JPH06103206B2 - Ultrasonic velocity measuring method and apparatus - Google Patents

Ultrasonic velocity measuring method and apparatus

Info

Publication number
JPH06103206B2
JPH06103206B2 JP62139398A JP13939887A JPH06103206B2 JP H06103206 B2 JPH06103206 B2 JP H06103206B2 JP 62139398 A JP62139398 A JP 62139398A JP 13939887 A JP13939887 A JP 13939887A JP H06103206 B2 JPH06103206 B2 JP H06103206B2
Authority
JP
Japan
Prior art keywords
ultrasonic
pipe
receiver
flow velocity
transmitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62139398A
Other languages
Japanese (ja)
Other versions
JPS63304117A (en
Inventor
良平 茂木
真一 竹内
敏夫 佐藤
Original Assignee
株式会社トキメック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トキメック filed Critical 株式会社トキメック
Priority to JP62139398A priority Critical patent/JPH06103206B2/en
Priority to US07/171,257 priority patent/US4930358A/en
Publication of JPS63304117A publication Critical patent/JPS63304117A/en
Publication of JPH06103206B2 publication Critical patent/JPH06103206B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、超音波流速測定方法およびその装置に係り、
とくに配管の外面に超音波送受波器を装着して内部の流
速を測定する超音波流速測定方法およびその装置に関す
る。
TECHNICAL FIELD The present invention relates to an ultrasonic velocity measuring method and apparatus,
In particular, the present invention relates to an ultrasonic flow velocity measuring method and apparatus for mounting an ultrasonic wave transmitter / receiver on the outer surface of a pipe to measure the internal flow velocity.

〔従来の技術〕[Conventional technology]

従来例を第9図に示す。この第9図の従来例において、
一方の超音波送受波器50の超音波振動子51から下流側に
向けて出力される超音波は、伝播経路l1,l2,l3,l4
及びl5を経て他方の超音波送受波器60の超音波振動子61
に至る。そして、この場合の伝播時間をtdとする。
A conventional example is shown in FIG. In the conventional example of FIG. 9,
The ultrasonic waves output from the ultrasonic transducer 51 of one ultrasonic wave transmitter / receiver 50 toward the downstream side are propagation paths l 1 , l 2 , l 3 , l 4 ,
And l 5 and the ultrasonic transducer 61 of the other ultrasonic transducer 60.
Leading to. The propagation time in this case is t d .

また、他方の超音波送受波器60の超音波振動子61から上
流側に向けて出力される超音波は、伝播経路l5,l4
l3,l2,及びl1を経て一方の超音波送受波器50の超音波
振動子51に至る。そして、この場合の伝播時間をtuとす
る。
In addition, the ultrasonic waves output from the ultrasonic transducer 61 of the other ultrasonic transducer 60 toward the upstream side are propagated through the propagation paths l 5 , l 4 ,
The ultrasonic transducer 51 of one ultrasonic wave transmitter / receiver 50 reaches the ultrasonic transducer 51 via l 3 , l 2 , and l 1 . The propagation time in this case is t u .

この場合、配管3内の流速は、次式にて求まる。In this case, the flow velocity in the pipe 3 is calculated by the following equation.

V=(C2/2Dtanθ)・(tu−td) …(a) ここで、Dは配管3の内径、θは流動体中の屈折角、C
は流動体の音速を示す。
V = (C 2 / 2Dtanθ) · (t u -t d) ... (a) where, D is the inner diameter of the pipe 3, theta is the angle of refraction in the fluid, C
Indicates the speed of sound of the fluid.

この結果、流動体の音速が予め確定しているものについ
ては、上式に基づいて配管3内の流動体の流速を比較的
容易に測定することができ、同時に配管3の内径が明ら
かとなっていることから配管3内の流動体の流量も極く
容易に求め得るようになっている。
As a result, if the sonic velocity of the fluid is fixed in advance, the flow velocity of the fluid in the pipe 3 can be measured relatively easily based on the above equation, and at the same time, the inner diameter of the pipe 3 becomes clear. Therefore, the flow rate of the fluid in the pipe 3 can be obtained very easily.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、超音波は、振動源(振動子もしくは振動
面)の大きさによってその指向性すなわち伝播方向への
広がりが著しく変化する。一方、入射角Φのとり得る値
はこの指向性に大きく依存する。すなわち、振動源が小
さくなると入射角Φは幅広いものとなる。このため、超
音波利用の流量測定においては、測定条件によって測定
値に多くの誤差が入り易い。
However, the directivity of ultrasonic waves, that is, the spread in the propagation direction, changes significantly depending on the size of the vibration source (vibrator or vibration surface). On the other hand, the possible value of the incident angle Φ largely depends on this directivity. That is, when the vibration source becomes smaller, the incident angle Φ becomes wider. Therefore, in the flow measurement using ultrasonic waves, many errors are likely to be included in the measurement value depending on the measurement conditions.

この指向性の大小を表示する第1零幅射角の指向角β
は、一般に、 β≒57・λ/b(度) ……(b) で表される。ここで、bは振動源の幅を示し、λは伝播
媒体中における超音波の波長を示す。
The directivity angle β of the first zero-width glancing angle that indicates the magnitude of this directivity
Is generally represented by β≈57 · λ / b (degrees) (b). Here, b represents the width of the vibration source, and λ represents the wavelength of the ultrasonic wave in the propagation medium.

一方、通常最も多く使用されている流量計用の超音波送
受波器では、配管に対する当接面の寸法が管壁内でb≒
5λないし8λのものが多い。b≒10λのものは極くま
れである。このため指向角βは、b≒10λの場合でもβ
≒5.7°となる。従って、通常の超音波送受波器では、
常時±3°以上の広がり角を常に有している。
On the other hand, in the ultrasonic transducer for the flow meter which is usually used most often, the dimension of the contact surface with respect to the pipe is b≈
Many are 5λ to 8λ. Those with b≈10λ are extremely rare. Therefore, the directivity angle β is β even if b≈10λ.
≈5.7 °. Therefore, in a normal ultrasonic transducer,
It always has a divergence angle of ± 3 ° or more.

