WO2007074779A1 - Ultrasonic flowmeter and wedge for use in ultrasonic flowmeter - Google Patents

Ultrasonic flowmeter and wedge for use in ultrasonic flowmeter Download PDF

Info

Publication number
WO2007074779A1
WO2007074779A1 PCT/JP2006/325795 JP2006325795W WO2007074779A1 WO 2007074779 A1 WO2007074779 A1 WO 2007074779A1 JP 2006325795 W JP2006325795 W JP 2006325795W WO 2007074779 A1 WO2007074779 A1 WO 2007074779A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
fluid
measured
wedge
measurement
Prior art date
Application number
PCT/JP2006/325795
Other languages
French (fr)
Japanese (ja)
Inventor
Michitsugu Mori
Kenichi Tezuka
Takeshi Suzuki
Original Assignee
The Tokyo Electric Power Company, Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Tokyo Electric Power Company, Incorporated filed Critical The Tokyo Electric Power Company, Incorporated
Publication of WO2007074779A1 publication Critical patent/WO2007074779A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/667Arrangements of transducers for ultrasonic flowmeters; Circuits for operating ultrasonic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/662Constructional details

Definitions

  • the present invention relates to an ultrasonic flowmeter and a related technique capable of solving the problems that occur when measuring the flow velocity of fluid in a pipe when the surface temperature of the pipe is high.
  • Patent Document 1 JP 2000-97742 A
  • the Doppler type ultrasonic flowmeter disclosed in the above document is an ultrasonic wave that makes an ultrasonic pulse of a required frequency incident on a fluid to be measured in a fluid (for example, water) pipe along an ultrasonic transducer force measurement line.
  • Transmitting means and fluid velocity distribution measuring means for receiving the ultrasonic echo reflected from the measurement area among the ultrasonic pulses incident on the measured fluid and measuring the flow velocity distribution of the measured fluid in the measurement area
  • a flow rate calculation means for calculating the flow rate of the fluid under measurement in the measurement region based on the flow velocity distribution of the fluid under measurement to measure the flow rate of the fluid under measurement.
  • a “clamp-on type” is often used in which the ultrasonic wave transmission means is fixed to the pipe via a wedge. This is because there is an advantage that “retrofitting” is possible for piping.
  • the first condition for the wedge is that it should be easy to pass ultrasonic waves.
  • a synthetic resin for example, acrylic resin
  • acrylic resin is generally employed for the convenience of fixing the ultrasonic transmission means after determining the ultrasonic incident angle.
  • an ultrasonic oscillator (emission) and an apparatus (receiver) for receiving the reflected wave of the ultrasonic are often provided as one ultrasonic transmission / reception apparatus.
  • an ultrasonic flowmeter that has an ultrasonic oscillator and a device that receives the reflected wave of the ultrasonic wave separately, each must be attached to the fluid piping with strict positioning.
  • the ultrasonic flowmeter provided as an ultrasonic transmission / reception device has the advantage that it only needs to be attached to the fluid piping once.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 11 230801
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2001-141534
  • Patent Document 2 is a technique for reducing the temperature to a temperature that can be withstood by an ultrasonic transducer in an ultrasonic flowmeter by providing a radiation fin on the outer surface of a measurement tube.
  • Patent Document 3 provides a cooling space between the pipe surface and the ultrasonic vibrator, and lowers the cooling space to a temperature that the ultrasonic vibrator can withstand by water cooling or the like. This is a technology intended for
  • the engineering plastic that is usually selected as the material of the wedge in such an environment greatly varies the speed of sound of the ultrasonic wave that passes through depending on the temperature.
  • the speed of sound increases at low temperature. That is, there is a complicated layer of members and shoes with different sound speeds between the part of 220 degrees Celsius in contact with the pipe surface and the part of 100 degrees Celsius or less reaching the transducer. The same.
  • the problem to be solved by the present invention is to provide a technique that contributes to more accurate flow rate measurement even when the temperature of the pipe surface is high.
  • An object of the invention described in claim 1 is to provide an ultrasonic flowmeter that contributes to more accurate flow rate measurement even when the pipe surface temperature is high.
  • claims 2 to 4 may be used even if the temperature of the piping surface is high. It is to provide a wedge for an ultrasonic flow meter that contributes to more accurate flow rate measurement. Means for solving the problem
  • the invention according to claim 1 is an ultrasonic transmission means (20) in which an ultrasonic pulse of a required frequency is incident from a ultrasonic transducer along a measurement line into a fluid to be measured (11) in a fluid pipe (10).
  • a fluid velocity distribution measuring means for receiving an ultrasonic echo reflected from the measurement region force among ultrasonic pulses incident on the fluid to be measured (11) and measuring the flow velocity distribution of the fluid to be measured in the measurement region;
  • the present invention relates to an ultrasonic flowmeter that includes flow rate calculation means for calculating a flow rate of the fluid under measurement in the measurement region based on a flow velocity distribution of the fluid under measurement and that measures a flow rate of the fluid under measurement.
  • the ultrasonic transmission means and the reception means for receiving the ultrasonic echo are integrally formed.
  • a wedge (30) is provided for fixing the ultrasonic transmission means (20) to the outer wall surface of the fluid pipe (10) related to the fluid to be measured (11), and the wedge (30) is made of graphite. It is characterized by being formed by sintering.
  • the above ultrasonic flowmeter includes a general Doppler ultrasonic flowmeter and an ultrasonic flowmeter using a correlation method.
  • the ultrasonic flow meter using the correlation method is, for example, an ultrasonic flow meter as disclosed in Japanese Patent Application Laid-Open No. 2003-344131.
  • an ultrasonic transmission means for injecting an ultrasonic pulse of a required frequency along the measurement line from the ultrasonic transducer into the fluid to be measured in the fluid pipe, and an ultrasonic pulse incident on the fluid to be measured.
  • the measurement area force is reflected by the reflected ultrasonic echo
  • the fluid velocity distribution measuring means for measuring the flow velocity distribution of the fluid under measurement in the measurement area, and the measurement based on the flow velocity distribution of the fluid under measurement!
  • a flow rate calculating means for calculating a flow rate of the fluid to be measured in the region, and measuring the flow rate of the fluid to be measured.
  • Graphite has almost no change in sound speed up to 25 degrees Celsius and 230 degrees Celsius, as shown in Figure 2. Therefore, even when a wedge formed by sintering and molding graphite is installed on the surface of a pipe at 230 degrees Celsius, the flow velocity distribution can be measured as a homogeneous material. Therefore, it can be used as an ultrasonic flowmeter that contributes to more accurate flow rate measurement even when the temperature of the piping surface in a nuclear power generation facility is high.
  • the invention described in claim 2 is a wedge for use in the ultrasonic flowmeter according to claim 1, characterized in that it is formed by sintering and molding black lead.
  • the wedge according to this claim can be used for an ultrasonic flowmeter that contributes to more accurate flow rate measurement even when the temperature of the piping surface in a nuclear power generation facility or the like is high.
