of an initial setting value and propagated through a pipe wall into at least three parts in a time domain. Features.

請求項2の発明は、
測定管に設けられた超音波送受信器を具備する超音波流速・流量測定装置において、
周波数可変超音波送信器と、この周波数可変超音波送信器の近傍若しくは一体に設けられ前記周波数可変超音波送信器から送信された超音波が配管の板厚を伝播した超音波を受信する板厚伝播超音波受信器と、初期設定値の周波数で発振され配管壁を伝播した後に受信されたバーストまたはパルス状の超音波を、時間領域に少なくとも3分割する波形分割手段と、を備え、
1)前記波形分割手段は周波数可変超音波送信器から出射され配管の板厚を伝播した超音波を受信し前記波形分割手段で少なくとも3分割された領域のそれぞれの領域の振幅を計算する手段を持ち、その振幅の比が予め規定された値となるように発振周波数を変更させる工程と、
2)前記のn回目の反射波の振幅Anとn+1回目の反射波の振幅An+1、n+2回目の反射波の振幅An+2の大きさの比が極大または極小となるよう発振周波数を変更する工程と、
3)前記1)または2)の工程により決定された周波数により流速を測定する工程を含む事を特徴とする。
The invention of claim 2
In an ultrasonic flow velocity / flow rate measuring device equipped with an ultrasonic transmitter / receiver provided in a measurement tube,
Thickness to receive a frequency variable ultrasonic transmitter and an ultrasonic wave transmitted from the variable frequency ultrasonic transmitter provided near or integrally with the variable frequency ultrasonic transmitter through the thickness of the pipe. A propagation ultrasonic receiver, and a waveform dividing means for dividing a burst or pulsed ultrasonic wave oscillated at a frequency of an initial setting value and propagated through a pipe wall into at least three parts in a time domain,
1) The waveform dividing means receives means of an ultrasonic wave emitted from a frequency variable ultrasonic transmitter and propagated through a pipe thickness, and calculates the amplitude of each of at least three areas divided by the waveform dividing means. And changing the oscillation frequency so that the ratio of the amplitude becomes a predetermined value;
2) a step of changing the oscillation frequency so that the ratio of the amplitude An of the nth reflected wave to the amplitude An + 1 of the (n + 1) th reflected wave, and the amplitude An + 2 of the n + 2nd reflected wave is maximized or minimized;
3) It includes a step of measuring a flow velocity at a frequency determined by the step 1) or 2).

本発明の請求項1,2によれば以下のような効果がある。
非共鳴条件を実際の送信周波数を変化させて得られた波形から判断して求めることができるので、精度が高く安定した流速測定が可能な超音波流量計を実現することができる。
According to claims 1 and 2 of the present invention, there are the following effects.
Since the non-resonance condition can be determined and determined from the waveform obtained by changing the actual transmission frequency, an ultrasonic flowmeter capable of highly accurate and stable flow velocity measurement can be realized.

本発明の実施形態の一例を示す要部断面構成図およびフローチャートである。It is the principal part section lineblock diagram and flowchart which show an example of the embodiment of the present invention. 共鳴周波数および非共鳴周波数における時間と振幅の関係を示す説明図である。It is explanatory drawing which shows the relationship between time and amplitude in a resonant frequency and a non-resonant frequency. 他の実施例を示す構成図である。It is a block diagram which shows another Example. 従来例を示した超音波流量計の構成図および動作原理図である。It is a block diagram and an operation principle diagram of an ultrasonic flowmeter showing a conventional example. 共鳴条件と非共鳴条件における真の流速分布プロファイルとの比較を示す説明図である。It is explanatory drawing which shows the comparison with the true flow velocity distribution profile in resonance conditions and non-resonance conditions.

以下本発明を、図面を用いて詳細に説明する。図1は本発明の一実施例を示す超音波流量計の構成図(a)およびフローチャート(b)である。   Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a configuration diagram (a) and a flowchart (b) of an ultrasonic flowmeter showing an embodiment of the present invention.