このように、従来の超音波送受波器では、広い指向性を
有し、それが、式(b)に見られる如く、屈折角θの広
がりが流体の流速誤差の直接の原因となるため、屈折角
が正しく設定されるように、受信側では、広い角度幅を
もったビームの中から適性な角度で伝播してくる超音波
の中心位置を特定するのに多くの時間と労力を要すると
いう本質的な欠点があった。
As described above, the conventional ultrasonic transducer has a wide directivity, which is because the spread of the refraction angle θ is a direct cause of the fluid velocity error, as shown in the equation (b). It takes a lot of time and effort on the receiving side to specify the center position of the ultrasonic wave propagating at an appropriate angle from the beam with a wide angle width so that the refraction angle is set correctly. There was an inherent drawback.

同時に、伝播超音波の指向性角度の広がりは、配管の厚
さ固有の複数の共振モード(板波のAモード又はSモー
ド)の内の一又は二以上の励振条件(入射角によって決
まる)に近接したり含んだりする。
At the same time, the spread of the directivity angle of the propagating ultrasonic wave depends on one or more excitation conditions (determined by the incident angle) of a plurality of resonance modes (A mode or S mode of plate wave) peculiar to the thickness of the pipe. Approach and include.

このため、受信側では、常に最大値を検出するように受
信位置を設定することから、しばしばエネルギ透過率の
大きい他の共振モードを検出することとなり、測定値に
著しい誤差が生じる。すなわち、超音波の指向角が広
く,超音波ビームが平行ビームとはみなせなかったり,
また、有害モードのために予想外の方向へ伝播するため
に、超音波の伝播経路が、クサビ内,管壁内および管内
流動体中のいずれにおいても正確には特定し得なくなる
ので、測定した伝播時間tu,tdの中でどれだけの時間が
管内流動体中を通過するのに要した時間なのかを捕らえ
にくくなり、測定原理の基本がドプラー効果にある従来
形の超音波流速流量計では、本質的に精度の信頼性に欠
けるという欠点を有していた。
For this reason, on the receiving side, the receiving position is set so as to always detect the maximum value, so that other resonance modes with large energy transmittance are often detected, and a significant error occurs in the measured value. That is, the directivity angle of the ultrasonic wave is wide, and the ultrasonic beam cannot be regarded as a parallel beam.
In addition, because the propagation mode of the ultrasonic waves cannot be accurately specified in the wedge, in the pipe wall, and in the fluid in the pipe because it propagates in an unexpected direction due to the harmful mode, it was measured. It becomes difficult to capture how much of the propagation time t u , t d it took to pass through the pipe fluid, and the principle of measurement is based on the Doppler effect. In total, there was a drawback that the accuracy was essentially unreliable.

〔発明の目的〕[Object of the Invention]

本発明は、かかる従来例の有する不都合を改善し、とく
に、配管上に装備する一対の超音波送受波器相互間の距
離を大まかに設定しても配管内流体の流速を高精度に測
定することのできる作業性良好な超音波流速測定方法お
よびその装置を提供することを、その目的とする。
The present invention improves the inconvenience of the conventional example, and particularly measures the flow velocity of the fluid in the pipe with high accuracy even if the distance between the pair of ultrasonic transducers mounted on the pipe is roughly set. It is an object of the present invention to provide an ultrasonic flow velocity measuring method and an apparatus therefor capable of good workability.

〔問題点を解決するための手段〕[Means for solving problems]

そこで、本発明では、指向性角度が著しく小さく形成さ
れた二つの超音波送受波器を適当な間隔をおいて被測定
管の上流側と下流側にそれぞれ配設し、当該配管の外壁
から超音波を交互に斜入射させて測定時における超音波
送受波器内のクサビ部分の音速C1を測定し、これらの測
定に相前後して、前記上流側から下流側へ,又は下流側
から上流側へそれぞれ超音波を発振するとともに、この
各発振された超音波が管壁及び管内流動体を伝播して受
信されるまでの時間td,tuを順次測定し、これらの測定
値C1,td,tuと前記超音波送受波器相互間の間隔LXを予
め特定された所定の関数,すなわち V=F(C1,tu,td,LX) に代入して他の必要な定数とともにこれを演算し、管内
流動体の流速Vを算定する、等の構成を採り、これによ
って前記目的を達成しようとするものである。
Therefore, in the present invention, two ultrasonic wave transmitters / receivers each having a remarkably small directivity angle are arranged at appropriate intervals on the upstream side and the downstream side of the pipe to be measured, respectively, and the ultrasonic wave from the outer wall of the pipe is Measure the sound velocity C 1 of the wedge part in the ultrasonic transducer at the time of measuring by alternately injecting sound waves obliquely, and before or after these measurements, from the upstream side to the downstream side, or from the downstream side to the upstream side. The ultrasonic waves are oscillated to the respective sides, and the times t d and t u until each of the oscillated ultrasonic waves propagates through the pipe wall and the pipe fluid and is received are sequentially measured, and these measured values C 1 , T d , t u and the interval L X between the ultrasonic transducers are substituted into a predetermined function, that is, V = F (C 1 , t u , t d , L X ) Is calculated along with the necessary constants for calculating the flow velocity V of the fluid in the pipe. Serial is intended to achieve the objectives.

〔発明の実施例〕Example of Invention

以下、本発明の一実施例を第1図ないし第8図に基づい
て説明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 8.