  • the wedge Since the wedge is a member that determines the incident angle of the ultrasonic wave by the ultrasonic transmission means, it is common to prepare a plurality of types and select and use an appropriate one at the site. Therefore, if several types of wedges are prepared by sintering and molding graphite, it will contribute to the efficiency of on-site installation and subsequent measurement.
  • the invention according to claim 3 is a fixing portion for fixing the ultrasonic transmission means to the fluid piping related to the fluid to be measured, and an outer wall surface of the fluid piping from the ultrasonic transmission means fixed to the fixing portion.
  • the ultrasonic transmission part is a wedge characterized by being formed by sintering and molding graphite.
  • the wedge according to claim 3 uses only the portion that becomes the path of ultrasonic waves as graphite.
  • a rust can be formed more appropriately according to the environment and conditions to be installed. For example, if you have to fix to a vibrating pipe, It is possible to use a material (for example, metal) having a higher strength than graphite for the portion other than the portion serving as the ultrasonic path.
  • the outer wall force of the fluid pipe is the integral multiple of the half wave length of the incident ultrasonic wave, and the distance to the outer wall surface of the fluid pipe is incident on the wedge. It is characterized by being formed to be an integral multiple of half the wavelength of the ultrasonic wave.
  • the transmission frequency of the ultrasonic transmission means (20) is adjusted.
  • the distance Lxl of the wedge (30) is adjusted to be an integral multiple of a half wavelength. Then, the transmittance is improved dramatically.
  • the Lxl distance can be as small as possible to suppress the attenuation of ultrasonic waves in the wedge (30).
  • FIG. 1 is a conceptual diagram showing an ultrasonic path.
  • FIG. 2 is a graph showing the relationship between temperature and sound velocity for several materials including graphite.
  • FIG. 3 is a conceptual diagram for showing a dimensional ratio in a wedge.
  • FIG. 4 is a view showing a wedge provided with an ultrasonic transmission portion that is a graphite force and an ultrasonic transducer fixing portion that is a separate member force.
  • FIG. 5 An illustration of the change in sound velocity due to the temperature gradient and the resulting refraction of incident ultrasound.
  • FIG. 1 is a conceptual diagram showing the whole of the present invention.
  • FIG. 2 is a diagram showing the relationship between temperature and sound velocity in several materials including graphite.
  • Fig. 3 is a conceptual diagram for showing the dimensional ratio in the wedge, and
  • Fig. 4 is a diagram showing a wedge having an ultrasonic transducer fixing portion that is a separate member force and an ultrasonic transmission portion that is a graphite force.
  • FIG. 5 is an explanatory diagram of the change in sound velocity due to the temperature gradient and the refraction of incident ultrasonic waves due to the change.
  • Fig. 1 shows an ultrasonic echo reflected from the measurement area of an ultrasonic pulse incident on the fluid 11 to be measured, as measured by an ultrasonic flowmeter for measuring the flow rate of the fluid pipe 10 through which the fluid 11 to be measured 11 flows.
  • a state is shown in which an ultrasonic transmission / reception means (transducer 20) that also serves as a receiver for receiving the signal is provided.
  • the transducer 20 is fixed to a predetermined portion of the pipe 10 by a wedge 30 made of resin.
  • the transducer 20 includes ultrasonic transmission means for transmitting an ultrasonic pulse having a required frequency (fundamental frequency) along the measurement line to the fluid to be measured 11, and measurement of the ultrasonic pulse incident on the fluid to be measured.
  • Area force Receives reflected ultrasonic echoes and doubles as a fluid velocity distribution measuring means to measure the flow velocity distribution of the fluid under measurement in the measurement area.
  • a computer such as a microcomputer, CPU, MPU or the like as a flow rate calculation means for obtaining the flow rate of the fluid to be measured in a time-dependent manner, and this computer It is connected to a display device capable of displaying power output in time series.
  • the transducer 20 includes a vibration amplifier as a signal generator for vibrating the transducer 20, and a pulse electric signal having a required fundamental frequency is input to the ultrasonic transducer. It has come to be. Then, by applying the pulse electric signal, an ultrasonic pulse having a fundamental frequency is oscillated along the measurement line.
  • An ultrasonic pulse is a straight beam with a pulse width of about 5mm and almost no spread!
  • the transducer 20 receives an ultrasonic echo that is reflected when an oscillated ultrasonic pulse hits a reflector (eg, “bubble” but not shown) in the fluid 11. It has become.
  • a reflector eg, “bubble” but not shown
  • the ultrasonic echo by the longitudinal wave received by the transducer 20 is received by the reflected wave receiver also serving as the transducer 20 and converted into an echo electric signal by the reflected wave receiver.
  • This echo electric signal is amplified by an amplifier and then digitized through an AD converter.
  • the digitized digital echo signal is input to a flow velocity calculation device equipped with a flow velocity distribution measurement circuit.
  • FIG. 4 includes a fixing part for fixing the ultrasonic transmission means and an ultrasonic transmission part, and the ultrasonic transmission part shows a wedge formed by sintering and molding graphite. It has been.
  • the basic configuration is the same as that shown in FIG. 1, but is different in that the fixing part for fixing the ultrasonic transmission means may be a member different from graphite.
  • the temperature of the sound is measured by changing the temperature of graphite, a plurality of engineering plastics, and aluminum, which are the materials of the wedge according to the present embodiment.
  • aluminum is stable above 150 degrees Celsius, but the speed of sound continues to drop to 150 degrees Celsius.
  • FIG. 3 shows the relationship between the transducer force in the wedge and the distance (Lxl) from the pipe surface to the fluid to be measured (Lx2).
  • the ultrasonic frequency is set to be an integral multiple of a half wavelength of the ultrasonic frequency by the transducer 20 at the distance Lx2. In other words, if the specifications (material and thickness) of the fluid pipe 10 are determined, the distance Lx2 that passes through the pipe wall is also determined.
  • the pipe wall thickness is obtained. This can be determined by actual measurement or piping specs.
  • the distance Lx2 is calculated from the incident angle of the ultrasonic waves from the transducer 20, the material of the wedge 30 and the piping, and the like.
  • the frequency of the ultrasonic wave oscillated by the transducer 20 is determined so that the Lx2 is an integral multiple of a half wavelength of the incident ultrasonic frequency.
  • Lxl is determined so as to be an integral multiple of a half wavelength.
  • the ultrasonic wave is attenuated in the wedge 30, it is general to suppress the attenuation of the ultrasonic wave by making Lxl as close as possible.
  • the present invention is not limited to the Doppler type ultrasonic flowmeter, but can be applied to a flowmeter belonging to a general ultrasonic flowmeter.

Abstract

An ultrasonic flowmeter contributive to more accurate measurement of flow rate even when the surface temperature of piping is high. An ultrasonic transmission means and a means for receiving an ultrasonic echo are formed integrally into a transducer (20). A wedge (30) for securing the ultrasonic transmission means (transducer (20)) to the outer wall surface of fluid piping (10) concerning fluid (11) to be measured is provided, and that wedge (30) is formed by sintering and molding graphite. Distance from the outer wall surface to the inner wall surface of the fluid piping (10) is equal to integral multiples of the half wavelength of incident ultrasonic wave, and the distance from the transducer (20) to the outer wall surface of the fluid piping (10) in the wedge (30) is equal to integral multiples of the half wavelength of incident ultrasonic wave.