図1(a)において、2は測定管1の外周に固定され、発振素子(図示せず)からの超音波を超音波伝播材7aを介して測定管1内を流れる流体に対して発信する周波数可変超音波送信器である。この周波数可変超音波送信器から出射された超音波は図では省略するが、下流側に対向して設置された超音波受信器へと伝搬する。なお、反射型の場合は周波数可変超音波送信器の替わりに周波数可変超音波送受信器が用いられ、その場合は超音波受信器は不要である。   In FIG. 1A, 2 is fixed to the outer periphery of the measurement tube 1 and transmits ultrasonic waves from an oscillation element (not shown) to the fluid flowing in the measurement tube 1 through the ultrasonic wave propagation material 7a. This is a variable frequency ultrasonic transmitter. Although not shown in the figure, the ultrasonic wave emitted from the variable frequency ultrasonic transmitter propagates to an ultrasonic receiver that is installed facing the downstream side. In the case of the reflective type, a variable frequency ultrasonic transmitter / receiver is used instead of the variable frequency ultrasonic transmitter, and in that case, no ultrasonic receiver is required.

6は板厚を伝播した超音波のみを受信することの出来る角度で設けた受信用の板厚伝播超音波受信器である。
超音波送信器2はQが低く、周波数を変えることのできる発振回路(図示省略)と組み合わされて、特定の範囲で周波数を変えて発振できる。送信波形は数発程度のバースト波とし、ある程度時間的に干渉できる幅を持つ(例えば1MHzで3〜5バースト程度の波を発振する)。
A receiving plate thickness propagation ultrasonic receiver 6 is provided at an angle at which only the ultrasonic wave propagating the plate thickness can be received.
The ultrasonic transmitter 2 has a low Q and can be oscillated by changing the frequency within a specific range in combination with an oscillation circuit (not shown) that can change the frequency. The transmission waveform is a burst wave of several shots and has a width that can interfere with time to some extent (for example, a wave of about 3 to 5 bursts is oscillated at 1 MHz).

板厚伝播超音波受信器の超音波伝播材7bは、配管の板厚を伝搬してきた振動を受信素子(図示せず)に伝達する。受信された信号は、図示しない時間分割手段によりあらかじめ概算値として入力された配管の材質の音速と板厚と入射角を元に、時間領域に3分割される。   The ultrasonic wave propagation member 7b of the plate thickness propagation ultrasonic receiver transmits the vibration propagated through the plate thickness of the pipe to a receiving element (not shown). The received signal is divided into three parts in the time domain based on the sound velocity, plate thickness, and incident angle of the pipe material previously input as approximate values by a time division unit (not shown).

図1(b)は超音波送信器2から出射した超音波が測定管1の板厚で多重反射した周波数を板厚伝播超音波受信器6で受信し非共鳴周波数を決定するためのフローチャートである。
フローに従って説明する。
FIG. 1B is a flowchart for determining the non-resonant frequency by receiving the frequency at which the ultrasonic wave emitted from the ultrasonic transmitter 2 is multiple-reflected by the plate thickness of the measurement tube 1 by the plate thickness propagation ultrasonic receiver 6. is there.
This will be described according to the flow.

発信回路(S1)で生成された超音波が発信素子(S2)を介して測定管(S3)に入射する。
ここでは測定管の板厚を伝播した多重波を板厚伝播超音波受信器の受信素子(S4)で受信し、受信回路(S5)を介してAD(S6)変換し、予め配管パラメータと入射角により計算された時間幅でこれを分割し、それぞれの領域での振幅を振幅測定手段により求め、分割手段により予め求めた配管パラメータを用いて波形領域分割(S7)し、その結果を振幅判定プログラム(S8)で非共鳴周波数が発信されているか否かを判定する。
The ultrasonic wave generated by the transmission circuit (S1) enters the measurement tube (S3) through the transmission element (S2).
Here, the multiplexed wave propagating through the plate thickness of the measuring tube is received by the receiving element (S4) of the plate thickness propagation ultrasonic receiver, and AD (S6) conversion is performed via the receiving circuit (S5), and the piping parameters and the incident are previously entered. This is divided by the time width calculated by the angle, the amplitude in each area is obtained by the amplitude measuring means, the waveform area is divided using the piping parameters obtained in advance by the dividing means (S7), and the result is subjected to the amplitude determination. It is determined whether or not a non-resonant frequency is transmitted in the program (S8).