第1図において、1は配管3の上流側に装備された一方
の超音波送受波器を示し、2は同じく配管3の下流側に
装備された他方の超音波送受波器を示す。この内、前記
一方の超音波送受波器1は、第3図に示すように超音波
を配管3へ斜入射せしめるためのクサビ部材1Aと振動子
1Bとを備えている。クサビ部材1Aは、アクリル樹脂等に
より形成され、断面が台形状をなし、その一方の斜面1a
に超音波振動子1Bが固着されている。また、他方の斜面
1cは、超音波振動子1Bから発信された超音波が超音波放
射面としての入射面1bで反射してクサビ部材1A内を伝播
する場合の当該伝播経路に直交する超音波反射面を構成
している。このため、クサビ部材1Aを伝播する内部反射
波は、超音波振動子1B側に戻るようになっている。さら
に管内に超音波を漏洩放射する際の開口面となる入射面
1bの長さbを,使用中心周波数に対して略18波長以上と
なるようにしている。
In FIG. 1, reference numeral 1 denotes one ultrasonic wave transmitter / receiver installed on the upstream side of the pipe 3, and reference numeral 2 denotes the other ultrasonic wave transmitter / receiver installed on the downstream side of the pipe 3. Among them, the ultrasonic transmitter / receiver 1 on one side includes a wedge member 1A and a vibrator for causing ultrasonic waves to obliquely enter the pipe 3 as shown in FIG.
Equipped with 1B. The wedge member 1A is made of acrylic resin or the like, has a trapezoidal cross section, and one of the slopes 1a
The ultrasonic transducer 1B is fixed to the. Also, the other slope
1c constitutes an ultrasonic reflection surface orthogonal to the propagation path when the ultrasonic wave transmitted from the ultrasonic transducer 1B is reflected by the incident surface 1b as an ultrasonic wave emission surface and propagates in the wedge member 1A. ing. Therefore, the internal reflected wave propagating through the wedge member 1A returns to the ultrasonic transducer 1B side. Furthermore, the incident surface that becomes the opening surface when leaking and radiating ultrasonic waves into the tube
The length b of 1b is about 18 wavelengths or more with respect to the center frequency used.

第4図に示すように振動子1Bの開口がある程度以上に長
くなり入射面1bの長さbが略18波以上の長さを有すると
指向角が非常に小さくなるので、超音波送受波器内のク
サビ部分,管壁部分及び管内流動体部分を順次伝播する
超音波ビームは、ほぼ平行ビームとみなせる。
As shown in FIG. 4, when the opening of the transducer 1B is longer than a certain length and the length b of the incident surface 1b is about 18 waves or more, the directivity angle becomes very small. Therefore, the ultrasonic transducer The ultrasonic beam that sequentially propagates through the wedge portion, the pipe wall portion, and the fluid portion inside the pipe can be regarded as a substantially parallel beam.

これらの各超音波送受波器1,2の各々は、第1図に示す
ように送受信切換部10を介して発信回路部11及び受信回
路部12に各別に接続されている。この第1図において
は、配管3内の液体は図の左方から右方へ流動する場合
が示されている。
As shown in FIG. 1, each of these ultrasonic wave transmitters / receivers 1 and 2 is separately connected to a transmission circuit section 11 and a reception circuit section 12 via a transmission / reception switching section 10. In FIG. 1, the case where the liquid in the pipe 3 flows from the left side to the right side of the drawing is shown.

前記超音波送受波器1,2の各々においては、配管3内の
流速に応じて第2図に示す如き繰返し信号が受信され
る。すなわち、第1図に示すように上流側の超音波送受
波器1から出力された超音波は、配管3の管壁内を伝播
する伝播波Aと、配管3の管壁を経て配管3内の液体中
への伝播波Bとに分けられる。
In each of the ultrasonic wave transmitters / receivers 1 and 2, a repetitive signal as shown in FIG. 2 is received according to the flow velocity in the pipe 3. That is, as shown in FIG. 1, the ultrasonic wave output from the ultrasonic transducer 1 on the upstream side propagates in the pipe wall of the pipe 3 and the propagating wave A in the pipe 3 via the pipe wall of the pipe 3. Of the propagation wave B into the liquid.

これを更に詳述する。まず、上流側から下流側に向けて
超音波が出力された場合、第2図(1)に示す到来超音
波の受信信号は、受信回路部12,信号選択手段13Aを介し
て計時手段13へ送られ、ここで、その伝播時間tdが計時
されて第1のメモリ14に一時的に記憶される。
This will be described in more detail. First, when the ultrasonic waves are output from the upstream side to the downstream side, the received signal of the incoming ultrasonic wave shown in FIG. 2 (1) is sent to the time measuring means 13 via the receiving circuit section 12 and the signal selecting means 13A. The transmission time t d is timed and stored in the first memory 14 temporarily.

次に、前記送受信切換部10が作用して下流側から上流側
に向かって超音波が出力された場合、第2図(2)に示
す到来超音波の受信信号は、同じく受信回路部12を介し
て計時手段13へ送られ、ここでその伝播時間tuが計時さ
れて第1のメモリ14に一時的に記憶される。
Next, when the transmission / reception switching unit 10 operates and an ultrasonic wave is output from the downstream side to the upstream side, the received signal of the incoming ultrasonic wave shown in FIG. It is sent to the time measuring means 13 via the propagation time t u, and is temporarily stored in the first memory 14.

次に、上記動作と相前後して、超音波送受波器内のクサ
ビ中の音速C1を測定しておく,これは,各流速測定毎に
行う必要はなく,必要な時に適宜実行すれば良い。クサ
ビ中の音速を測定する場合は、超音波送受波器1あるい
は2のいずれか1つが第1図に示す送受信切換部10を介
して発信回路部11及び受信回路部12に接続される。例え
ば,超音波送受波器1が接続された場合は、第2図に示
す振動子1Bから出力された超音波が第2図中の経路l1
l1′を往復伝播して振動子1Bで受信される。この信号
は、受信回路部12及び信号選択手段13Aを介して計時手
段13へ送られ、ここでその伝播時間例えばtwが計時され
て第1のメモリ14に一時的に記憶される。
Next, before and after the above operation, the sound velocity C 1 in the wedge in the ultrasonic transducer is measured. This does not have to be performed for each flow velocity measurement, and can be appropriately performed when necessary. good. When measuring the speed of sound in wedges, either one of the ultrasonic wave transmitters / receivers 1 or 2 is connected to the transmission circuit unit 11 and the reception circuit unit 12 via the transmission / reception switching unit 10 shown in FIG. For example, when the ultrasonic wave transmitter / receiver 1 is connected, the ultrasonic wave output from the transducer 1B shown in FIG. 2 passes through the path l 1 in FIG.
It propagates back and forth through l 1 ′ and is received by the oscillator 1B. This signal is sent to the time measuring means 13 via the receiving circuit section 12 and the signal selecting means 13A, where the propagation time thereof, for example, t w, is timed and temporarily stored in the first memory 14.