Description

超音波流量計および超音波流量計に用いるくさび  Wedge used for ultrasonic flowmeter and ultrasonic flowmeter
技術分野  Technical field
[0001] 本発明は、配管の表面温度が高温となる場合における当該配管内の流体の流速 を測定する場合に生じる問題点を解決可能な、超音波流量計およびそれに関連す る技術に関する。  TECHNICAL FIELD [0001] The present invention relates to an ultrasonic flowmeter and a related technique capable of solving the problems that occur when measuring the flow velocity of fluid in a pipe when the surface temperature of the pipe is high.
背景技術  Background art
[0002] 非接触で流量を測定可能であるドッブラ式超音波流量計につ!、ては、さまざまな技 術が提供されている。例えば、特許文献 1に記載される技術である。  [0002] Various techniques have been provided for Doppler type ultrasonic flowmeters capable of measuring flow rates without contact. For example, the technique described in Patent Document 1.
[0003] 特許文献 1 :特開 2000— 97742号 [0003] Patent Document 1: JP 2000-97742 A
[0004] 上記の技術を具体的に説明する。上記文献に開示されているドッブラ式超音波流 量計は、所要周波数の超音波パルスを超音波トランスデューサ力 測定線に沿って 流体 (たとえば水)の配管内の被測定流体中へ入射させる超音波送信手段と、被測 定流体に入射された超音波パルスのうち測定領域カゝら反射された超音波エコーを受 信し、測定領域における被測定流体の流速分布を測定する流体速度分布測定手段 と、前記被測定流体の流速分布に基づいて、前記測定領域における被測定流体の 流量を演算する流量演算手段とを備えて被測定流体の流量を測定するものである。  [0004] The above technique will be specifically described. The Doppler type ultrasonic flowmeter disclosed in the above document is an ultrasonic wave that makes an ultrasonic pulse of a required frequency incident on a fluid to be measured in a fluid (for example, water) pipe along an ultrasonic transducer force measurement line. Transmitting means and fluid velocity distribution measuring means for receiving the ultrasonic echo reflected from the measurement area among the ultrasonic pulses incident on the measured fluid and measuring the flow velocity distribution of the measured fluid in the measurement area And a flow rate calculation means for calculating the flow rate of the fluid under measurement in the measurement region based on the flow velocity distribution of the fluid under measurement to measure the flow rate of the fluid under measurement.
[0005] 超音波流量計においては、被測定流体が液体である場合にはくさびを介して超音 波送信手段を配管へ固定する「クランプオン形」を用いることが多い。配管に対して「 後付け」が可能であるなどの利点があるからである。そのくさびについては、超音波を 通しやすい材質であることが第一条件である。一方、超音波の入射角度を決定した 後に超音波送信手段の固定作業を行うなどの便宜から、一般には合成樹脂 (例えば アクリル榭脂)を採用する。  [0005] In an ultrasonic flowmeter, when the fluid to be measured is a liquid, a “clamp-on type” is often used in which the ultrasonic wave transmission means is fixed to the pipe via a wedge. This is because there is an advantage that “retrofitting” is possible for piping. The first condition for the wedge is that it should be easy to pass ultrasonic waves. On the other hand, a synthetic resin (for example, acrylic resin) is generally employed for the convenience of fixing the ultrasonic transmission means after determining the ultrasonic incident angle.
[0006] 最近の超音波流量計では、超音波の発振装置 (ェミッション)とその超音波の反射 波を受信する装置 (レシーバ)とを一つの超音波発信受信装置として提供することが 多い。超音波の発振装置とその超音波の反射波を受信する装置とを別々に用意した 超音波流量計では、それぞれを流体配管へ厳格な位置決めをして取り付けなけれ ばならな!、が、超音波発信受信装置として提供された超音波流量計では流体配管 への取り付け作業が一度で済むなどの利点がある。 [0006] In recent ultrasonic flowmeters, an ultrasonic oscillator (emission) and an apparatus (receiver) for receiving the reflected wave of the ultrasonic are often provided as one ultrasonic transmission / reception apparatus. In an ultrasonic flowmeter that has an ultrasonic oscillator and a device that receives the reflected wave of the ultrasonic wave separately, each must be attached to the fluid piping with strict positioning. However, the ultrasonic flowmeter provided as an ultrasonic transmission / reception device has the advantage that it only needs to be attached to the fluid piping once.
[0007] さて、測定精度が高い超音波流量計を、原子力発電所の設備配管に用いようとす る場合、以下のような技術が提供されている。例えば、特許文献 2、特許文献 3に記 載される技術である。 [0007] When an ultrasonic flowmeter with high measurement accuracy is to be used for equipment piping of a nuclear power plant, the following techniques are provided. For example, the techniques described in Patent Document 2 and Patent Document 3.
[0008] 特許文献 2 :特開平 11 230801号 Patent Document 2: Japanese Patent Application Laid-Open No. 11 230801
[0009] 特許文献 3 :特開 2001— 141534号 Patent Document 3: Japanese Patent Application Laid-Open No. 2001-141534
[0010] 特許文献 2に記載された技術は、測定管の外表面に放熱フィンを設けることで、超 音波流量計における超音波振動子が耐えられる温度に下げる技術である。  [0010] The technique described in Patent Document 2 is a technique for reducing the temperature to a temperature that can be withstood by an ultrasonic transducer in an ultrasonic flowmeter by providing a radiation fin on the outer surface of a measurement tube.
また、特許文献 3に記載された技術は、配管表面と超音波振動子との間に冷却用 空間を設けるとともに、その冷却用空間を水冷などによって超音波振動子が耐えられ る温度に下げることを意図した技術である。  In addition, the technique described in Patent Document 3 provides a cooling space between the pipe surface and the ultrasonic vibrator, and lowers the cooling space to a temperature that the ultrasonic vibrator can withstand by water cooling or the like. This is a technology intended for
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0011] し力しながら、このような環境でくさびの材質として通常選択されるエンジニアリング プラスチックは、温度によって通過する超音波の音速が大きく異なってしまうことが判 明した。温度が低い部位では音速が速くなるのである。すなわち、配管表面に接して いる摂氏 220度の部位と、トランスデューサに到達する摂氏 100度以下の部位との間 には、異なる音速を有する部材カ^、くつもの複雑な層をなしていることと同じである。 [0011] However, it has been found that the engineering plastic that is usually selected as the material of the wedge in such an environment greatly varies the speed of sound of the ultrasonic wave that passes through depending on the temperature. The speed of sound increases at low temperature. That is, there is a complicated layer of members and shoes with different sound speeds between the part of 220 degrees Celsius in contact with the pipe surface and the part of 100 degrees Celsius or less reaching the transducer. The same.
[0012] 音速と密度の積で表される音響インピーダンスが異なる部材の界面では超音波が 反射、屈折することは良く知られているが、温度勾配により音速が変化する部材中で もこれと似た現象が予想される。このため、図 5に示すように超音波振動子力 発信さ れた超音波の入射角度が楔の設置角度と異なり、正確に流速分布が測定できない。  [0012] It is well known that ultrasonic waves are reflected and refracted at the interface of members with different acoustic impedances expressed by the product of sound velocity and density, but this is also true for members whose sound velocity changes due to temperature gradients. Phenomenon is expected. For this reason, as shown in FIG. 5, the incident angle of the ultrasonic wave transmitted by the ultrasonic transducer force is different from the installation angle of the wedge, and the flow velocity distribution cannot be measured accurately.
[0013] 本発明が解決しょうとする課題は、配管表面の温度が高いものであっても、より正確 な流量の計測に寄与する技術を提供することである。  [0013] The problem to be solved by the present invention is to provide a technique that contributes to more accurate flow rate measurement even when the temperature of the pipe surface is high.