分割した3つの領域のすべてで振幅が大きい場合は共鳴周波数で、例えばNO.2が小さい場合は1度多重反射を起こしたときの位相がNO.1の波(直接波)と逆になり打ち消し合うために小さくなるので、この状態を非共鳴周波数と反転する非共鳴周波数と判定する。   When the amplitude is large in all three divided regions, the resonance frequency is used, for example, NO. When 2 is small, the phase when the multiple reflection occurs once is NO. This state is opposite to the first wave (direct wave) and becomes smaller because they cancel each other, so this state is determined as a non-resonant frequency that is reversed from the non-resonant frequency.

図2(a,b)は共鳴周波数および非共鳴周波数における時間と振幅の関係を示す説明図である。図2(a)において、波形分割手段により3分割された領域をそれぞれ、n回目の反射波として考えられる領域An、n+1回目の反射波として考えられる領域An+1、n+2回目の反射波として考えられる領域An+2と名付け、それぞれの領域でのエンベロープから振幅をデジタル処理により求める。   2A and 2B are explanatory diagrams showing the relationship between time and amplitude at the resonance frequency and the non-resonance frequency. In FIG. 2A, the region divided into three by the waveform dividing means is the region An considered as the nth reflected wave, the region An + 1 considered as the n + 1th reflected wave, and the region considered as the n + 2th reflected wave, respectively. It is named An + 2, and the amplitude is obtained by digital processing from the envelope in each region.

ここで、時間分割幅(tw)は図1に示すように、配管板厚を(t)、配管への入射角を(θs)、配管での屈折角を(θp)配管の音速を(Vp)とすると、
tw=2t/cosθp/Vp
を基にした値とする。
Here, as shown in FIG. 1, the time division width (tw) is the pipe plate thickness (t), the incident angle to the pipe (θs), the refraction angle at the pipe (θp), and the sound velocity of the pipe (Vp). )
tw = 2t / cos θp / Vp
The value is based on.

振幅が求められたら、周波数を変更し同様の手法により振幅を求める。これをある周波数範囲で繰り返し行う。
次に図2(b)に示すように領域された振幅を見て、非共鳴条件では振幅が干渉により一部が極端に小さくなる周波数を共鳴条件を有する周波数と特定する。このことから非共鳴条件を振幅の変化としてとらえることができる。また、分割されたすべての領域での振幅が大きい場合は、共鳴条件となるから、m次の(mは整数)共鳴条件とm+1次の共鳴条件を判定し、その中間の周波数を非共鳴条件とすることも可能である。
When the amplitude is obtained, the frequency is changed and the amplitude is obtained by the same method. This is repeated in a certain frequency range.
Next, as shown in FIG. 2B, by looking at the amplitudes in the region, a frequency in which the amplitude becomes extremely small due to interference in the non-resonant condition is specified as a frequency having the resonance condition. From this, the non-resonant condition can be regarded as a change in amplitude. In addition, when the amplitude in all the divided regions is large, the resonance condition is satisfied. Therefore, the m-th (m is an integer) resonance condition and the m + 1-order resonance condition are determined, and the intermediate frequency is determined as the non-resonance condition. It is also possible.