第1のメモリ14に記憶された伝播時間td,tu及びtwの各
データは、直ちに演算手段17に送られる。そして、この
演算手段17により式に基づいて演算され特定された流
速Vは、表示手段18によって表示されるようになってい
る。さらに、流量は、流速Vを管内断面積とにより演算
17で演算され、これも表示手段18に表示される。19は、
これら各構成手段の一連の動作を制御する主制御部を示
す。
The data of the propagation times t d , t u and t w stored in the first memory 14 are immediately sent to the calculating means 17. Then, the flow velocity V calculated and specified by the calculating means 17 based on the equation is displayed by the displaying means 18. Further, the flow rate is calculated by the flow velocity V and the cross-sectional area in the pipe.
It is calculated in 17, and this is also displayed on the display means 18. 19 is
A main control unit that controls a series of operations of each of these components is shown.

次に、計測された伝播時間tw,tu,tdを用いて流速Vが
求められるに到る理論的な過程を説明する。
Next, a theoretical process of obtaining the flow velocity V using the measured propagation times t w , t u , and t d will be described.

まず、超音波送受波器1,2内のクサビ中の音速C1は、次
式で求まる。
First, the speed of sound C 1 in the wedge in the ultrasonic transducers 1 and 2 is obtained by the following equation.

C1=2(l1+l1′)/tw …… 但し、ここでl1,l1′は第3図に示す経路l1,l1′の経
路長である。
C 1 = 2 (l 1 + l 1 ') / t w ...... However, where l 1, l 1' is the path length of the path l 1, l 1 'shown in Figure 3.

以下、第4図で説明する。This will be described below with reference to FIG.

流速V=0のときの全伝播時間toは次式となる。The total propagation time t o when the flow velocity V = 0 is given by the following equation.

To=[2{(Lx−Lo)/2}・sinθ1/C1]+{2(d/co
2)/C2}+{N(D/cosθ3)/C3+τc …… ここで、Loは中心経路goの入射点1Pと2Pの間の距離であ
り、Lxは振動子接合面1aおよび2aと超音波放射面1b及び
2bとの交点,1Rと2Rの間の距離である。θ1,θ2,θ3
クサビ内,壁内及び流動体内での超音波の入射角であ
り,C1,C2,C3はそれぞれの音速である。但し、これら
は超音波の指向角が狭いので、スネルの法則を満足して
いる。dは管の板厚,Dは管内径を示す。Nは超音波の流
動体内径路数であり、第1図及び第4図の場合はN=2
となる。τcは、ケーブル内等の電気的遅延時間を示
す。
T o = [2 {(L x −L o ) / 2} · sin θ 1 / C 1 ] + {2 (d / co
sθ 2) / C 2} + {N (D / cosθ 3) / C 3 + τ c ...... Here, L o is the distance between incident point 1P and 2P center-path g o, L x is the vibration Sub-junction surfaces 1a and 2a and ultrasonic radiation surface 1b and
The intersection with 2b, the distance between 1R and 2R. θ 1 , θ 2 , and θ 3 are the incident angles of ultrasonic waves inside the wedge, inside the wall, and inside the fluid, and C 1 , C 2 , and C 3 are the respective sound velocities. However, since these have a narrow ultrasonic directivity angle, they satisfy Snell's law. d is the plate thickness of the tube, and D is the tube inner diameter. N is the number of ultrasonic fluid inner diameter paths, and in the case of FIGS. 1 and 4, N = 2
Becomes τ c indicates an electrical delay time in the cable or the like.

次に流速Vが0ではない時に、求まる伝播時間tw,t
dは、次のようになる。
Next, when the flow velocity V is not 0, the propagation times t w , t that can be obtained
d is as follows.