請求項 1に記載の発明の目的は、配管表面の温度が高いものであっても、より正確 な流量の計測に寄与する超音波流量計を提供することである。  An object of the invention described in claim 1 is to provide an ultrasonic flowmeter that contributes to more accurate flow rate measurement even when the pipe surface temperature is high.
請求項 2から請求項 4に記載の発明は、配管表面の温度が高いものであっても、よ り正確な流量の計測に寄与する超音波流量計用のくさびを提供することである。 課題を解決するための手段 The inventions of claims 2 to 4 may be used even if the temperature of the piping surface is high. It is to provide a wedge for an ultrasonic flow meter that contributes to more accurate flow rate measurement. Means for solving the problem
[0014] (請求項 1)  [0014] (Claim 1)
請求項 1記載の発明は、 所要周波数の超音波パルスを超音波トランスデューサか ら測定線に沿って流体配管 (10)内の被測定流体 (11)中へ入射させる超音波送信手 段 (20)と、 被測定流体 (11)に入射された超音波パルスのうち測定領域力も反射され た超音波エコーを受信し、測定領域における被測定流体の流速分布を測定する流 体速度分布測定手段と、 前記被測定流体の流速分布に基づいて、前記測定領域 における被測定流体の流量を演算する流量演算手段とを備えて被測定流体の流量 を測定する超音波流量計に係る。その超音波流量計においては、超音波送信手段 と超音波エコーを受信する受信手段とを一体に形成する。  The invention according to claim 1 is an ultrasonic transmission means (20) in which an ultrasonic pulse of a required frequency is incident from a ultrasonic transducer along a measurement line into a fluid to be measured (11) in a fluid pipe (10). A fluid velocity distribution measuring means for receiving an ultrasonic echo reflected from the measurement region force among ultrasonic pulses incident on the fluid to be measured (11) and measuring the flow velocity distribution of the fluid to be measured in the measurement region; The present invention relates to an ultrasonic flowmeter that includes flow rate calculation means for calculating a flow rate of the fluid under measurement in the measurement region based on a flow velocity distribution of the fluid under measurement and that measures a flow rate of the fluid under measurement. In the ultrasonic flow meter, the ultrasonic transmission means and the reception means for receiving the ultrasonic echo are integrally formed.
そして、被測定流体 (11)に係る流体配管 (10)の外壁面に対して前記超音波送信手 段 (20)を固定するためのくさび (30)を設け、 そのくさび (30)は、黒鉛を焼結させて成 型して形成したことを特徴とする。  A wedge (30) is provided for fixing the ultrasonic transmission means (20) to the outer wall surface of the fluid pipe (10) related to the fluid to be measured (11), and the wedge (30) is made of graphite. It is characterized by being formed by sintering.
[0015] (用語説明) [0015] (Glossary)
上記の超音波流量計には、一般のドッブラ式超音波流量計と、相関法を用いた超 音波流量計とを含む。相関法を用いた超音波流量計とは、例えば、特開 2003— 34 4131号に開示されているような超音波流量計である。  The above ultrasonic flowmeter includes a general Doppler ultrasonic flowmeter and an ultrasonic flowmeter using a correlation method. The ultrasonic flow meter using the correlation method is, for example, an ultrasonic flow meter as disclosed in Japanese Patent Application Laid-Open No. 2003-344131.
両者とも、所要周波数の超音波パルスを超音波トランスデューサカゝら測定線に沿つ て流体配管内の被測定流体中へ入射させる超音波送信手段と、 被測定流体に入 射された超音波パルスのうち測定領域力 反射された超音波エコーを受信し、測定 領域における被測定流体の流速分布を測定する流体速度分布測定手段と、 前記 被測定流体の流速分布に基づ!、て、前記測定領域における被測定流体の流量を演 算する流量演算手段とを備えて被測定流体の流量を測定する。  In both cases, an ultrasonic transmission means for injecting an ultrasonic pulse of a required frequency along the measurement line from the ultrasonic transducer into the fluid to be measured in the fluid pipe, and an ultrasonic pulse incident on the fluid to be measured. The measurement area force is reflected by the reflected ultrasonic echo, the fluid velocity distribution measuring means for measuring the flow velocity distribution of the fluid under measurement in the measurement area, and the measurement based on the flow velocity distribution of the fluid under measurement! A flow rate calculating means for calculating a flow rate of the fluid to be measured in the region, and measuring the flow rate of the fluid to be measured.
[0016] 「成型」につ 、ては、超音波の伝達に妨げとならな 、表面コーティングは可能である 焼結および成型において必要であれば、ノインダーを混入する。「バインダー」につ いても、超音波の伝達に妨げとならないことが条件である。たとえば、黒鉛繊維を形 成してはならな!、。メッシュ構造が超音波を遮断してしまうからである。 [0016] For "molding", surface coating is possible without interfering with the transmission of ultrasonic waves. If necessary in sintering and molding, noder is mixed. The condition for the “binder” is that it does not interfere with the transmission of ultrasonic waves. For example, shape graphite fiber Don't make it! This is because the mesh structure blocks the ultrasonic waves.
[0017] (作用)  [0017] (Action)
黒鉛は、図 2に示すように、摂氏 25度力 摂氏 230度まで、ほとんど音速が変化しな い。したがって、黒鉛を焼結させて成型して形成したくさびも、摂氏 230度の配管表面 に設置しても、均質な材質として流速分布の測定が可能である。したがって、原子力 発電設備などにある配管表面の温度が高いものであっても、より正確な流量の計測 に寄与する超音波流量計として用いることができる。  Graphite has almost no change in sound speed up to 25 degrees Celsius and 230 degrees Celsius, as shown in Figure 2. Therefore, even when a wedge formed by sintering and molding graphite is installed on the surface of a pipe at 230 degrees Celsius, the flow velocity distribution can be measured as a homogeneous material. Therefore, it can be used as an ultrasonic flowmeter that contributes to more accurate flow rate measurement even when the temperature of the piping surface in a nuclear power generation facility is high.
[0018] (請求項 2) [0018] (Claim 2)
請求項 2記載の発明は、請求項 1に示す超音波流量計に用いるくさびであって、黒 鉛を焼結させて成型して形成したことを特徴とする。  The invention described in claim 2 is a wedge for use in the ultrasonic flowmeter according to claim 1, characterized in that it is formed by sintering and molding black lead.
[0019] (作用) [0019] (Function)
本請求項に係るくさびは、原子力発電設備などにある配管表面の温度が高いもの であっても、より正確な流量の計測に寄与する超音波流量計に採用できる。  The wedge according to this claim can be used for an ultrasonic flowmeter that contributes to more accurate flow rate measurement even when the temperature of the piping surface in a nuclear power generation facility or the like is high.
くさびは、超音波送信手段による超音波の入射角度を決定する部材であるので、 複数種類を用意しておき、現場において適切なものを選択して用いる、という使い方 が一般的である。したがって、数種類のくさびを黒鉛を焼結させて成型して形成した ものとして準備してあれば、現場での設置作業やその後の測定作業を効率化するこ とに寄与する。  Since the wedge is a member that determines the incident angle of the ultrasonic wave by the ultrasonic transmission means, it is common to prepare a plurality of types and select and use an appropriate one at the site. Therefore, if several types of wedges are prepared by sintering and molding graphite, it will contribute to the efficiency of on-site installation and subsequent measurement.
[0020] (請求項 3) [0020] (Claim 3)
請求項 3記載の発明は、被測定流体に係る流体配管に対して前記超音波送信手 段を固定するための固定部と、 その固定部に固定された超音波送信手段から流体 配管の外壁面に至る超音波伝達部とを備え、 その超音波伝達部は、黒鉛を焼結さ せて成型して形成したことを特徴とするくさびである。  The invention according to claim 3 is a fixing portion for fixing the ultrasonic transmission means to the fluid piping related to the fluid to be measured, and an outer wall surface of the fluid piping from the ultrasonic transmission means fixed to the fixing portion. The ultrasonic transmission part is a wedge characterized by being formed by sintering and molding graphite.