上述によれば、音速がはっきりわからなくても非共鳴条件を知ることが出来る。また、超音波板厚計では一般的に、短パルスを送受信して時間を測定するため、超音波流量計で使用する周波数より高い周波数の送受信素子と回路が必要であり、かつ板厚の厚い配管でしか精度良く測定することが困難だが、ここでは干渉を用いるため波長が長くてよく、超音波流量計で用いる程度の周波数で良い。
なお、本発明に使用する板厚伝播超音波受信器6は従来の超音波流量計に簡単に付加することができる。
According to the above, it is possible to know the non-resonant condition without clearly knowing the speed of sound. In addition, since ultrasonic plate thickness meters generally measure the time by transmitting and receiving short pulses, transmission / reception elements and circuits with a frequency higher than the frequency used in ultrasonic flow meters are required, and the plate thickness is thick. Although it is difficult to measure with high accuracy only by piping, the wavelength may be long because interference is used here, and the frequency may be as high as that used in an ultrasonic flowmeter.
In addition, the plate | board thickness propagation ultrasonic receiver 6 used for this invention can be easily added to the conventional ultrasonic flowmeter.

図3(a,b)は板厚伝播超音波受信器の他の実施例を示すものである。図3(a)に示すものは一つの超音波伝播材4aに超音波送信器2および板厚伝播超音波受信器6を取付けたもの、図3(b)に示すものは一つの超音波伝播材4bに超音波送信器および板厚伝播超音波受信器2aを取付けたものである。   FIGS. 3A and 3B show another embodiment of the plate thickness propagation ultrasonic receiver. 3 (a) shows a single ultrasonic wave propagation material 4a attached with an ultrasonic transmitter 2 and a plate thickness propagation ultrasonic wave receiver 6, and FIG. 3 (b) shows a single ultrasonic wave propagation. An ultrasonic transmitter and a plate thickness propagation ultrasonic receiver 2a are attached to the material 4b.

即ち、反射角度を工夫することで1個の超音波伝播材(送受信素子)でも多重反射を受信することが出来る。要は配管の板厚を伝播する複数の多重反射波を計測することができればよい。
なお、本発明では非共鳴周波数を求める場合について説明したが、たとえば精度を犠牲にしても感度を上げるというケースのために信号強度を上げるため共鳴周波数(多重干渉領域では振幅が大きくなる)を求めても良い。
That is, by devising the reflection angle, multiple reflections can be received even by one ultrasonic wave propagation material (transmission / reception element). In short, it is only necessary to measure a plurality of multiple reflected waves propagating through the pipe thickness.
In the present invention, the case of obtaining the non-resonant frequency has been described. However, for example, the resonance frequency (in which the amplitude is increased in the multiple interference region) is obtained in order to increase the signal strength in order to increase the sensitivity even at the expense of accuracy. May be.

なお、以上の説明は、本発明の説明および例示を目的として特定の好適な実施例を示したに過ぎない。
従って本発明は、上記実施例に限定されることなく、その本質から逸脱しない範囲で更に多くの変更、変形を含むものである。
The above description merely shows a specific preferred embodiment for the purpose of explanation and illustration of the present invention.
Therefore, the present invention is not limited to the above-described embodiments, and includes many changes and modifications without departing from the essence thereof.

1 測定管
2 超音波送信器
3 超音波受信器
4,5,7 超音波伝播材
6 板厚伝播超音波受信器
1 Measurement Tube 2 Ultrasonic Transmitter 3 Ultrasonic Receiver 4, 5, 7 Ultrasonic Propagation Material 6 Plate Thickness Propagation Ultrasonic Receiver

Claims (2)

測定管に設けられた超音波送受信器を具備する超音波流速・流量測定装置において、
周波数可変超音波送信器と、この周波数可変超音波送信器の近傍若しくは一体に設けられ前記周波数可変超音波送信器から送信された超音波が配管の板厚を伝播した超音波を受信する板厚伝播超音波受信器と、初期設定値の周波数で発振され配管壁を伝播した後に受信されたバーストまたはパルス状の超音波を、時間領域に少なくとも3分割する波形分割手段と、を具備したことを特徴とする超音波流量計。
In an ultrasonic flow velocity / flow rate measuring device equipped with an ultrasonic transmitter / receiver provided in a measurement tube,
Thickness to receive a frequency variable ultrasonic transmitter and an ultrasonic wave transmitted from the variable frequency ultrasonic transmitter provided near or integrally with the variable frequency ultrasonic transmitter through the thickness of the pipe. Providing a propagation ultrasonic receiver and a waveform dividing means for dividing a burst or pulsed ultrasonic wave oscillated at a frequency of an initial setting value and propagated through a pipe wall into at least three parts in a time domain. The characteristic ultrasonic flowmeter.
測定管に設けられた超音波送受信器を具備する超音波流速・流量測定装置において、
周波数可変超音波送信器と、この周波数可変超音波送信器の近傍若しくは一体に設けられ前記周波数可変超音波送信器から送信された超音波が配管の板厚を伝播した超音波を受信する板厚伝播超音波受信器と、初期設定値の周波数で発振され配管壁を伝播した後に受信されたバーストまたはパルス状の超音波を、時間領域に少なくとも3分割する波形分割手段と、を備え、
1)前記波形分割手段は周波数可変超音波送信器から出射され配管の板厚を伝播した超音波を受信し前記波形分割手段で少なくとも3分割された領域のそれぞれの領域の振幅を計算する手段を持ち、その振幅の比が予め規定された値となるように発振周波数を変更させる工程と、
2)前記のn回目の反射波の振幅Anとn+1回目の反射波の振幅An+1、n+2回目の反射波の振幅An+2の大きさの比が極大または極小となるよう発振周波数を変更する工程と、
3)前記1)または2)の工程により決定された周波数により流速を測定する工程を含む事を特徴とする超音波流量計の流速測定方法。
In an ultrasonic flow velocity / flow rate measuring device equipped with an ultrasonic transmitter / receiver provided in a measurement tube,
Thickness to receive a frequency variable ultrasonic transmitter and an ultrasonic wave transmitted from the variable frequency ultrasonic transmitter provided near or integrally with the variable frequency ultrasonic transmitter through the thickness of the pipe. A propagation ultrasonic receiver, and a waveform dividing means for dividing a burst or pulsed ultrasonic wave oscillated at a frequency of an initial setting value and propagated through a pipe wall into at least three parts in a time domain,
1) The waveform dividing means receives means of an ultrasonic wave emitted from a frequency variable ultrasonic transmitter and propagated through a pipe thickness, and calculates the amplitude of each of at least three areas divided by the waveform dividing means. And changing the oscillation frequency so that the ratio of the amplitude becomes a predetermined value;
2) a step of changing the oscillation frequency so that the ratio of the amplitude An of the nth reflected wave to the amplitude An + 1 of the (n + 1) th reflected wave, and the amplitude An + 2 of the n + 2nd reflected wave is maximized or minimized;
3) A method for measuring a flow rate of an ultrasonic flowmeter, comprising the step of measuring a flow rate at a frequency determined by the step 1) or 2).
JP2009185514A 2009-08-10 2009-08-10 Ultrasonic flow meter and flow rate measuring method using the same Pending JP2011038870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009185514A JP2011038870A (en) 2009-08-10 2009-08-10 Ultrasonic flow meter and flow rate measuring method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009185514A JP2011038870A (en) 2009-08-10 2009-08-10 Ultrasonic flow meter and flow rate measuring method using the same

Publications (1)

Publication Number Publication Date
JP2011038870A true JP2011038870A (en) 2011-02-24

Family

ID=43766805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009185514A Pending JP2011038870A (en) 2009-08-10 2009-08-10 Ultrasonic flow meter and flow rate measuring method using the same

Country Status (1)

Country Link
JP (1) JP2011038870A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104597131A (en) * 2014-12-15 2015-05-06 武汉绿丰新创环保科技有限公司 Urban catering oil fume monitoring probe
CN109974639A (en) * 2019-04-28 2019-07-05 中国科学院声学研究所 A kind of solid panel measurer for thickness and its method based on retrogressing wave
CN112730607A (en) * 2020-12-31 2021-04-30 青岛精安医疗科技有限责任公司 Ultrasonic oxygen concentration measuring method and system based on flow detection and oxygen generation system
CN115824331A (en) * 2023-02-22 2023-03-21 青岛鼎信通讯科技有限公司 Low-power consumption measuring method suitable for ultrasonic water meter

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104597131A (en) * 2014-12-15 2015-05-06 武汉绿丰新创环保科技有限公司 Urban catering oil fume monitoring probe
CN104597131B (en) * 2014-12-15 2017-11-10 武汉新创光科科技有限公司 A kind of urban catering cooking fume probe
CN109974639A (en) * 2019-04-28 2019-07-05 中国科学院声学研究所 A kind of solid panel measurer for thickness and its method based on retrogressing wave
CN112730607A (en) * 2020-12-31 2021-04-30 青岛精安医疗科技有限责任公司 Ultrasonic oxygen concentration measuring method and system based on flow detection and oxygen generation system
CN112730607B (en) * 2020-12-31 2022-12-16 青岛精安医疗科技有限责任公司 Ultrasonic oxygen concentration measuring method and system based on flow detection and oxygen generation system
CN115824331A (en) * 2023-02-22 2023-03-21 青岛鼎信通讯科技有限公司 Low-power consumption measuring method suitable for ultrasonic water meter

Similar Documents

Publication Publication Date Title
US7437948B2 (en) Ultrasonic flowmeter and ultrasonic flow rate measurement method
US5214966A (en) Method and apparatus for measuring mass flow
US20060117867A1 (en) Flowmeter
JP2008134267A (en) Ultrasonic flow measurement method
CN107076602B (en) Method and arrangement for clamp-on ultrasonic flow measurement and circuit arrangement for controlling clamp-on ultrasonic flow measurement
US8881603B2 (en) Measuring device and method having superimposed reflected first measurement signal with a second measurement signal
JP4535065B2 (en) Doppler ultrasonic flow meter
JP2011038870A (en) Ultrasonic flow meter and flow rate measuring method using the same
JP2006078362A (en) Coaxial-type doppler ultrasonic current meter
KR101513697B1 (en) Ultrasonic transducing apparatus for measuring pipe thickness and apparatus for measuring flow velocity using the same
JP2001304931A (en) Clamping-on ultrasonic flow rate measuring method and multipath ultrasonic flow rate measuring method as well as clamping-on ultrasonic flowmeter and multipath ultrasonic flowmeter
JP4984346B2 (en) Flowmeter
JP5141613B2 (en) Ultrasonic flow meter
US20230243682A1 (en) Ultrasonic flow measurement
JP7151311B2 (en) ultrasonic flow meter
JP4827008B2 (en) Ultrasonic flow meter, ultrasonic transducer, ultrasonic transmission / reception unit, and flow measurement method using ultrasonic flow meter
JP4561071B2 (en) Flow measuring device
JP2005180988A (en) Ultrasonic flowmeter
JP2020056639A (en) Pressure measuring device
WO2007074779A1 (en) Ultrasonic flowmeter and wedge for use in ultrasonic flowmeter
RU2447406C1 (en) Ultrasonic method of measuring liquid and gaseous media and apparatus for realising said method
JP2012058186A (en) Ultrasonic flowmeter
JP2005241628A (en) Doppler ultrasonic flow velocity distribution meter
JPH0791996A (en) Ultrasonic flowmeter
JP2005195371A (en) Ultrasonic flowmeter, and sound absorbing material for ultrasonic flowmeter