tu=[{(L−Lo)sinθ1}/C1]+{(2d/cosθ2
/C2}+{(ND/cosθ3)/(C3−Vsinθ3)}+τc
… td=[{(L−Lo)sinθ1}/C1]+{(2d/cosθ2
/C2}+{(ND/cosθ3)/(C3+Vsinθ3)}+τc
… 通常C3>>V(例えば、流動体が水の場合はC3≒1500m/
s,Vの最大値でも20m/sとなるから近似的に to=(tu+td)/2 …… 従って流速Vは,スネルの法則とC3>>Vの近似に
より、 V=(C1 3/sinθ1)・[{(tu+td−2τ)(tu
td)}/{C1 2(tu+td−2τ)2+(2NDsinθ12}]
…… 但し、τ={(Lsinθ1)/C1}+{(2dcosθ2)/
C2}+τc …… 結果的に,第1のメモリ14に、クサビ内径路長(l1
l1′),取り付け間隔Lx,クサビ中入射角θ1,管壁中
の音速C2,ケーブル内遅延時間τC,流動体中の経路数N,
および管の厚さd,管内径Dを記憶しておけば,式およ
び次式 cosθ2/C2 =(1/C22−(sinθ1/C12 …… さらには式,式を用いて流速Vを算出できる。な
お、本方式によると,流動体中の音速C3は、次式 で表せており、結果的に流速Vの式中には、流動体の
音速C3が不要となる。即ち、流動体の音速C3が不明であ
っても、本方式によると充分に求まるものである。
t u = [{(L- Lo ) sin θ 1 } / C 1 ] + {(2d / cos θ 2 )
/ C 2} + {(ND / cosθ 3) / (C 3 -Vsinθ 3)} + τ c ...
... t d = [{(L- Lo ) sin θ 1 } / C 1 ] + {(2d / cos θ 2 ).
/ C 2} + {(ND / cosθ 3) / (C 3 + Vsinθ 3)} + τ c ...
… Normally C 3 >> V (For example, if the fluid is water, C 3 ≈ 1500 m /
Since the maximum values of s and V are also 20 m / s, approximately t o = (t u + t d ) / 2 ...... Therefore, the flow velocity V is V = (by Snell's law and the approximation of C 3 >> V C 1 3 / sin θ 1 ) ・ [{(t u + t d -2τ) (t u
t d )} / {C 1 2 (t u + t d -2τ) 2 + (2NDsin θ 1 ) 2 }]
…… However, τ = {(Lsinθ 1 ) / C 1 } + {(2dcosθ 2 ) /
C 2 } + τ c …… As a result, the first memory 14 stores the wedge inner path length (l 1 +
l 1 ′), installation interval L x , angle of incidence in wedge θ 1 , sound velocity in tube wall C 2 , delay time in cable τ C, number of paths in fluid N,
If the tube thickness d and the tube inner diameter D are stored, the equation and the following equation cos θ 2 / C 2 = (1 / C 2 ) 2 − (sin θ 1 / C 1 ) 2 ... Can be used to calculate the flow velocity V. According to this method, the sound velocity C 3 in the fluid is As a result, the sonic velocity C 3 of the fluid is unnecessary in the equation of the flow velocity V. That is, even if the sound velocity C 3 of the fluid is unknown, it can be sufficiently obtained by this method.

また、入射点1Pと2Pの間の距離Loも式内では不要とな
っており、従って結果的に超音波送受波器内の入射点と
いうものを厳密に特定する必要性が全く無くなり、取り
付け間隔Lxさえわかっておれば良いことになる。従って
超音波送受波器の取り付け装置の精度は、殆ど不要であ
り、かなりの許容範囲が見込まれている。
The distance L o between the incident point 1P and 2P are also no longer needed in the expression, thus resulting in eliminating the need to strictly identify those that point of incidence of the ultrasonic transducer at all, mounting It only needs to know the distance L x . Therefore, the accuracy of the mounting device of the ultrasonic wave transmitter / receiver is almost unnecessary, and a considerable allowable range is expected.

以上の2点は、従来の超音波流量計においては、流動体
の温度変化により,流動体の音速C3が不明となったり,
入射点1P,2Pまたは伝播経路が不明となったりしていた
問題点が克服されたことをも意味する。
The above two points are that in the conventional ultrasonic flowmeter, the sound velocity C 3 of the fluid becomes unknown due to the temperature change of the fluid,
It also means that the problem that the incident points 1P, 2P or the propagation route was unknown was overcome.

以上の論点から特許の請求の範囲第(1)項に明記され
た所定の関数とは,式を中心として,,,式を
も含む関数群全体を指すものである。
From the above points of view, the predetermined function specified in the claim (1) of the patent refers to the entire function group including the expression, centering on the expression.

ここで、超音波流量計における測定値の誤差は、超音波
送受波器1,2の指向性によって著しく変化することを、
従来例との関係及び実験結果に基づいて説明する。
Here, the error of the measurement value in the ultrasonic flowmeter is significantly changed by the directivity of the ultrasonic transducers 1 and 2,
A description will be given based on the relationship with the conventional example and the experimental results.

第5図において、従来の場合は、超音波送受波器1から
入射角Φ0で配管3に入射された超音波は、前述した如
くその中心屈折角θ0に対して一般に±3°以上の広が
りをもって配管3内へ伝播し、反対側の内壁で反射もし
くは再放射されて受信側の超音波送受波器2へ伝播す
る。
In FIG. 5, in the conventional case, the ultrasonic wave incident on the pipe 3 from the ultrasonic wave transmitter / receiver 1 at the incident angle Φ 0 is generally ± 3 ° or more with respect to the central refraction angle θ 0 as described above. It propagates in the pipe 3 with a spread, is reflected or re-radiated by the inner wall on the opposite side, and propagates to the ultrasonic wave transmitter / receiver 2 on the receiving side.

更に、この広がりをもった入射角が先に述べた配管の共
振モード(板波)の励振条件に近いところにあると、超
音波送受波器1部分の管壁部分では、Vpoの板波が第5
図の如く発生し、同時にこの板波Vpoの伝播に伴って漏
洩波が配管3内の特定の方向、例えばθ1へ向かって放
射される傾向を有している。漏洩伝播波は反対側の壁面
で反射もしくは再放射する。この結果、受信側の配管3
の管壁部分では、配管3内の流動体中をθ1の方向から
伝播してくる成分の超音波をも受信することとなり、全
体として、受信する波の屈折角は、当初スネルの法則で
予定されたθ0の方向とは異なる。
Furthermore, if the incident angle with this spread is near the excitation condition of the resonance mode (plate wave) of the pipe described above, the plate wave of V po will be generated in the tube wall part of the ultrasonic transducer 1. Is the fifth
The leakage waves are generated as shown in the figure, and at the same time, with the propagation of the plate wave V po , a leaky wave tends to be radiated toward a specific direction in the pipe 3, for example, θ 1 . The leaky propagating wave is reflected or re-radiated on the opposite wall surface. As a result, the receiving pipe 3
In the pipe wall portion of, the ultrasonic wave of the component propagating in the fluid in the pipe 3 from the direction of θ 1 is also received, and the refraction angle of the received wave is initially Snell's law. It differs from the expected direction of θ 0 .