[0021] 請求項 2に係るくさびとの相違点は、次の点である。すなわち、均質な材質として形 成された請求項 2に係るくさびに対し、請求項 3に係るくさびは、超音波の経路となる 部位のみを黒鉛としたのである。 [0021] The difference from the wedge according to claim 2 is as follows. That is, in contrast to the wedge according to claim 2 formed as a homogeneous material, the wedge according to claim 3 uses only the portion that becomes the path of ultrasonic waves as graphite.
このようなくさびとすれば、設置すべき環境や条件に合わせて、より適切なくさびを 形成することができる。例えば、振動する配管に固定しなければならないような場合、 超音波の経路となる部位以外の部位を黒鉛よりも強度の高 、材質 (例えば金属)など を採用することができる。 If such a rust is used, a rust can be formed more appropriately according to the environment and conditions to be installed. For example, if you have to fix to a vibrating pipe, It is possible to use a material (for example, metal) having a higher strength than graphite for the portion other than the portion serving as the ultrasonic path.
[0022] (請求項 4)  [0022] (Claim 4)
請求項 4に記載の発明は、請求項 2または請求項 3のいずれかに記載したくさびを 限定したものである。  The invention described in claim 4 limits the wedge described in either claim 2 or claim 3.
すなわち、流体配管の外壁面力 内壁面に通過する距離が入射する超音波の半波 長の整数倍であり、当該くさびにおける前記超音波送信手段力 流体配管の外壁面 に至る距離が、入射する超音波の半波長の整数倍となるように形成したことを特徴と する。  That is, the outer wall force of the fluid pipe is the integral multiple of the half wave length of the incident ultrasonic wave, and the distance to the outer wall surface of the fluid pipe is incident on the wedge. It is characterized by being formed to be an integral multiple of half the wavelength of the ultrasonic wave.
[0023] 流体配管 (10)の管壁を通過する距離 Lx2を、発信周波数の半波長(え /2)の整数 倍とするために、超音波送信手段 (20)の発信周波数を調整する必要がある。  [0023] It is necessary to adjust the transmission frequency of the ultrasonic transmission means (20) so that the distance Lx2 passing through the pipe wall of the fluid pipe (10) is an integral multiple of half the wavelength (e / 2) of the transmission frequency. There is.
このように超音波送信手段 (20)の発信周波数を調整する。そして、この発信周波数 に合わせて、くさび (30)の距離 Lxlを、半波長の整数倍とするように調整する。すると 、透過率が飛躍的に良くなる。  In this way, the transmission frequency of the ultrasonic transmission means (20) is adjusted. Then, according to this transmission frequency, the distance Lxl of the wedge (30) is adjusted to be an integral multiple of a half wavelength. Then, the transmittance is improved dramatically.
なお、 Lxlの距離は、できる限り小さい方がくさび (30)内での超音波の減衰を抑制 できる。  It should be noted that the Lxl distance can be as small as possible to suppress the attenuation of ultrasonic waves in the wedge (30).
発明の効果  The invention's effect
[0024] 請求項 1に記載の発明によれば、配管表面の温度が高いものであっても、より正確 な流量の計測に寄与する超音波流量計を提供することができた。  [0024] According to the invention described in claim 1, it is possible to provide an ultrasonic flowmeter that contributes to more accurate flow rate measurement even when the pipe surface temperature is high.
請求項 2から請求項 4に記載の発明によれば、配管表面の温度が高いものであつ ても、より正確な流量の計測に寄与する超音波流量計用のくさびを提供することがで きた。  According to the inventions described in claims 2 to 4, it is possible to provide a wedge for an ultrasonic flowmeter that contributes to more accurate flow rate measurement even when the temperature of the pipe surface is high. .
特に請求項 4に記載の発明によれば、 Lxl、 Lx2を通過する際の透過率を上げること ができる。すなわち、くさびと配管壁面の両方を効率よく透過させ、より正確な流量の 計測に寄与する。  In particular, according to the invention described in claim 4, it is possible to increase the transmittance when passing through Lxl and Lx2. In other words, it efficiently penetrates both the wedge and the piping wall surface, contributing to more accurate flow rate measurement.
図面の簡単な説明  Brief Description of Drawings
[0025] [図 1]超音波の経路を示す概念図である。 FIG. 1 is a conceptual diagram showing an ultrasonic path.
[図 2]黒鉛を含むいくつかの材質における温度と音速との関係を示す図である。 [図 3]くさびにおける寸法比を示すための概念図である。 FIG. 2 is a graph showing the relationship between temperature and sound velocity for several materials including graphite. FIG. 3 is a conceptual diagram for showing a dimensional ratio in a wedge.
[図 4]黒鉛力 なる超音波伝達部と別部材力 なる超音波振動子固定部を備えたくさ びを示す図である。  FIG. 4 is a view showing a wedge provided with an ultrasonic transmission portion that is a graphite force and an ultrasonic transducer fixing portion that is a separate member force.
[図 5]温度勾配に起因する音速の変化と、それによる入射超音波の屈折の説明図で ある。  [Fig. 5] An illustration of the change in sound velocity due to the temperature gradient and the resulting refraction of incident ultrasound.
符号の説明  Explanation of symbols
[0026] 10 流体配管 11 被測定流体 [0026] 10 Fluid piping 11 Fluid to be measured
20 超音波送受信手段(トランスデューサ)  20 Ultrasonic transmitting / receiving means (transducer)
30 くさび 31 超音波送信手段固定部 32超音波伝搬部 発明を実施するための最良の形態  30 Wedge 31 Ultrasonic transmission means fixing part 32 Ultrasonic propagation part BEST MODE FOR CARRYING OUT THE INVENTION
[0027] 以下、本発明を実施の形態及び図面に基づいて、更に詳しく説明する。ここで使用 する図面は、図 1から図 5である。図 1は、本発明の全体を示す概念図である。図 2は 、黒鉛を含むいくつかの材質における温度と音速との関係を示す図である。図 3は、 くさびにおける寸法比を示すための概念図であり、図 4は、黒鉛力 なる超音波伝達 部と別部材力 なる超音波振動子固定部を備えたくさびを示す図であり、図 5は、温 度勾配に起因する音速の変化と、それによる入射超音波の屈折の説明図である。  Hereinafter, the present invention will be described in more detail based on embodiments and drawings. The drawings used here are Figures 1 to 5. FIG. 1 is a conceptual diagram showing the whole of the present invention. FIG. 2 is a diagram showing the relationship between temperature and sound velocity in several materials including graphite. Fig. 3 is a conceptual diagram for showing the dimensional ratio in the wedge, and Fig. 4 is a diagram showing a wedge having an ultrasonic transducer fixing portion that is a separate member force and an ultrasonic transmission portion that is a graphite force. FIG. 5 is an explanatory diagram of the change in sound velocity due to the temperature gradient and the refraction of incident ultrasonic waves due to the change.
[0028] (図 1)  [0028] (Figure 1)
図 1は、被測定流体 11が流れる流体配管 10の流量を計測するための超音波流量 計にぉ ヽて、被測定流体 11に入射された超音波パルスの測定領域から反射された 超音波エコーを受信する受信機を兼ねた超音波送受信手段 (トランスデューサ 20) を備える様子を示す。そのトランスデューサ 20は、榭脂製のくさび 30にて配管 10の 所定箇所に固定されている。  Fig. 1 shows an ultrasonic echo reflected from the measurement area of an ultrasonic pulse incident on the fluid 11 to be measured, as measured by an ultrasonic flowmeter for measuring the flow rate of the fluid pipe 10 through which the fluid 11 to be measured 11 flows. A state is shown in which an ultrasonic transmission / reception means (transducer 20) that also serves as a receiver for receiving the signal is provided. The transducer 20 is fixed to a predetermined portion of the pipe 10 by a wedge 30 made of resin.
[0029] トランスデューサ 20は、被測定流体 11に対して測定線に沿って所要周波数 (基本 周波数)の超音波パルスを送信させる超音波送信手段と、被測定流体に入射された 超音波パルスの測定領域力 反射された超音波エコーを受信し、測定領域における 被測定流体の流速分布を測定する流体速度分布測定手段とを兼ねて!/ヽる。そして、 図示は省略するが、その流速分布に基づ 、て被測定流体の流量を時間依存で求め る流量演算手段としてのマイコン、 CPU, MPU等のコンピュータと、このコンピュータ 力もの出力を時系列的に表示可能な表示装置とに接続されている。 [0029] The transducer 20 includes ultrasonic transmission means for transmitting an ultrasonic pulse having a required frequency (fundamental frequency) along the measurement line to the fluid to be measured 11, and measurement of the ultrasonic pulse incident on the fluid to be measured. Area force Receives reflected ultrasonic echoes and doubles as a fluid velocity distribution measuring means to measure the flow velocity distribution of the fluid under measurement in the measurement area. Although not shown, based on the flow velocity distribution, a computer such as a microcomputer, CPU, MPU or the like as a flow rate calculation means for obtaining the flow rate of the fluid to be measured in a time-dependent manner, and this computer It is connected to a display device capable of displaying power output in time series.
[0030] また、トランスデューサ 20には、トランスデューサ 20を加振させる信号発生器として の加振用アンプを備えており、加振用アンプ力 所要の基本周波数のパルス電気信 号が超音波トランスデューサへ入力されるようになっている。そして、パルス電気信号 の印加により基本周波数の超音波パルスが測定線に沿って発振せしめられる。超音 波パルスは、パルス幅 5mm程度で拡がりをほとんど持たな!、直進性のビームである。  [0030] Further, the transducer 20 includes a vibration amplifier as a signal generator for vibrating the transducer 20, and a pulse electric signal having a required fundamental frequency is input to the ultrasonic transducer. It has come to be. Then, by applying the pulse electric signal, an ultrasonic pulse having a fundamental frequency is oscillated along the measurement line. An ultrasonic pulse is a straight beam with a pulse width of about 5mm and almost no spread!
[0031] トランスデューサ 20は、発振された超音波パルスが流体 11中の反射体 (例えば「気 泡」であるが図示は省略している)に当って反射される超音波エコーを受信するように なっている。  The transducer 20 receives an ultrasonic echo that is reflected when an oscillated ultrasonic pulse hits a reflector (eg, “bubble” but not shown) in the fluid 11. It has become.
トランスデューサ 20にて受信された縦波による超音波エコーは、トランスデューサ 2 0が兼ねた反射波レシーバにて受信され、その反射波レシーバにてエコー電気信号 へ変換される。このエコー電気信号は、増幅器で増幅された後、 AD変 を通って デジタルィ匕される。そして、デジタル化されたデジタルエコー信号が流速分布計測回 路を備えた流速計算装置に入力される。  The ultrasonic echo by the longitudinal wave received by the transducer 20 is received by the reflected wave receiver also serving as the transducer 20 and converted into an echo electric signal by the reflected wave receiver. This echo electric signal is amplified by an amplifier and then digitized through an AD converter. The digitized digital echo signal is input to a flow velocity calculation device equipped with a flow velocity distribution measurement circuit.
[0032] 図 4は、前記超音波送信手段を固定するための固定部と、超音波伝達部とを備え、 その超音波伝達部は、黒鉛を焼結させて成型して形成したくさびを図示したものであ る。基本的な構成は図 1に示したものと同様であるが、超音波送信手段を固定する固 定部が黒鉛とは異なる部材カもなる点で相違している。  FIG. 4 includes a fixing part for fixing the ultrasonic transmission means and an ultrasonic transmission part, and the ultrasonic transmission part shows a wedge formed by sintering and molding graphite. It has been. The basic configuration is the same as that shown in FIG. 1, but is different in that the fixing part for fixing the ultrasonic transmission means may be a member different from graphite.
[0033] (図 2)  [0033] (Fig. 2)
図 2には、本実施形態に係るくさびの材質である黒鉛、複数のエンジニアリングブラ スチック、アルミニウムの温度を変化させ、そのときの音速を計測したものである。 例えば、アルミニウムは摂氏 150度以上で安定しているものの、摂氏 150度までは 音速が下がり続けている。  In FIG. 2, the temperature of the sound is measured by changing the temperature of graphite, a plurality of engineering plastics, and aluminum, which are the materials of the wedge according to the present embodiment. For example, aluminum is stable above 150 degrees Celsius, but the speed of sound continues to drop to 150 degrees Celsius.
また、他のエンジニアリングプラスチックは、温度が上がると、少しずつであるが音速 が下がり続けている。  In other engineering plastics, as the temperature increases, the speed of sound continues to decrease gradually.
[0034] し力しながら、黒鉛については、図 2に示すように、摂氏 25度付近力も摂氏 230度く ら 、までほとんど音速が変化しな!、。  [0034] However, for graphite, as shown in Fig. 2, the sound speed hardly changes until the force near 25 degrees Celsius is 230 degrees Celsius!
したがって、くさび全体、または超音波の通路となる部位に黒鉛を採用することで、 温度勾配の生じてしまう環境であっても正確な流速分布の計測を可能とするのである Therefore, by adopting graphite for the whole wedge or the part that becomes the path of ultrasonic waves, Even in environments where temperature gradients occur, it is possible to accurately measure the flow velocity distribution.
[0035] 図 3には、くさびにおけるトランスデューサ力 配管表面までの距離 (Lxl)と、配管 表面から被測定流体までの距離 (Lx2)との関係を図示して 、る。 FIG. 3 shows the relationship between the transducer force in the wedge and the distance (Lxl) from the pipe surface to the fluid to be measured (Lx2).
超音波の周波数は、距離 Lx2において、トランスデューサ 20による超音波周波数 の半波長の整数倍になるように設定する。換言すれば、流体配管 10のスペック (材 質や肉厚)が決まっていれば、その管壁を通過する距離 Lx2も決定する。  The ultrasonic frequency is set to be an integral multiple of a half wavelength of the ultrasonic frequency by the transducer 20 at the distance Lx2. In other words, if the specifications (material and thickness) of the fluid pipe 10 are determined, the distance Lx2 that passes through the pipe wall is also determined.
[0036] その実際の手順としては、まず、配管肉厚を求める。これは、実測するか、配管スぺ ックにて把握すればよい。 [0036] As the actual procedure, first, the pipe wall thickness is obtained. This can be determined by actual measurement or piping specs.
次に、トランスデューサ 20による超音波の入射角度、くさび 30や配管の材質などか ら、距離 Lx2を算出する。  Next, the distance Lx2 is calculated from the incident angle of the ultrasonic waves from the transducer 20, the material of the wedge 30 and the piping, and the like.
そして、その Lx2が入射する超音波周波数の半波長の整数倍になるように、トラン スデューサ 20が発振する超音波の周波数を決定する。その決定した周波数を用い て、半波長の整数倍となるように Lxlを決定する。  Then, the frequency of the ultrasonic wave oscillated by the transducer 20 is determined so that the Lx2 is an integral multiple of a half wavelength of the incident ultrasonic frequency. Using the determined frequency, Lxl is determined so as to be an integral multiple of a half wavelength.
なお、くさび 30内では超音波が減衰するので、この Lxlをできるだけ小さな距離と なるようにして超音波の減衰を抑制することが一般的である。  In addition, since the ultrasonic wave is attenuated in the wedge 30, it is general to suppress the attenuation of the ultrasonic wave by making Lxl as close as possible.
産業上の利用可能性  Industrial applicability
[0037] 本願発明は、ドッブラ式超音波流量計に限られず、一般の超音波流量計に属する 流量計においても採用することができる。 [0037] The present invention is not limited to the Doppler type ultrasonic flowmeter, but can be applied to a flowmeter belonging to a general ultrasonic flowmeter.
また、超音波流量計の製造業のほか、超音波流量計取り付け業、メンテナンス業に おいても用いられる。  In addition to the ultrasonic flow meter manufacturing industry, it is also used in the installation and maintenance industries of ultrasonic flow meters.

Claims

請求の範囲 The scope of the claims
[1] 所要周波数の超音波パルスを超音波トランスデューサ力 測定線に沿って流体配 管内の被測定流体中へ入射させる超音波送信手段と、 被測定流体に入射された 超音波パルスのうち測定領域力 反射された超音波エコーを受信し、測定領域にお ける被測定流体の流速分布を測定する流体速度分布測定手段と、 前記被測定流 体の流速分布に基づ!/、て、前記測定領域における被測定流体の流量を演算する流 量演算手段とを備えて被測定流体の流量を測定する超音波流量計であって、 超音波送信手段と超音波エコーを受信する受信手段とを一体に形成し、 被測定流体に係る流体配管の外壁面に対して前記超音波送信手段を固定するた めのくさびを設け、  [1] Ultrasonic transmission means for injecting ultrasonic pulses of the required frequency along the ultrasonic transducer force measurement line into the fluid under measurement in the fluid pipe, and the measurement region of the ultrasonic pulses incident on the fluid under measurement The fluid velocity distribution measuring means for receiving the reflected ultrasonic echo and measuring the flow velocity distribution of the fluid to be measured in the measurement region, and the measurement based on the flow velocity distribution of the fluid to be measured! / An ultrasonic flowmeter for measuring a flow rate of a fluid to be measured, comprising a flow rate calculation unit for calculating a flow rate of the fluid to be measured in the region, and comprising an ultrasonic transmission unit and a reception unit for receiving an ultrasonic echo. Provided with a wedge for fixing the ultrasonic transmission means to the outer wall surface of the fluid pipe related to the fluid to be measured,
そのくさびは、黒鉛を焼結させて成型して形成したことを特徴とする超音波流量計。  The wedge is an ultrasonic flowmeter characterized by being formed by sintering and molding graphite.
[2] 所要周波数の超音波パルスを超音波トランスデューサ力 測定線に沿って流体配 管内の被測定流体中へ入射させる超音波送信手段と、 被測定流体に入射された 超音波パルスのうち測定領域力 反射された超音波エコーを受信し、測定領域にお ける被測定流体の流速分布を測定する流体速度分布測定手段と、 前記被測定流 体の流速分布に基づ!/、て、前記測定領域における被測定流体の流量を演算する流 量演算手段とを備え、超音波送信手段と超音波エコーを受信する受信手段とを一体 に形成し、被測定流体の流量を測定する超音波流量計に用いるくさびであって、 黒鉛を焼結させて成型して形成したことを特徴とするくさび。  [2] Ultrasonic transmission means for injecting ultrasonic pulses of the required frequency along the ultrasonic transducer force measurement line into the fluid to be measured in the fluid pipe, and the measurement area of the ultrasonic pulses incident on the fluid to be measured The fluid velocity distribution measuring means for receiving the reflected ultrasonic echo and measuring the flow velocity distribution of the fluid to be measured in the measurement region, and the measurement based on the flow velocity distribution of the fluid to be measured! / An ultrasonic flowmeter for measuring the flow rate of the fluid to be measured, comprising a flow rate calculation means for calculating the flow rate of the fluid to be measured in the region, and integrally forming the ultrasonic transmission means and the reception means for receiving the ultrasonic echo A wedge used for the above, characterized by being formed by sintering and molding graphite.
[3] 所要周波数の超音波パルスを超音波トランスデューサ力 測定線に沿って流体配 管内の被測定流体中へ入射させる超音波送信手段と、 被測定流体に入射された 超音波パルスのうち測定領域力 反射された超音波エコーを受信し、測定領域にお ける被測定流体の流速分布を測定する流体速度分布測定手段と、 前記被測定流 体の流速分布に基づ!/、て、前記測定領域における被測定流体の流量を演算する流 量演算手段とを備え、超音波送信手段と超音波エコーを受信する受信手段とを一体 に形成し、被測定流体の流量を測定する超音波流量計に用いるくさびであって、 被測定流体に係る流体配管に対して前記超音波送信手段を固定するための固定 部と、 その固定部に固定された超音波送信手段から流体配管の外壁面に至る超音波伝 達部とを備え、 [3] Ultrasonic transmission means for injecting an ultrasonic pulse of a required frequency along the ultrasonic transducer force measurement line into the fluid to be measured in the fluid pipe, and a measurement region of the ultrasonic pulse incident on the fluid to be measured The fluid velocity distribution measuring means for receiving the reflected ultrasonic echo and measuring the flow velocity distribution of the fluid to be measured in the measurement region, and the measurement based on the flow velocity distribution of the fluid to be measured! / An ultrasonic flowmeter for measuring the flow rate of the fluid to be measured, comprising a flow rate calculation means for calculating the flow rate of the fluid to be measured in the region, and integrally forming the ultrasonic transmission means and the reception means for receiving the ultrasonic echo A wedge for use in the above, a fixing portion for fixing the ultrasonic transmission means to the fluid piping related to the fluid to be measured; An ultrasonic transmission part that extends from the ultrasonic transmission means fixed to the fixed part to the outer wall surface of the fluid pipe,
その超音波伝達部は、黒鉛を焼結させて成型して形成したことを特徴とするくさび。 流体配管の外壁面力 内壁面に通過する距離が入射する超音波の半波長の整数 倍であり、当該くさびにおける前記超音波送信手段力 流体配管の外壁面に至る距 離が、入射する超音波の半波長の整数倍となるように形成したことを特徴とする請求 項 2または請求項 3のいずれかに記載したくさび。  The wedge is characterized in that the ultrasonic transmission part is formed by sintering and molding graphite. The outer wall force of the fluid pipe is an integral multiple of half the wavelength of the incident ultrasonic wave, and the distance to the outer wall surface of the fluid pipe is the incident ultrasonic wave. 4. The wedge according to claim 2, wherein the wedge is formed to be an integral multiple of a half wavelength.
PCT/JP2006/325795 2005-12-27 2006-12-25 Ultrasonic flowmeter and wedge for use in ultrasonic flowmeter WO2007074779A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005376615A JP2007178244A (en) 2005-12-27 2005-12-27 Ultrasonic flowmeter and wedge therefor
JP2005-376615 2005-12-27

Publications (1)

Publication Number Publication Date
WO2007074779A1 true WO2007074779A1 (en) 2007-07-05

Family

ID=38217999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/325795 WO2007074779A1 (en) 2005-12-27 2006-12-25 Ultrasonic flowmeter and wedge for use in ultrasonic flowmeter

Country Status (2)

Country Link
JP (1) JP2007178244A (en)
WO (1) WO2007074779A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11753356B2 (en) 2021-09-09 2023-09-12 Chevron Phillips Chemical Company Lp Methods for operating ethylene oligomerization reactor systems with an integrated ultrasonic flow meter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6472617B2 (en) * 2014-08-06 2019-02-20 関西電力株式会社 External ultrasonic flowmeter for gas and gas flow measurement method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59116820U (en) * 1983-01-28 1984-08-07 株式会社日立製作所 Ultrasonic Doppler flow meter detector
JPH04172222A (en) * 1990-11-05 1992-06-19 Tokimec Inc Method and apparatus for measuring flowing speed of ultrasonic wave
JP2002365106A (en) * 2001-04-02 2002-12-18 Kazumasa Onishi Instrument for measuring flow rate, clamp-on type ultrasonic flowmeter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6047602A (en) * 1996-10-29 2000-04-11 Panametrics, Inc. Ultrasonic buffer/waveguide
JP4827007B2 (en) * 2003-12-26 2011-11-30 東京電力株式会社 Ultrasonic flow meter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59116820U (en) * 1983-01-28 1984-08-07 株式会社日立製作所 Ultrasonic Doppler flow meter detector
JPH04172222A (en) * 1990-11-05 1992-06-19 Tokimec Inc Method and apparatus for measuring flowing speed of ultrasonic wave
JP2002365106A (en) * 2001-04-02 2002-12-18 Kazumasa Onishi Instrument for measuring flow rate, clamp-on type ultrasonic flowmeter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11753356B2 (en) 2021-09-09 2023-09-12 Chevron Phillips Chemical Company Lp Methods for operating ethylene oligomerization reactor systems with an integrated ultrasonic flow meter

Also Published As

Publication number Publication date
JP2007178244A (en) 2007-07-12

Similar Documents

Publication Publication Date Title
US8141434B2 (en) Flow measuring apparatus
WO2016016818A1 (en) Improved signal travel time flow meter
JP2006030041A (en) Clamp-on type doppler type ultrasonic flow velocity distribution meter
WO2011078691A2 (en) Measuring apparatus
JP4535065B2 (en) Doppler ultrasonic flow meter
GB2479115A (en) Ultrasonic flow measurement based on propagation time of Lamb waves
Li et al. Design of miniature clamp-on ultrasonic flow measurement transducers
US20050154307A1 (en) Apparatus and method for measuring a fluid velocity profile using acoustic doppler effect
WO2007074779A1 (en) Ultrasonic flowmeter and wedge for use in ultrasonic flowmeter
RU2396518C2 (en) Method and device for acoustic measurement of gas flow rate
JP2011038870A (en) Ultrasonic flow meter and flow rate measuring method using the same
JPH11230799A (en) Ultrasonic flowmeter
Kiefer et al. Transit time of Lamb wave-based ultrasonic Flow meters and the effect of temperature
Chun et al. Assessment of combined V/Z clamp-on ultrasonic flow metering
AU2010335057A1 (en) Measuring apparatus
CN112747260B (en) Ultrasonic flow measuring device capable of preventing noise interference
JP7151344B2 (en) Pressure measuring device
JP4827008B2 (en) Ultrasonic flow meter, ultrasonic transducer, ultrasonic transmission / reception unit, and flow measurement method using ultrasonic flow meter
KR101119998B1 (en) Clamp-on type Ultrasonic Transducer using a multi-path
RU2564954C1 (en) Waveguide ultrasonic converter of flow meter
Vidyarthia et al. Ultrasonic transit-time flowmeters for pipes: A short review
JP2005195371A (en) Ultrasonic flowmeter, and sound absorbing material for ultrasonic flowmeter
RU2447406C1 (en) Ultrasonic method of measuring liquid and gaseous media and apparatus for realising said method
JP2012167964A (en) Ultrasonic incidence method
JP2011095030A (en) Ultrasonic current meter and ultrasonic flow velocity measuring method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06843198

Country of ref document: EP

Kind code of ref document: A1