これを更に具体例をもって説明すると、第3図におい
て、クサビ部材1A,2Aをアクリル樹脂とし、1〔MHz〕の
超音波を使用し、配管3を厚さ3.2〔mm〕の鋼管で形成
し、内部に水が流動する場合を考える。この場合、エネ
ルギ透過率は第6図のようになっている。
When this is further illustrated with a specific example, in FIG. 3, the wedge member 1A, the 2A and acrylic resin, 1 using ultrasound [MH z], to form the pipe 3 in steel thickness 3.2 mm. , Consider the case where water flows inside. In this case, the energy transmittance is as shown in FIG.

いま、入射角Φ0として、Φ0=47°に設定すると、配管
3の流動水中へは、スネルの屈折の法則よりθ0=23°
の方向に20°から26°の広がりをもって超音波が液中に
放射され、反射漏洩波が超音波送受波器2側へ反射伝播
してくる。この範囲の反射波は超音波送受波器2部分で
は、スネルの法則より換算すると、入射角38°から入射
角61°の範囲で配管3を励振して得られる超音波を受信
することとなる。この範囲には第6図に示す如くS0モー
ドが存在する。
Now, if the incident angle Φ 0 is set to Φ 0 = 47 °, then θ 0 = 23 ° into the flowing water of the pipe 3 according to Snell's law of refraction.
The ultrasonic waves are radiated into the liquid with a spread of 20 ° to 26 ° in the direction of, and the reflected leaky waves are reflected and propagated to the ultrasonic transducer 2 side. In the ultrasonic wave transmitter / receiver 2 part, when converted from Snell's law, reflected waves in this range will receive ultrasonic waves obtained by exciting the pipe 3 in the range of the incident angle of 38 ° to the incident angle of 61 °. . In this range, the S 0 mode exists as shown in FIG.

このため、第6図について説明した上記具体例において
は、入射角Φ1=47°で得られる超音波を出力したにも
かかわらず,受信側では入射角Φ1=56°でS0モードの
共振波の超音波を出力しているが如く,当初予定した屈
折角とは異なった屈折角の超音波成分をも強く受信す
る。この結果、測定値としては信頼性の少ないものとな
っている。
Therefore, in the specific example described with reference to FIG. 6, although the ultrasonic wave obtained at the incident angle Φ 1 = 47 ° is output, the receiving side has the incident angle Φ 1 = 56 ° and the S 0 mode As the ultrasonic wave of the resonance wave is output, the ultrasonic wave component of the refraction angle different from the originally planned refraction angle is strongly received. As a result, the measured value is less reliable.

次に、第1図においてb=18λに設定した本発明の場合
を検討してみる。この場合、式(b)よりβ≒3.2°と
なり、指向性は±1.6°となる。この場合は第7図に示
す如く、入射角Φ0=47°に対し受信側では38°ないし5
2°の方向の伝播波を受信する。従って、かかる場合はS
0モードの発生が殆ど無い状態となっており、屈折角の
異なる有害波が殆ど発生しないことから送信側の超音波
を当初予定した屈折角θ0のままで有効に受信すること
ができる。
Next, consider the case of the present invention in which b = 18λ is set in FIG. In this case, according to the equation (b), β≈3.2 °, and the directivity is ± 1.6 °. In this case, as shown in FIG. 7, the incident angle Φ 0 = 47 °, while the receiving side is 38 ° to 5 °.
Receives propagating waves in the direction of 2 °. Therefore, in such a case S
Since the 0 mode is hardly generated and harmful waves having different refraction angles are hardly generated, it is possible to effectively receive the ultrasonic waves on the transmission side with the refraction angle θ 0 originally planned.

第8図はかかる一連の検討に加えて、具体的な流量測定
の場合における超音波送受波器1,2の放射開口面の大き
さ(長さ)と流速換算の測定値の誤差との関係を実験的
に調べたものである。この実験結果では、放射開口面の
大きさがb≧15λで誤差が1.5〔%〕以下になるという
結果が得られた。
Fig. 8 shows the relationship between the size (length) of the radiating apertures of the ultrasonic transducers 1 and 2 and the error in the measured values in terms of flow velocity in the case of specific flow rate measurement, in addition to this series of examinations. Was experimentally investigated. As a result of this experiment, it was obtained that the size of the radiation aperture surface is b ≧ 15λ and the error is 1.5% or less.

従って、式(b)及び第8図の実験結果より、b≧18λ
であれば指向性も±1.6°以内となり平行ビームに近い
特性を示し、従って測定誤差も十分に少なくすることが
できるという確証を得ることができた。
Therefore, from the formula (b) and the experimental result of FIG. 8, b ≧ 18λ
If so, the directivity is within ± 1.6 °, and the characteristics are close to those of a parallel beam. Therefore, it is possible to obtain the proof that the measurement error can be sufficiently reduced.

このため、上記実施例においては、超音波送受波器1の
振動子1Bから発射された超音波は第4図中の点線g1,g3
で示される平行ビームとなって伝播し、管の底面で反射
して最終的には超音波送受波器2の振動子2Bで受波され
る。但し、この場合には、図中の斜線で示した領域即ち
点線g1,g2に挟まれた領域を通過する超音波ビームだけ
が有効に受波され、それ以外の領域即ち点線g2とg3に挟
まれた領域を通過する超音波ビームは受波されない。こ
の時の中心経路は実線g0で示されている。
Therefore, in the above embodiment, the ultrasonic waves emitted from the transducer 1B of the ultrasonic wave transmitter / receiver 1 are the dotted lines g 1 and g 3 in FIG.
Is propagated as a parallel beam, reflected by the bottom surface of the tube, and finally received by the transducer 2B of the ultrasonic wave transmitter / receiver 2. However, in this case, only the ultrasonic beam passing through the shaded area in the figure, that is, the area sandwiched between the dotted lines g 1 and g 2 , is effectively received, and the other area, that is, the dotted line g 2 The ultrasonic beam passing through the region sandwiched by g 3 is not received. The central path at this time is shown by the solid line g 0 .

従って、他方の超音波送受波器2が例えば第4図に示す
如く異なった位置xに配設されていても、g2とg3で囲ま
れた範囲の超音波ビームを受信していることとなる。か
かる点において超音波送受波器2の取付け位置の変化に
ついては測定上何ら支障をきたさないようになってい
る。
Therefore, even if the other ultrasonic transmitter / receiver 2 is arranged at a different position x as shown in FIG. 4, for example, it must receive the ultrasonic beam in the range surrounded by g 2 and g 3 . Becomes In this respect, the change in the mounting position of the ultrasonic wave transmitter / receiver 2 does not hinder the measurement.

〔発明の効果〕〔The invention's effect〕

本発明は以上のように構成され機能するので、これによ
ると、超音波送受波器の設定位置の調整が著しく容易と
なり、従来の如く超音波送受波器の高精度の位置合わせ
を行う必要性が全く無くなり、超音波送受波器相互の相
対距離及び超音波送受波器の開口長の寸法がはっきりし
ておればその値をもって流速算定の基礎データとするこ
とができ、従って測定作業を迅速且つ高精度に行うこと
ができ、外部に露出している部分すなわち超音波送受波
器のクサビ部材及び被測定配管の各音速を予め正確に測
定しておくと、配管内の流動体の音速が不明でも温度補
正を不要とした高精度の流速測定を行うことができると
いう、従来にない優れた超音波流速測定方法およびその
装置を提供することができる。
Since the present invention is configured and functions as described above, according to this, it becomes extremely easy to adjust the set position of the ultrasonic transmitter / receiver, and it is necessary to perform highly accurate positioning of the ultrasonic transmitter / receiver as in the conventional case. If the relative distance between the ultrasonic transducers and the size of the opening length of the ultrasonic transducers are clear, the values can be used as the basic data for calculating the flow velocity. It can be performed with high accuracy, and if the sound speeds of the parts exposed to the outside, that is, the wedge members of the ultrasonic transducer and the pipe to be measured are accurately measured beforehand, the sound velocity of the fluid in the pipe is unknown. However, it is possible to provide an unprecedented excellent ultrasonic flow velocity measuring method and its device, which can perform highly accurate flow velocity measurement without temperature correction.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示すブロック図、第2図は
第1図の測定データの1例を示す線図、第3図は第1図
の実施例に使われている超音波送受波器の一例を示す説
明図、第4図は第1図の測定時における超音波送受波器
部分の作を示す説明図、第5図は超音波の広がりを示す
超音波送受波器の動作説明図、第6図は指向性角度が広
い場合の受信波の広がり方及び被測定用配管の音響的共
振点を示す説明図、第7図は指向性角度が狭い場合の受
信波の広がり方及び被測定用配管の音響的共振点を示す
説明図、第8図は本実施例における指向特性の広がり角
が小さい場合の受信波の広がり方等を示す線図、第9図
は従来例を示す説明図である。 1,2……超音波送受波器、1A,2A……クサビ部材、3……
配管、10……送受信切換部、11……発信回路部、12……
受信回路部、13……計時手段、14……記憶手段としての
第1のメモリ、17……演算手段、19……主制御部。
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a diagram showing an example of the measurement data of FIG. 1, and FIG. 3 is an ultrasonic wave used in the embodiment of FIG. FIG. 4 is an explanatory view showing an example of a wave transmitter / receiver, FIG. 4 is an explanatory view showing the operation of the ultrasonic wave transmitter / receiver portion at the time of measurement in FIG. 1, and FIG. 5 is an ultrasonic wave transmitter / receiver showing the spread of ultrasonic waves. FIG. 6 is an explanatory diagram showing the operation of the received wave when the directivity angle is wide and the acoustic resonance point of the pipe to be measured. FIG. 7 is the received wave spread when the directivity angle is narrow. And FIG. 8 is an explanatory diagram showing acoustic resonance points of the pipe to be measured, FIG. 8 is a diagram showing how the received wave spreads when the spread angle of the directional characteristic is small in this embodiment, and FIG. 9 is a conventional example. FIG. 1,2 …… Ultrasonic transducers, 1A, 2A …… Wedge members, 3 ……
Piping, 10 …… Transmission / reception switching section, 11 …… Transmission circuit section, 12 ……
Reception circuit section, 13 ... Clocking means, 14 ... First memory as storage means, 17 ... Computing means, 19 ... Main control section.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】指向性角度が著しく小さく形成された二つ
の超音波送受波器を適当な間隔をおいて被測定配管の上
流側と下流側にそれぞれ配設し、 当該配管の外壁から超音波を交互に斜入射させて測定時
における超音波送受波器内のクサビ部分の音速C1を測定
し、 これらの測定に相前後して、前記上流側から下流側へ,
又は下流側から上流側へそれぞれ超音波を発振するとと
もに、この各発振された超音波が管壁及び管内流動体を
伝播して受信されるまでの時間td,tuを順次測定し、こ
れらの測定値C1,td,tuと前記超音波送受波器相互間の
間隔LXを予め特定された所定の関数,すなわち V=F(C1,tu,td,LX) に代入して他の必要な定数とともにこれを演算し,管内
流動体の流速Vを算定することを特徴とした超音波流速
測定方法。
1. An ultrasonic wave transmitter / receiver formed with a remarkably small directivity angle is arranged at appropriate intervals on an upstream side and a downstream side of a pipe to be measured, and ultrasonic waves are transmitted from an outer wall of the pipe. Alternately obliquely incident to measure the sound velocity C 1 of the wedge part in the ultrasonic transducer at the time of measurement, and before and after these measurements, from the upstream side to the downstream side,
Or, while oscillating ultrasonic waves from the downstream side to the upstream side respectively, sequentially measuring the time t d , t u until each of the oscillated ultrasonic waves propagates through the pipe wall and the pipe fluid and is received, The measured values C 1 , t d , t u and the distance L X between the ultrasonic transducers are defined by a predetermined function, that is, V = F (C 1 , t u , t d , L X ). The ultrasonic flow velocity measuring method is characterized in that the flow velocity V of the fluid in the pipe is calculated by substituting into the above formula and other necessary constants.
【請求項2】超音波の伝播線上に沿って配管の上流側と
下流側にそれぞれ配設される指向性角度が著しく小さく
形成された超音波送受波器と、この二つの超音波送受波
器に発振回路部と受信回路部とを必要に応じて交互に切
換接続する送受波器切換部とを設け、 前記受信回路部に、前記超音波送受波器から出力され上
流側から下流側へ又は下流側から上流側へ発信される超
音波がそれぞれ管壁および管内流動体内を伝播して受信
されるまでの伝播時間td,tuを測定する計時手段と、こ
の伝播時間td,tuおよび前記超音波送受波器の取付け間
隔LXの値を記憶する記憶手段とを設け、 この記憶手段に、当該流速測定時における超音波送受波
器内のクサビ部分の音速C1の測定値その他必要とする定
数を記憶せしめるとともに、この記憶手段の各出力情報
に基づいて所定の演算を行い管内流動体の流速を特定す
る流速演算手段とを設けたことを特徴とする超音波流速
測定装置。
2. An ultrasonic wave transmitter / receiver, which is arranged on the upstream side and the downstream side of a pipe along the propagation line of the ultrasonic wave and has a significantly small directivity angle, and these two ultrasonic wave transmitters / receivers. The oscillator circuit unit and the receiver circuit unit is provided with a transmitter / receiver switching unit that is alternately switched and connected as necessary, and the receiver circuit unit outputs from the ultrasonic transmitter / receiver from the upstream side to the downstream side or Time measuring means for measuring the propagation times t d , t u until the ultrasonic waves transmitted from the downstream side to the upstream side are respectively propagated and received in the pipe wall and the fluid inside the pipe, and the propagation times t d , t u. And a storage means for storing the value of the mounting interval L X of the ultrasonic transmitter / receiver, and in this storage means, the measured value of the sound velocity C 1 of the wedge portion in the ultrasonic transmitter / receiver at the time of measuring the flow velocity, etc. The necessary constants are stored in memory, and each output of this storage means is stored. An ultrasonic flow velocity measuring device, comprising: a flow velocity calculation means for performing a predetermined calculation based on force information to identify a flow velocity of a fluid in a pipe.
JP62139398A 1987-03-27 1987-06-03 Ultrasonic velocity measuring method and apparatus Expired - Fee Related JPH06103206B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62139398A JPH06103206B2 (en) 1987-06-03 1987-06-03 Ultrasonic velocity measuring method and apparatus
US07/171,257 US4930358A (en) 1987-03-27 1988-03-21 Method of and apparatus for measuring flow velocity by using ultrasonic waves

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62139398A JPH06103206B2 (en) 1987-06-03 1987-06-03 Ultrasonic velocity measuring method and apparatus

Publications (2)

Publication Number Publication Date
JPS63304117A JPS63304117A (en) 1988-12-12
JPH06103206B2 true JPH06103206B2 (en) 1994-12-14

Family

ID=15244350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62139398A Expired - Fee Related JPH06103206B2 (en) 1987-03-27 1987-06-03 Ultrasonic velocity measuring method and apparatus

Country Status (1)

Country Link
JP (1) JPH06103206B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006030041A (en) * 2004-07-20 2006-02-02 Fuji Electric Systems Co Ltd Clamp-on type doppler type ultrasonic flow velocity distribution meter
DE102011005170B4 (en) * 2011-03-07 2012-10-11 Flexim Flexible Industriemesstechnik Gmbh Method for ultrasonic clamp-on flow measurement and apparatus for implementing the method
US20140020478A1 (en) * 2012-07-18 2014-01-23 General Electric Company Ultrasonic wedge and method for determining the speed of sound in same

Also Published As

Publication number Publication date
JPS63304117A (en) 1988-12-12

Similar Documents

Publication Publication Date Title
US4930358A (en) Method of and apparatus for measuring flow velocity by using ultrasonic waves
JP2747618B2 (en) Ultrasonic flow velocity measuring method and apparatus
JP2935833B2 (en) Multi-line flow measurement device
JP2683159B2 (en) Clamp on ultrasonic positive displacement flow meter
JP3216769B2 (en) Temperature and pressure compensation method for clamp-on type ultrasonic flowmeter
US7469599B2 (en) Flowmeter mounted on a containment
JPS6238355A (en) Method and device for measuring fluid characteristic by using capacity search signal of surface generation
KR101513697B1 (en) Ultrasonic transducing apparatus for measuring pipe thickness and apparatus for measuring flow velocity using the same
US20040129088A1 (en) Single-body dual-chip orthogonal sensing transit-time flow device using a parabolic reflecting surface
US6820500B2 (en) Small pipe bore ultrasonic flowmeter detector
JPH06103206B2 (en) Ultrasonic velocity measuring method and apparatus
JPH1090028A (en) Ultrasonic wave mass flowmeter
JP3136002B2 (en) Ultrasonic flow meter
JP7151311B2 (en) ultrasonic flow meter
JPH09287989A (en) Ultrasonic flowmeter
JP3535612B2 (en) Ultrasound transceiver
JP3583114B2 (en) Ultrasonic flow velocity measuring device
JPH09287990A (en) Ultrasonic flowmeter
US20080210011A1 (en) System and Method for Determining Properties of Tubular Cavity
JP3653829B2 (en) Anemometer
JP2007178244A (en) Ultrasonic flowmeter and wedge therefor
JPH05312611A (en) Transmissive ultrasonic flowmeter
JP2000193674A (en) Bevel type ultrasonic sensor, ultrasonic flow velocity measuring device using the same and flow velocity measuring method
JPS59122944A (en) Probe and ultrasonic wave flaw detecting method
Nakano et al. 1Pb2-5 Development of Multi-parallel-path Clamp-on Ultrasonic Flowmeter

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees