JPH0926342A - Ultrasonic oscillator and ultrasonic flowmeter using it - Google Patents

Ultrasonic oscillator and ultrasonic flowmeter using it

Info

Publication number
JPH0926342A
JPH0926342A JP7177068A JP17706895A JPH0926342A JP H0926342 A JPH0926342 A JP H0926342A JP 7177068 A JP7177068 A JP 7177068A JP 17706895 A JP17706895 A JP 17706895A JP H0926342 A JPH0926342 A JP H0926342A
Authority
JP
Japan
Prior art keywords
ultrasonic
phase difference
flow
independently
half wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7177068A
Other languages
Japanese (ja)
Inventor
Kenzo Ochi
謙三 黄地
Yukio Nagaoka
行夫 長岡
Motoyuki Nawa
基之 名和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7177068A priority Critical patent/JPH0926342A/en
Publication of JPH0926342A publication Critical patent/JPH0926342A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve the directional control of an ultrasonic oscillator and the measuring accuracy of an ultrasonic flowmeter. SOLUTION: A columnar osicillator 5 is divided into a plurality of oscillating parts 6, 7 and 8, and they are driven at a phase difference of at most a half of wavelength so as to control its directivity. If an ultrasonic flowmeter is compared of an ultrasonic oscillator capable of controlling directionality, the reduction of reception sensitivity of ultrasonic waves can be prevented and the measuring accuracy of flow can be also improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超音波を利用してガス
・水などの流体の流量を計測する超音波流量計に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic flowmeter for measuring the flow rate of fluids such as gas and water using ultrasonic waves.

【0002】[0002]

【従来の技術】従来のこの種の超音波流量計は、図12
に示すように、流路1の上流と下流とに一対の超音波振
動子2と3を流れの方向(図中に矢印で示す)に相対し
て設け、上流側の振動子2から流れの方向に超音波を発
信し、この超音波を下流側の振動子3で受信し、振動子
2から3への超音波の伝搬時間、Tdnを計測する。ま
た、逆に下流側の振動子3から流れに逆らって超音波を
発信し、この超音波を上流側の振動子2で受信し、振動
子3から2への超音波の伝搬時間、Tupを計測する。こ
の2つの伝搬時間の差から流路1を流れる流体の平均的
な流速を演算し、あらかじめ解っている流路1の断面積
とから、流体の流量を検知していた。
2. Description of the Related Art A conventional ultrasonic flowmeter of this type is shown in FIG.
As shown in FIG. 2, a pair of ultrasonic transducers 2 and 3 are provided upstream and downstream of the flow path 1 so as to face each other in the flow direction (indicated by an arrow in the figure), and The ultrasonic wave is transmitted in the direction, the ultrasonic wave is received by the vibrator 3 on the downstream side, and the propagation time of the ultrasonic wave from the vibrators 2 to 3, Tdn, is measured. On the contrary, an ultrasonic wave is transmitted from the vibrator 3 on the downstream side against the flow, the ultrasonic wave is received by the vibrator 2 on the upstream side, and the propagation time of the ultrasonic wave from the vibrator 3 to Tup is Tup. measure. The average flow velocity of the fluid flowing through the flow channel 1 is calculated from the difference between the two propagation times, and the flow rate of the fluid is detected from the cross-sectional area of the flow channel 1 which is known in advance.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来の超音波流量計では、流路1内を伝搬する超音波の伝
搬方向は、振動子2、3の設置方向で決まるため、例え
ば振動子2と3とが、各々の中心線4からずれて設置さ
れていた場合、超音波の受信感度が極端に低下する。こ
のためS/N比が低下し、計測流量値に誤差が含まれ、
誤動作することがあった。このため、振動子2、3を、
それぞれ機械的に調節し、受信感度が大きくなるように
していた。また、流路1内を流れる流体によって、振動
子2、3間を伝搬する超音波が、下流方向に流されるた
め、超音波の伝搬方向が曲げられる。すなわち、伝搬す
る超音波は、受信側振動子の下流方向に伝搬するため、
受信側振動子で受信される超音波の受信強度が、流体の
流速に依存して変化することになり、伝搬時間計測時に
誤差となって、計測流量値に誤差が含まれ、誤動作する
こともあった。
However, in the above-mentioned conventional ultrasonic flowmeter, the propagation direction of the ultrasonic wave propagating in the flow path 1 is determined by the installation direction of the vibrators 2 and 3, and therefore, for example, the vibrator 2 is used. If 3 and 3 are installed so as to be displaced from the respective center lines 4, the reception sensitivity of ultrasonic waves is extremely lowered. As a result, the S / N ratio decreases, and the measured flow rate value contains an error.
It sometimes malfunctioned. Therefore, the oscillators 2 and 3 are
Each was mechanically adjusted to increase the reception sensitivity. Further, since the ultrasonic waves propagating between the vibrators 2 and 3 are caused to flow in the downstream direction by the fluid flowing in the flow path 1, the propagation direction of the ultrasonic waves is bent. That is, since the propagating ultrasonic wave propagates in the downstream direction of the receiving-side transducer,
The reception intensity of the ultrasonic waves received by the transducer on the receiving side changes depending on the flow velocity of the fluid, which causes an error when measuring the propagation time, and the measured flow rate value includes an error, which may cause malfunction. there were.

【0004】本発明は上記課題を解決するもので、超音
波の送信方向を制御できる超音波振動子を提供するとと
もに、広い流量範囲にわたって高精度の流量計測ができ
る超音波流量計を提供するものである。
The present invention solves the above problems and provides an ultrasonic transducer capable of controlling the direction of transmission of ultrasonic waves and an ultrasonic flow meter capable of highly accurate flow rate measurement over a wide flow rate range. Is.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に本発明の超音波振動子は、以下の構成とした。
In order to achieve the above object, the ultrasonic vibrator of the present invention has the following constitution.

【0006】すなわち、複数個の振動部分からなり、そ
れぞれが互いに独立に、かつ、二分の一波長以内の位相
差の超音波を送信できる構成とした。
That is, the structure is made up of a plurality of vibrating parts, each of which is capable of transmitting an ultrasonic wave having a phase difference within a half wavelength independently of each other.

【0007】また、複数個の振動部分からなり、それぞ
れが互いに独立に、かつ、二分の一波長以内の電気的な
位相差で駆動され、それぞれ互いに独立に超音波を送信
できる構成とした。
Further, it is constituted such that it comprises a plurality of vibrating portions, each of which is driven independently of each other and with an electrical phase difference within a half wavelength so that ultrasonic waves can be transmitted independently of each other.

【0008】また、複数個の振動部分からなり、それぞ
れが互いに独立に、かつ、二分の一波長以内の物理的な
位相差で駆動され、それぞれ互いに独立に超音波を送信
できる構成とした。
Further, it is constituted such that it comprises a plurality of vibrating parts, each of which is driven independently of each other and with a physical phase difference within a half wavelength, and can transmit ultrasonic waves independently of each other.

【0009】上記目的を達成するために本発明の超音波
流量計は、以下の構成とした。すなわち、複数個の振動
部分からなり、それぞれが互いに独立に、かつ、二分の
一波長以内の位相差で超音波を送受信できる一対の超音
波振動子を、流路の上流と、下流とに対面させる構成と
した。
In order to achieve the above object, the ultrasonic flowmeter of the present invention has the following configuration. That is, a pair of ultrasonic transducers, each of which is composed of a plurality of vibrating parts, is capable of transmitting and receiving ultrasonic waves independently of each other and with a phase difference within a half-wavelength is provided facing the upstream and downstream of the flow path. It was configured to let.

【0010】また、複数個の振動部分からなり、それぞ
れが互いに独立に、かつ、二分の一波長以内の位相差で
超音波を送受信できる一対の超音波振動子を、流路の上
流と、下流とに対面させ、超音波の伝搬方向と、流体の
流れの方向とを平行となる構成とした。
A pair of ultrasonic transducers, each of which is composed of a plurality of vibrating portions, can transmit and receive ultrasonic waves independently of each other and with a phase difference within a half wavelength, is provided at the upstream and downstream sides of the flow path. The ultrasonic wave propagation direction and the fluid flow direction are parallel to each other.

【0011】また、複数個の振動子部分からなり、それ
ぞれが互いに独立に、かつ、二分の一波長以内の位相差
で超音波を送受信できる一対の超音波振動子を、流路の
上流と、下流とに対面させ、超音波の伝搬方向と、流体
の流れの方向とを斜交させる構成とした。
Further, a pair of ultrasonic transducers, each of which is composed of a plurality of transducers, capable of transmitting and receiving ultrasonic waves independently of each other and with a phase difference within a half wavelength, is provided upstream of the flow path. The structure is made to face the downstream side, and the propagation direction of the ultrasonic wave and the direction of the fluid flow are made to cross obliquely.

【0012】また、流れ方向に並んだ複数個の振動部分
からなり、それぞれが互いに独立に、かつ、二分の一波
長以内の位相差で超音波を送受信できる一対の超音波振
動子を、矩形流路の上流と、下流とに対面させ、超音波
の伝搬方向を矩形流路の長手方向に取るとともに、流体
の流れの方向と斜交させる構成とした。
In addition, a pair of ultrasonic transducers, which are composed of a plurality of vibrating portions arranged in the flow direction, are capable of transmitting and receiving ultrasonic waves independently of each other and with a phase difference within a half wavelength, The upstream side and the downstream side of the passage are faced to each other, and the ultrasonic wave is propagated in the longitudinal direction of the rectangular flow path, and is oblique to the direction of the fluid flow.

【0013】また、流れ方向に並んだ複数個の振動部分
からなり、それぞれが互いに独立に、かつ、二分の一波
長以内の位相差で超音波を送受信できる一対の超音波振
動子を、矩形流路の上流と、下流とに対面させ、超音波
の伝搬方向を矩形流路の長手方向に取るとともに、流体
の流れの方向と斜交させ、前記複数個の振動部分からな
る超音波振動子を、各振動部分を、二分の一波長以内の
位相差を順次変化させて駆動し、最大受信感度の得られ
た位相差で、複数個の振動部を駆動させて流体の流量を
計測する構成とした。
In addition, a pair of ultrasonic transducers, which are composed of a plurality of vibrating portions arranged in the flow direction, are capable of transmitting and receiving ultrasonic waves independently of each other and with a phase difference within a half wavelength, The ultrasonic transducer composed of the plurality of vibrating portions is made to face the upstream side and the downstream side of the passage, while the propagation direction of the ultrasonic wave is set in the longitudinal direction of the rectangular flow path, and is obliquely intersected with the flow direction of the fluid. , A configuration in which each vibrating part is driven by sequentially changing the phase difference within a half wavelength, and a plurality of vibrating parts are driven by the phase difference at which the maximum receiving sensitivity is obtained to measure the flow rate of the fluid. did.

【0014】[0014]

【作用】本発明は、超音波振動子が、複数個の振動部分
に分割されており、それぞれを、位相差が二分の一波長
以内で独立に駆動できるため、超音波振動子から送信さ
れる超音波の伝搬方向を、即ち、指向性を制御すること
ができる。複数個の振動部分から送信される超音波は、
二分の一波長以内の位相差であるため、ある方向(指向
性の鋭い方向)では、超音波が相互に干渉しあって強め
合う結果となる。
According to the present invention, since the ultrasonic transducer is divided into a plurality of vibrating portions, and each of them can be independently driven with a phase difference within a half wavelength, it is transmitted from the ultrasonic transducer. The propagation direction of ultrasonic waves, that is, the directivity can be controlled. The ultrasonic waves transmitted from multiple vibrating parts are
Since the phase difference is within a half wavelength, ultrasonic waves interfere with each other in a certain direction (direction with sharp directivity), resulting in mutual strengthening.

【0015】また、管路など流路内に振動子を対向させ
て設置した場合に、振動子の中心軸に機械的な位置ずれ
が発生し、受信感度が低下しても、簡単に、それぞれの
振動部分に位相差を与えて駆動することにより機械的な
位置ずれによる、超音波の受信感度低下を補正すること
ができる。
Further, when the transducers are installed opposite to each other in a channel such as a pipe line, even if a mechanical displacement occurs in the central axis of the transducers and the reception sensitivity decreases, the By applying a phase difference to the oscillating portion and driving the same, it is possible to correct the deterioration of the ultrasonic wave reception sensitivity due to the mechanical displacement.

【0016】また、超音波の伝搬方向と、流体の流れる
方向とが斜交し、超音波が流体により流され、超音波の
受信感度が低下しても、振動子の指向性を制御すること
により、超音波の受信感度を補正することができる。
Further, even if the ultrasonic wave propagation direction and the fluid flow direction are oblique to each other and the ultrasonic wave is flowed by the fluid and the reception sensitivity of the ultrasonic wave is lowered, the directivity of the vibrator is controlled. Thus, the reception sensitivity of ultrasonic waves can be corrected.

【0017】従って、超音波の受信感度のS/N比が、
振動子間の位置ずれや、流体の流速に依存しないで、常
に一定とすることができ、誤差の少ない超音波流量計を
提供できる。
Therefore, the S / N ratio of the ultrasonic wave reception sensitivity is
It is possible to provide an ultrasonic flowmeter which can be kept constant without depending on the positional displacement between the oscillators and the flow velocity of the fluid and which has a small error.

【0018】[0018]

【実施例】以下、本発明の第1の実施例を図1にもとづ
いて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to FIG.

【0019】図1は、本発明の実施例を基づく円柱状の
超音波振動子5の斜視図である。3つの振動部分6、
7、8に分割されている。振動部分は、PZT、PC
M、PVDFなどの圧電材料で構成した。それぞれの部
分の上部には、厚さ約10μm程度の焼き付け銀電極、
蒸着アルミ電極などの電極、6a、7a、8aが形成さ
れている。また、それぞれの下部にも同様の電極、6
b、7b、8b、(図示せず)が形成されている。それ
ぞれの上部電極には、独立に電力を供給できるように、
リード線6c、7c、8cが、下部電極には、6d、7
d、8d(図示せず)とが接続されている。5aは、振
動部分を収納する一部破断した収納容器を示し、アル
ミ、SUSなどの金属で構成した。5bは、振動部分
6、7、8、の間隔を保持する電気絶縁性のスペーサを
示し、振動部分の高さの二分の一以下とし、エポキシ、
シリコンなどの樹脂あるいはゴムなどで、あるいは、プ
ラスチックなどで構成した。なお、同様のスペーサは、
前記振動部分と前記収納容器との間にも設けた。
FIG. 1 is a perspective view of a cylindrical ultrasonic transducer 5 according to an embodiment of the present invention. Three vibrating parts 6,
It is divided into 7 and 8. Vibrating part is PZT, PC
It is composed of a piezoelectric material such as M or PVDF. On top of each part, a baked silver electrode with a thickness of about 10 μm,
Electrodes 6a, 7a, 8a such as vapor-deposited aluminum electrodes are formed. In addition, the same electrode, 6
b, 7b, 8b, (not shown) are formed. In order to be able to supply power to each upper electrode independently,
The lead wires 6c, 7c, 8c are connected to the lower electrodes by 6d, 7c.
d and 8d (not shown) are connected. Reference numeral 5a denotes a partially broken storage container for storing the vibrating portion, which is made of metal such as aluminum or SUS. Reference numeral 5b denotes an electrically insulating spacer for holding the distance between the vibrating portions 6, 7, and 8, which is one half or less of the height of the vibrating portion and is made of epoxy,
It is made of resin such as silicon or rubber, or plastic. In addition, a similar spacer is
It was also provided between the vibrating part and the storage container.

【0020】図2は、本発明の第2の実施例に基づく矩
形状の振動子9の斜視図である。3つの振動部分10、
11、12に分割されている。振動部分は、PZT、P
CM、PVDFなどの圧電材料で構成した。それぞれの
部分の上部には、図1で示した超音波振動子5と同様の
電極、10a、11a、12aが形成されている。ま
た、それぞれの下部にも焼き付け銀電極などの電極、1
0b、11b、12b、(図示せず)が形成されてい
る。それぞれの電極には、独立に電力を供給できるよう
にリード線10c、11c、12cと10d、11d、
12d(図示せず)とが形成されている。9aは、振動
部分を収納する一部破断した容器を示し、アルミ、SU
Sなどの金属で構成した。9bは、振動部分10、1
1、12、の間隔を保持する電気絶縁性のスペーサを示
し、振動部分の高さの二分の一以下とし、エポキシ、シ
リコンなどの樹脂あるいはゴムなどで、あるいは、プラ
スチックなどで構成した。なお、同様のスペーサは、前
記振動部分と前記収納容器との間にも設けた。
FIG. 2 is a perspective view of a rectangular vibrator 9 according to the second embodiment of the present invention. Three vibrating parts 10,
It is divided into 11 and 12. Vibration part is PZT, P
It is composed of a piezoelectric material such as CM or PVDF. Electrodes 10a, 11a and 12a similar to those of the ultrasonic transducer 5 shown in FIG. 1 are formed on the upper part of each part. Also, an electrode such as a baked silver electrode is also provided on the bottom of each of them.
0b, 11b, 12b, (not shown) are formed. Lead wires 10c, 11c, 12c and 10d, 11d, so as to be able to independently supply power to each electrode,
12d (not shown) are formed. Reference numeral 9a denotes a partially broken container that houses the vibrating portion, such as aluminum, SU
It is composed of a metal such as S. 9b is a vibrating part 10, 1
An electrically insulative spacer for holding the intervals of 1 and 12 is shown, which is one half or less of the height of the vibrating portion and is made of resin such as epoxy or silicon or rubber, or plastic. A similar spacer was also provided between the vibrating portion and the storage container.

【0021】同様に、図3は、本発明の第3の実施例に
基づく矩形状の振動子13の斜視図である。振動部分が
6分割されている。振動部分は、収納容器13aに収納
固定されている。また、それぞれの振動部分の間および
振動部分と収納容器との間には電気絶縁性のスペーサ1
3bが設けられている。それぞれの振動部分には、図1
と図2とに示したように、電極と電力供給用のリード線
(図示せず)とが形成されている。
Similarly, FIG. 3 is a perspective view of a rectangular vibrator 13 according to the third embodiment of the present invention. The vibrating part is divided into six parts. The vibrating portion is stored and fixed in the storage container 13a. Moreover, an electrically insulating spacer 1 is provided between the vibrating parts and between the vibrating part and the storage container.
3b is provided. For each vibrating part,
As shown in FIG. 2 and FIG. 2, electrodes and lead wires (not shown) for supplying power are formed.

【0022】例えば、図1に示した円柱状の振動子5
を、3つの振動部分6、7、8を同時に、即ち、同じ位
相で駆動すると、その円柱状の振動子5から送信される
超音波の指向特性は、円柱の直径と、送信される超音波
の波長とで決まる指向特性、即ち、空間的な強度分布を
示し、円柱状の振動子5の中心軸がその場合基準軸とな
る。しかし、図4に示すように、3つの独立した駆動電
源14、15、16を用いて、二分の一波長以内のある
一定の位相差で、3つの振動部分6、7、8を順次駆動
すると、空間的な強度分布は、前述したように、同じ位
相で駆動した場合と同じであるが、その基準軸を制御す
ることができ、その基準軸を円柱の中心軸からずらすこ
とができる。従って、指向特性を制御することができ、
任意の方向に超音波を送信することができる。なお、こ
の場合、振動子は各振動部分で完全に分離しているもの
を用いたが、下端部二分の一以下程度の部分で結合され
ていても、本発明の指向性の制御は可能となる。すなわ
ち、一つの振動子の上部、または下部から振動子の二分
の一以上のスリット加工してもよい。なお、スリット深
さは深い方が、振動の分離度は良い。また、図2に示し
た矩形状の振動子9を、例えば、3つの振動部分10、
11、12を同時に、即ち、同じ位相で駆動すると、そ
の矩形状の振動子9から送信される超音波の指向特性、
即ち、空間的な強度分布は、矩形の辺の長さと、送信さ
れる超音波の波長とで決まる指向特性を示す。しかし、
図4に示したような、3つの独立した駆動電源を用い
て、二分の一波長以内の位相差で、3つの振動部分1
0、11、12を順次駆動すると、空間的な強度分布
は、前記で説明した、同じ位相で駆動した場合と同じで
あるが、その基準軸を自由に、任意の方向にずらすこと
ができ、指向特性が制御できる。この場合、制御できる
方向は、図2の左右の方向である。なお、図2の上下の
方向の強度分布は、同相で駆動した場合と同じであり、
制御することができない。さらに、中央の振動部分11
を駆動する位相を、その両側の振動部分、10と12よ
りも、少し遅らせると、振動子9から送信される超音波
を収束させることができるため、あまり広がらない、よ
り強い超音波を送信することもできる。
For example, the cylindrical vibrator 5 shown in FIG.
When the three vibrating portions 6, 7, 8 are driven simultaneously, that is, in the same phase, the directional characteristic of the ultrasonic wave transmitted from the cylindrical vibrator 5 is the diameter of the cylinder and the ultrasonic wave transmitted. Shows the directional characteristic determined by the wavelength of, i.e., the spatial intensity distribution, and the central axis of the cylindrical vibrator 5 is the reference axis in that case. However, as shown in FIG. 4, when three independent driving power sources 14, 15, 16 are used to sequentially drive the three vibrating portions 6, 7, 8 with a certain phase difference within one-half wavelength. As described above, the spatial intensity distribution is the same as that when driven in the same phase, but the reference axis can be controlled and the reference axis can be deviated from the central axis of the cylinder. Therefore, it is possible to control the directivity,
Ultrasonic waves can be transmitted in any direction. In this case, the oscillator used was one that was completely separated at each oscillating portion, but the directivity of the present invention can be controlled even if the oscillator is coupled at a portion of the lower end half or less. Become. That is, it is possible to slit one half or more of the vibrator from the top or bottom of one vibrator. The deeper the slit depth, the better the degree of vibration isolation. In addition, the rectangular vibrator 9 shown in FIG.
When 11 and 12 are driven at the same time, that is, in the same phase, the directional characteristics of the ultrasonic waves transmitted from the rectangular transducer 9 are
That is, the spatial intensity distribution shows a directional characteristic that is determined by the length of the rectangular side and the wavelength of the transmitted ultrasonic wave. But,
As shown in FIG. 4, by using three independent driving power sources, the three vibrating parts 1 with a phase difference within a half wavelength are used.
When 0, 11, and 12 are sequentially driven, the spatial intensity distribution is the same as that when driven in the same phase described above, but its reference axis can be freely shifted in any direction, The directional characteristics can be controlled. In this case, the controllable directions are the left and right directions in FIG. The intensity distribution in the vertical direction in FIG. 2 is the same as when driven in phase,
Can't control. Further, the central vibration portion 11
If the phase for driving is delayed a little more than the vibration parts 10 and 12 on both sides thereof, the ultrasonic wave transmitted from the vibrator 9 can be converged, so that a stronger ultrasonic wave that does not spread so much is transmitted. You can also

【0023】また、図3に示した矩形状の振動子13の
場合、例えば、6つの振動部分を、6つの独立した駆動
電源を用いて駆動すると、送信される超音波の基準軸を
任意に制御することができる。即ち、図3の、左右方向
にも、上下方向にも制御することができる。従って、こ
の場合は、これらを組み合わせることにより、任意の方
向に、超音波の送信方向を制御することができる。
Further, in the case of the rectangular vibrator 13 shown in FIG. 3, for example, when 6 vibrating parts are driven by using 6 independent driving power sources, the reference axis of the transmitted ultrasonic wave is arbitrarily set. Can be controlled. That is, the control can be performed in the horizontal direction or the vertical direction in FIG. Therefore, in this case, by combining these, the ultrasonic wave transmission direction can be controlled in an arbitrary direction.

【0024】図5は、第4の実施例による超音波の指向
性を説明するための図。図5(a)は、図2に示した矩
形状の振動子9の上面から見た図であり、(b)はその
正面図である。なお、収納容器9bは、省略した。振動
子9は、振動部分が、18、19、20に3分割され、
それぞれの振動部分の上面と下面とには、厚さ約10μ
m程度のの焼き付け銀などの電極18aと18b、19
aと19b、20aと20bとが形成されている。電力
供給用のリード線は省略した。図5(b)に見られるよ
うに、それぞれの振動部分が上下方向に階段状になって
いる。図6に示す駆動電源21で、矩形状の振動子9を
駆動すると、振動部18、19、20は同時に、超音波
を送信するが、図5(b)に見られるように、振動部1
8、19、20が上下方向に階段状になっているため、
例えば、図5(b)の上部のある一点で、超音波の伝搬
して来るのを待っているとすると、振動部18からの超
音波が最初に到達し、次に19から、20からの順に到
達してくることになる。従って、図5(a)の右の方向
に、即ち、図5(b)の右上方向に、振動部18、1
9、20から等距離にある方向に、最も強い超音波が得
られる。このように、振動部の距離を、機械的に上下方
向に調節することにより、複数個の振動部分を同相で駆
動しても、超音波の最も強い方向を制御することができ
る。
FIG. 5 is a diagram for explaining the directivity of ultrasonic waves according to the fourth embodiment. FIG. 5A is a view seen from the upper surface of the rectangular vibrator 9 shown in FIG. 2, and FIG. 5B is a front view thereof. The storage container 9b is omitted. The vibrator 9 has a vibrating part divided into three parts of 18, 19, and 20.
The thickness of the top and bottom of each vibrating part is about 10μ.
electrodes 18a, 18b, 19 made of baked silver of about m
a and 19b and 20a and 20b are formed. The lead wire for power supply is omitted. As shown in FIG. 5B, each vibrating part has a stepwise shape in the vertical direction. When the rectangular oscillator 9 is driven by the drive power source 21 shown in FIG. 6, the vibrating units 18, 19 and 20 simultaneously transmit ultrasonic waves, but as shown in FIG.
Since 8, 19, 20 are vertically stepped,
For example, when waiting for the propagation of ultrasonic waves at a certain point in the upper part of FIG. 5B, the ultrasonic waves from the vibrating unit 18 arrive first, and then from 19 to 20. You will arrive in order. Therefore, in the right direction of FIG. 5A, that is, in the upper right direction of FIG.
The strongest ultrasonic wave is obtained in the direction equidistant from 9, 20. Thus, by mechanically adjusting the distance of the vibrating portion in the vertical direction, even if a plurality of vibrating portions are driven in the same phase, the strongest direction of ultrasonic waves can be controlled.

【0025】図7は、前記図1で説明した円柱状の超音
波振動子5を、上流側51と下流側52とに設置した音
波流量計22の断面図を示す。流体は、流路1内を矢印
の方向に流れる。この場合、超音波の伝搬経路が、流路
1の上流と下流とにあって、かつ、流路と斜交している
ため、中心軸23を正確に一致させることは、実用上非
常に困難であった。このため、従来では、振動子51、
あるいは、52の幾何学的な傾きを調整して、超音波の
受信感度が大きくなるように設定していた。しかし、本
発明の超音波振動子を用いると、電気的に位相を遅らせ
たり、進めたりするだけで、間単に、超音波の受信感度
を大きく設定する事ができ、非常に簡単となる。また、
超音波振動子を傾けたりすることなしに、図5で説明し
たように、各振動部分を前後に滑らせるだけでも、容易
に超音波の受信感度を大きくとることができる。従っ
て、調整作業が簡単に、容易となる。
FIG. 7 is a sectional view of the sonic flow meter 22 in which the cylindrical ultrasonic transducer 5 described in FIG. 1 is installed on the upstream side 51 and the downstream side 52. The fluid flows in the flow path 1 in the direction of the arrow. In this case, since the ultrasonic wave propagation paths are located upstream and downstream of the flow path 1 and obliquely intersect with the flow path, it is extremely difficult to make the central axes 23 exactly coincident with each other in practice. Met. Therefore, in the past, the oscillator 51,
Alternatively, the geometrical inclination of 52 is adjusted so as to increase the ultrasonic wave reception sensitivity. However, when the ultrasonic transducer of the present invention is used, it is possible to set the ultrasonic wave reception sensitivity to a large value simply by electrically delaying or advancing the phase, which is very simple. Also,
As described with reference to FIG. 5, the ultrasonic wave reception sensitivity can be easily increased simply by sliding each vibrating part back and forth without tilting the ultrasonic vibrator. Therefore, the adjustment work is simple and easy.

【0026】図8は、前記図1で説明した円柱状の超音
波振動子5を、上流側51と下流側52とに設置した音
波流量計24の断面図を示す。流体は、流路1内を矢印
の方向に流れる。この場合、超音波の伝搬経路は、流路
と平行に配置されている。また、超音波振動子5a1、
5a2とが、流路の中央部に配置されているため、中心
軸25を正確に一致させることは、実用上非常に困難で
あった。このため、従来では、振動子51、あるいは、
52の傾きを調整して、超音波の受信感度が大きくなる
ように設定していたが、振動子が流路の中央部に設置さ
れているため、非常に作業性が悪かった。本発明の超音
波振動子を用いると、電気的に位相を遅らせたり、進め
たりするだけで、間単に、容易に、超音波の受信感度を
大きく設定する事ができる。また、超音波振動子を傾け
たりすることなしに、図5で説明したように、各振動部
分を前後に滑らせるだけで容易に超音波の受信感度を大
きくとることができる。このため、確実に固定した後に
作業することができる。従って、調整作業が容易とな
る。電気的に位相を調整する場合、超音波振動子が、流
路の中央部にあっても、簡単に、外部から調整すること
ができる。
FIG. 8 is a cross-sectional view of the sonic flow meter 24 in which the cylindrical ultrasonic transducer 5 described in FIG. 1 is installed on the upstream side 51 and the downstream side 52. The fluid flows in the flow path 1 in the direction of the arrow. In this case, the ultrasonic wave propagation path is arranged in parallel with the flow path. In addition, the ultrasonic transducer 5a1,
Since 5a2 and 5a2 are arranged in the center of the flow path, it was practically very difficult to accurately match the central axes 25 with each other. Therefore, in the past, the oscillator 51 or the
Although the inclination of 52 was adjusted to set the ultrasonic wave reception sensitivity to be high, the workability was extremely poor because the transducer was installed in the center of the flow path. When the ultrasonic transducer of the present invention is used, it is possible to easily and easily set a large ultrasonic wave reception sensitivity simply by electrically delaying or advancing the phase. Further, as described with reference to FIG. 5, the ultrasonic wave reception sensitivity can be easily increased simply by sliding each vibrating part back and forth without tilting the ultrasonic vibrator. For this reason, it is possible to work after it is securely fixed. Therefore, the adjustment work becomes easy. When the phase is electrically adjusted, the ultrasonic transducer can be easily and externally adjusted even if it is located in the center of the flow path.

【0027】図9は、第7の実施例による超音波流量計
26を示す図。超音波振動子は矩形状の振動子9を用
い、上流側を91、下流側を92とする。図2で示した
左右方向を、流路1の流体の流れ方向(矢印)と一致さ
せた。従って、流体の流れる方向に指向性を制御するこ
とができる配置となる。超音波の伝搬路27は、流体の
流れ方向とは斜交することになる。このような配置にお
いて、例えば、流体の流れが無い場合に、即ち、流体の
静止状態において、振動子91、92との間で送受信さ
れる超音波の受信感度が、電気的位相差、あるいは物理
的位相差の調整によって、最適値に設定されていたとす
る。このような状態で、流体が流れると、例えば、上流
側の振動子91から送信された超音波は、流体に流さ
れ、下流側の振動子92に到達する際に、超音波受信感
度が最大となる最適位置よりも下流側に流される。また
逆に、下流側の振動子92から送信された超音波は、流
体に流され、上流側の振動子91に到達する際に、超音
波受信感度が最大となる最適位置よりも下流側に流され
る。このため、超音波の受信感度が流体の流量、即ち、
流速に左右されたり、低下したりし、流量計測に誤差を
発生しやすくなり、誤動作することがあった。本発明で
は、流体の流れる方向に指向性を制御できる振動子9
1、92を用いているため、電気的位相差を調整するこ
とにより、流体の流量にかかわらず、常に、超音波の受
信感度を最大とする最適な指向性を確保できる。従っ
て、流量計測に誤差の発生することがなく、安定に、正
確な流量計測ができる。
FIG. 9 is a diagram showing an ultrasonic flowmeter 26 according to the seventh embodiment. As the ultrasonic transducer, a rectangular transducer 9 is used, where the upstream side is 91 and the downstream side is 92. The horizontal direction shown in FIG. 2 was made to coincide with the flow direction (arrow) of the fluid in the channel 1. Therefore, the arrangement is such that the directivity can be controlled in the direction in which the fluid flows. The ultrasonic wave propagation path 27 is oblique to the flow direction of the fluid. In such an arrangement, for example, when there is no fluid flow, that is, when the fluid is in a stationary state, the reception sensitivity of the ultrasonic waves transmitted / received to / from the transducers 91 and 92 is the electrical phase difference or the physical difference. It is assumed that the optimum value is set by adjusting the physical phase difference. When the fluid flows in such a state, for example, the ultrasonic waves transmitted from the transducer 91 on the upstream side are flown by the fluid, and when reaching the transducer 92 on the downstream side, the ultrasonic reception sensitivity is maximized. Is flowed to the downstream side of the optimum position. On the contrary, the ultrasonic waves transmitted from the transducer 92 on the downstream side are made to flow to the fluid, and when reaching the transducer 91 on the upstream side, the ultrasonic waves are located on the downstream side of the optimum position where the ultrasonic wave reception sensitivity is maximum. Shed Therefore, the reception sensitivity of ultrasonic waves is the flow rate of the fluid, that is,
Depending on the flow velocity, the flow rate may decrease or the flow rate may be erroneously measured, resulting in malfunction. In the present invention, the oscillator 9 whose directivity can be controlled in the direction of fluid flow
Since 1 and 92 are used, by adjusting the electrical phase difference, the optimum directivity that maximizes the reception sensitivity of ultrasonic waves can always be ensured regardless of the flow rate of the fluid. Therefore, an error does not occur in the flow rate measurement, and stable and accurate flow rate measurement can be performed.

【0028】図10は、第8の実施例による超音波流量
計28を示す図であり、(a)は、その断面図を示し、
(b)は、(a)のA−A’断面を示す。超音波振動子
は矩形状の振動子9を用い、上流側を91、下流側を9
2とする。図2(a)で示した左右方向を、流路1の流
体の流れ方向(矢印)と一致させた。従って、流体の流
れる方向に指向性を制御することができる配置となる。
超音波の伝搬路29は、流体の流れ方向とは斜交するこ
とになる。流路1の断面形状30は矩形とした。矩形流
路の短辺31は、用いる超音波振動子の大きさ程度と
し、約5〜20mmとした。また、矩形流路の長辺32
は、最大流量時の圧損から求め、おおむね短辺の3〜1
0倍程度とした。流路の短辺31を、用いる振動子の寸
法程度とすることにより、強い超音波が得られた。即
ち、振動子91または92から送信された超音波は、振
動子の寸法程度の幅の中を伝搬するため、短辺方向(3
1の方向)へは、ほとんど拡散することができない。即
ち、短辺31側から送信された超音波は、長辺32で反
射されるため、拡散することがない。また、流体の流れ
方向へは、上流側の振動子91、下流側の振動子92と
も、送信する超音波を収束させたり、指向性を制御する
ことができるため、送信された超音波が流体の流れに流
されても、電気的位相差を調整することにより、超音波
の受信感度を最適にすることが簡単にできる。このた
め、本発明の超音波流量計では、特に、矩形断面流路を
有する本発明の超音波流量計では、常に、強い超音波が
送受信されるため、超音波の受信感度が大きく、誤差の
少ない流量計測ができる。
FIG. 10 is a diagram showing an ultrasonic flowmeter 28 according to the eighth embodiment, and FIG. 10A is a sectional view thereof.
(B) shows the AA 'cross section of (a). As the ultrasonic transducer, a rectangular transducer 9 is used, with 91 on the upstream side and 9 on the downstream side.
Let it be 2. The left-right direction shown in FIG. 2A was made to coincide with the flow direction (arrow) of the fluid in the channel 1. Therefore, the arrangement is such that the directivity can be controlled in the direction in which the fluid flows.
The ultrasonic wave propagation path 29 crosses the flow direction of the fluid obliquely. The cross-sectional shape 30 of the flow channel 1 was rectangular. The short side 31 of the rectangular flow path has a size of about 5 to 20 mm, which is about the size of the ultrasonic transducer used. In addition, the long side 32 of the rectangular channel
Is calculated from the pressure loss at the maximum flow rate, and is generally 3 to 1 on the short side.
It was set to about 0 times. A strong ultrasonic wave was obtained by setting the short side 31 of the flow path to about the size of the transducer used. That is, since the ultrasonic wave transmitted from the vibrator 91 or 92 propagates in the width about the size of the vibrator, the ultrasonic wave in the short side direction (3
In the direction 1), almost no diffusion is possible. That is, since the ultrasonic wave transmitted from the short side 31 side is reflected by the long side 32, it does not diffuse. Further, in the flow direction of the fluid, both the upstream-side transducer 91 and the downstream-side transducer 92 can converge the ultrasonic waves to be transmitted and can control the directivity, so that the transmitted ultrasonic waves are Even if it is made to flow in the stream, it is possible to easily optimize the reception sensitivity of ultrasonic waves by adjusting the electrical phase difference. Therefore, in the ultrasonic flowmeter of the present invention, particularly in the ultrasonic flowmeter of the present invention having a rectangular cross-sectional flow path, strong ultrasonic waves are always transmitted and received, so that the ultrasonic wave reception sensitivity is large and the error A small amount of flow can be measured.

【0029】図11は、図10で示した超音波流量計2
8の動作を説明するためのブロック図。33は位相可変
型送信機、34はその出力端子であり、送信側振動子9
1、92が接続される。35は位相可変型受信器であ
り、36はその入力端子であり、受信側振動子92、9
1が接続される。37は増幅回路、38はマイコンであ
り、演算処理や、送信指令を発生する。例えば、位相可
変型送信器33の出力端子34に、上流側振動子91を
接続し、複数個の端子間の位相を順次変えて、振動子9
1を駆動し、超音波を伝搬路29に沿って、送信する。
下流側振動子92で受信された信号は、入力端子36を
介して、位相可変型受信機35に入力される。35から
の出力は、増幅回路37で、マイコン38で処理しやす
い程度に増幅される。マイコン38では、送信側、受信
側の位相関係から、超音波の最適送信位相、受信位相を
演算し、決定する。その後、出力端子34に下流側の振
動子92を接続し、入力端子36に上流側振動子91を
接続し、前記とどうようにして、超音波の最適送信位
相、受信位相を決定する。それぞれの送受信条件は、マ
イコン38に記憶され、その条件で、正確な流量計測を
実施する。なお、計測結果の流量値に大きな変化が認め
られないときは、そのままの条件で、流量計測を実施す
る。
FIG. 11 shows the ultrasonic flowmeter 2 shown in FIG.
8 is a block diagram for explaining the operation of FIG. 33 is a phase variable transmitter, 34 is its output terminal, and the transmitter 9
1, 92 are connected. Reference numeral 35 is a variable phase receiver, 36 is an input terminal thereof, and receiving side oscillators 92 and 9 are provided.
1 is connected. Reference numeral 37 is an amplifier circuit, and 38 is a microcomputer, which performs arithmetic processing and generates a transmission command. For example, by connecting the upstream oscillator 91 to the output terminal 34 of the phase variable transmitter 33 and sequentially changing the phase between the plurality of terminals, the oscillator 9
1 is transmitted, and ultrasonic waves are transmitted along the propagation path 29.
The signal received by the downstream oscillator 92 is input to the variable phase receiver 35 via the input terminal 36. The output from 35 is amplified by the amplifier circuit 37 to such an extent that it can be easily processed by the microcomputer 38. The microcomputer 38 calculates and determines the optimum transmission phase and reception phase of ultrasonic waves from the phase relationship between the transmission side and the reception side. After that, the transducer 92 on the downstream side is connected to the output terminal 34, and the transducer 91 on the upstream side is connected to the input terminal 36, and the optimum transmission phase and reception phase of the ultrasonic waves are determined in the same manner as described above. The respective transmission / reception conditions are stored in the microcomputer 38, and accurate flow rate measurement is performed under the conditions. In addition, when a large change is not recognized in the flow rate value of the measurement result, the flow rate is measured under the same condition.

【0030】計測流量値に大きな変化が認められた場
合、再度流量計測前に、前記の最適送受信条件を求め、
新たな最適条件で、流量計測を実施する。なお、何度も
何度も繰り返し最適送受信条件を求め、前記マイコン3
8に、その都度、記憶しておくと、計測流量値に応じ
た、最適位相条件が簡単に求められる。
When a large change is found in the measured flow rate value, the optimum transmission / reception conditions are obtained before measuring the flow rate again.
The flow rate is measured under the new optimum condition. In addition, the optimum transmission / reception conditions are repeatedly obtained many times, and the microcomputer 3
In 8, the optimum phase condition corresponding to the measured flow rate value can be easily obtained by storing each time.

【0031】最適送受信条件を求める際、位相可変型受
信機の位相条件は、位相差零とすれば、やや受信感度は
低下するが、より簡単に最適条件が見つかる。
When obtaining the optimum transmission / reception conditions, if the phase difference of the phase variable type receiver is set to zero phase difference, the reception sensitivity is slightly lowered, but the optimum condition can be more easily found.

【0032】[0032]

【発明の効果】以上の説明から明らかなように本発明の
超音波振動子及びこれを用いた超音波流量計によれば次
の効果が得られる。
As is apparent from the above description, according to the ultrasonic transducer of the present invention and the ultrasonic flowmeter using the same, the following effects can be obtained.

【0033】(1)複数個の振動部分からなり、それぞ
れが互いに独立に、かつ、二分の一波長以内の位相差の
超音波を送信する機能を備えたので、送信する超音波の
指向性を制御することができる。
(1) Since it is composed of a plurality of vibrating parts, each of which has a function of transmitting ultrasonic waves having a phase difference within a half wavelength independently of each other, the directivity of the ultrasonic waves to be transmitted is changed. Can be controlled.

【0034】(2)複数個の振動部分からなり、それぞ
れが互いに独立に、かつ、二分の一波長以内の電気的な
位相差で駆動され、それぞれ互いに独立に超音波を送信
する機能を備えたので、送信する超音波の指向性を電気
的に制御することができる。
(2) It is composed of a plurality of vibrating parts, each of which is driven independently of each other and with an electrical phase difference within a half wavelength, and has a function of transmitting ultrasonic waves independently of each other. Therefore, the directivity of the transmitted ultrasonic wave can be electrically controlled.

【0035】(3)複数個の振動部分からなり、それぞ
れが互いに独立に、かつ、二分の一波長以内の物理的な
位相差で駆動され、それぞれ互いに独立に超音波を送信
する機能を備えたので、送信する超音波の指向性を物理
的に制御することができる。
(3) It comprises a plurality of vibrating parts, each of which is driven independently of each other and with a physical phase difference within a half wavelength, and has a function of transmitting ultrasonic waves independently of each other. Therefore, the directivity of the ultrasonic waves to be transmitted can be physically controlled.

【0036】(4)複数個の振動部分からなり、それぞ
れが互いに独立に、かつ、二分の一波長以内の位相差で
超音波を送受信できる一対の超音波振動子を、流路の上
流と、下流とに対面させる構成なので、超音波振動子の
位置ずれが発生しても、指向性を制御することにより、
簡単に、位置合わせができ、調整が容易となる。従っ
て、超音波の受信感度が大きくとれ、誤動作の少ない流
量計となる。
(4) A pair of ultrasonic transducers, each of which is composed of a plurality of vibrating portions, is capable of transmitting and receiving ultrasonic waves independently of each other and with a phase difference within a half wavelength, upstream of the flow path, Because it is configured to face the downstream, even if the ultrasonic transducer is displaced, by controlling the directivity,
The position can be adjusted easily and the adjustment is easy. Therefore, the ultrasonic wave reception sensitivity is high, and the flowmeter has few malfunctions.

【0037】(5)複数個の振動部分からなり、それぞ
れが互いに独立に、かつ、二分の一波長以内の位相差で
超音波を送受信できる一対の超音波振動子を、流路の上
流と、下流とに対面させ、超音波の伝搬方向と、流体の
流れの方向とを平行させてなる構成であるため、振動子
が流路の中央部に在っても、外部から、例えば、電気的
に指向性を制御できるため、振動子間の位置合わせが簡
単にでき、調整が容易となる。従って、超音波の受信感
度が大きくとれ、誤動作の少ない流量計となる。
(5) A pair of ultrasonic transducers, each of which is composed of a plurality of vibrating portions and is capable of transmitting and receiving ultrasonic waves independently of each other and with a phase difference within a half wavelength, is provided upstream of the flow path. Since the ultrasonic wave is directed to the downstream side and the propagation direction of the ultrasonic wave is parallel to the flow direction of the fluid, even if the vibrator is located in the center of the flow path, it is possible to use the Since the directivity can be controlled, the alignment between the transducers can be easily performed and the adjustment becomes easy. Therefore, the ultrasonic wave reception sensitivity is high, and the flowmeter has few malfunctions.

【0038】(6)複数個の振動子部分からなり、それ
ぞれが互いに独立に、かつ、二分の一波長以内の位相差
で超音波を送受信できる一対の超音波振動子を、流路の
上流と、下流とに対面させ、超音波の伝搬方向と、流体
の流れの方向とを斜交させてなる構成であるから、送信
された超音波が、流体の流れによって流されても、指向
性を制御できるため、常に、最適な超音波受信感度とす
ることができ、誤動作の少ない流量計となる。
(6) A pair of ultrasonic transducers, each of which is composed of a plurality of transducer portions and is capable of transmitting and receiving an ultrasonic wave independently of each other and with a phase difference within one-half wavelength, is provided upstream of the flow path. , The downstream is faced, and the propagation direction of the ultrasonic wave and the direction of the flow of the fluid are obliquely crossed. Therefore, even if the transmitted ultrasonic wave is flowed by the flow of the fluid, the directivity is not changed. Since it can be controlled, the optimum ultrasonic wave reception sensitivity can always be obtained, and the flowmeter has few malfunctions.

【0039】(7)流れ方向に並んだ複数個の振動部分
からなり、それぞれが互いに独立に、かつ、二分の一波
長以内の位相差で超音波を送受信できる一対の超音波振
動子を、矩形流路の上流と、下流とに対面させ、超音波
の伝搬方向を矩形流路の長手方向に取るとともに、流体
の流れの方向と斜交させてなる構成なので、送信された
超音波は、矩形流路の高さ方向に閉じこめられ、かつ、
流体の流れ方向には、指向性の制御により、超音波が収
束するため、超音波の受信感度が大きくなり、誤動作の
少ない流量計となる。
(7) A pair of ultrasonic transducers, each of which is composed of a plurality of vibrating portions arranged in the flow direction and which can transmit and receive ultrasonic waves independently of each other and with a phase difference within a half wavelength, The transmitted ultrasonic waves are rectangular because the configuration is such that they face the upstream and downstream of the flow path, the propagation direction of the ultrasonic wave is in the longitudinal direction of the rectangular flow path, and it intersects with the flow direction of the fluid. Is confined in the height direction of the flow path, and
The ultrasonic waves are converged in the flow direction of the fluid by controlling the directivity, so that the reception sensitivity of the ultrasonic waves is increased and the flow meter has less malfunctions.

【0040】(8)流れ方向に並んだ複数個の振動部分
からなり、それぞれが互いに独立に、かつ、二分の一波
長以内の位相差で超音波を送受信できる一対の超音波振
動子を、矩形流路の上流と、下流とに対面させ、超音波
の伝搬方向を矩形流路の長手方向に取るとともに、流体
の流れの方向と斜交させ、前記複数個の振動部分からな
る超音波振動子を、各振動部分を、二分の一波長以内の
位相差を順次変化させて駆動し、最大受信感度の得られ
た位相差で、複数個の振動部を駆動させて流体の流量を
計測してなる構成であるため、流体の流量にかかわら
ず、超音波の受信感度を常に、最適とすることができ、
誤動作の少ない流量計となる。
(8) A pair of ultrasonic transducers, each of which is composed of a plurality of vibrating portions arranged in the flow direction and which can transmit and receive ultrasonic waves independently of each other and with a phase difference within a half wavelength, An ultrasonic transducer composed of a plurality of vibrating portions, which face the upstream side and the downstream side of the flow path, set the propagation direction of ultrasonic waves in the longitudinal direction of the rectangular flow path, and obliquely intersect with the flow direction of the fluid. , Each vibrating part is driven by sequentially changing the phase difference within a half wavelength, and the plurality of vibrating parts are driven by the phase difference obtained with the maximum receiving sensitivity to measure the fluid flow rate. With this configuration, regardless of the flow rate of the fluid, the reception sensitivity of ultrasonic waves can always be optimized,
The flow meter has few malfunctions.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の超音波振動子の斜視図FIG. 1 is a perspective view of an ultrasonic transducer according to a first embodiment of the present invention.

【図2】本発明の第2の実施例の超音波振動子の斜視図FIG. 2 is a perspective view of an ultrasonic transducer according to a second embodiment of the present invention.

【図3】本発明の第3の実施例の超音波振動子の斜視図FIG. 3 is a perspective view of an ultrasonic transducer according to a third embodiment of the present invention.

【図4】本発明の超音波振動子を駆動する回路図FIG. 4 is a circuit diagram for driving the ultrasonic transducer of the present invention.

【図5】(a)本発明の第4の実施例の超音波振動子の
上面図 (b)同振動子の正面図
FIG. 5 (a) is a top view of an ultrasonic oscillator according to a fourth embodiment of the present invention, and (b) is a front view of the same oscillator.

【図6】本発明の超音波振動子を駆動する別の回路図FIG. 6 is another circuit diagram for driving the ultrasonic transducer of the present invention.

【図7】本発明の第5の実施例の超音波流量計の断面図FIG. 7 is a sectional view of an ultrasonic flowmeter according to a fifth embodiment of the present invention.

【図8】本発明の第6の実施例の超音波流量計の断面図FIG. 8 is a sectional view of an ultrasonic flowmeter according to a sixth embodiment of the present invention.

【図9】本発明の第7の実施例の超音波流量計の断面図FIG. 9 is a sectional view of an ultrasonic flowmeter according to a seventh embodiment of the present invention.

【図10】(a)本発明の第8の実施例の超音波流量計
の断面図 (b)同流量計のAーA’断面図
FIG. 10 (a) is a sectional view of an ultrasonic flowmeter according to an eighth embodiment of the present invention. (B) is a sectional view taken along the line AA ′ of the same flowmeter.

【図11】本発明の実施例の超音波流量計の駆動回路ブ
ロック図
FIG. 11 is a drive circuit block diagram of the ultrasonic flowmeter according to the embodiment of the present invention.

【図12】従来の超音波流量計の断面図FIG. 12 is a sectional view of a conventional ultrasonic flowmeter.

【符号の説明】[Explanation of symbols]

5 円柱状の超音波振動子 6、7、8 振動部分 6a、7a、8a 電極 6b、7b、8b 電極 9、13、17 矩形状の超音波振動子 14、15、16 駆動電源 5 Cylindrical ultrasonic transducers 6, 7, 8 Vibrating portions 6a, 7a, 8a Electrodes 6b, 7b, 8b Electrodes 9, 13, 17 Rectangular ultrasonic transducers 14, 15, 16 Drive power supply

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】複数個の振動部分からなり、それぞれが互
いに独立に、かつ、二分の一波長以内の位相差の超音波
を送信してなる超音波振動子。
1. An ultrasonic transducer comprising a plurality of vibrating parts, each of which transmits an ultrasonic wave having a phase difference within a half wavelength independently of each other.
【請求項2】複数個の振動部分からなり、それぞれが互
いに独立に、かつ、二分の一波長以内の電気的な位相差
で駆動され、それぞれ互いに独立に超音波を送信してな
る超音波振動子。
2. An ultrasonic vibration system comprising a plurality of vibrating parts, each of which is driven independently of each other and with an electrical phase difference within a half wavelength, and which transmits ultrasonic waves independently of each other. Child.
【請求項3】複数個の振動部分からなり、それぞれが互
いに独立に、かつ、二分の一波長以内の物理的な位相差
で駆動され、それぞれ互いに独立に超音波を送信してな
る超音波振動子。
3. An ultrasonic vibration system comprising a plurality of vibrating parts, each of which is driven independently of each other and with a physical phase difference within a half wavelength, and which transmits ultrasonic waves independently of each other. Child.
【請求項4】複数個の振動部分からなり、それぞれが互
いに独立に、かつ、二分の一波長以内の位相差で超音波
を送受信できる一対の超音波振動子を、流路の上流と、
下流とに対面させてなる超音波流量計。
4. A pair of ultrasonic transducers comprising a plurality of vibrating portions, each of which is capable of transmitting and receiving ultrasonic waves independently of each other and with a phase difference within a half wavelength, upstream of a flow path,
An ultrasonic flow meter facing downstream.
【請求項5】複数個の振動部分からなり、それぞれが互
いに独立に、かつ、二分の一波長以内の位相差で超音波
を送受信できる一対の超音波振動子を、流路の上流と、
下流とに対面させ、超音波の伝搬方向と、流体の流れの
方向とを平行させてなる超音波流量計。
5. A pair of ultrasonic transducers comprising a plurality of vibrating portions, each of which is capable of transmitting and receiving ultrasonic waves independently of each other and with a phase difference within a half wavelength, upstream of the flow path,
An ultrasonic flowmeter, which faces the downstream side and in which the propagation direction of ultrasonic waves and the direction of fluid flow are parallel.
【請求項6】複数個の振動子部分からなり、それぞれが
互いに独立に、かつ、二分の一波長以内の位相差で超音
波を送受信できる一対の超音波振動子を、流路の上流
と、下流とに対面させ、超音波の伝搬方向と、流体の流
れの方向とを斜交させてなる超音波流量計。
6. A pair of ultrasonic transducers comprising a plurality of transducer portions, each of which is capable of transmitting and receiving an ultrasonic wave independently of each other and with a phase difference within a half wavelength, upstream of a flow path, An ultrasonic flowmeter, which is arranged so as to face downstream and in which the propagation direction of ultrasonic waves and the direction of fluid flow are crossed obliquely.
【請求項7】流れ方向に並んだ複数個の振動部分からな
り、それぞれが互いに独立に、かつ、二分の一波長以内
の位相差で超音波を送受信できる一対の超音波振動子
を、矩形流路の上流と、下流とに対面させ、超音波の伝
搬方向を矩形流路の長手方向に取るとともに、流体の流
れの方向と斜交させてなる超音波流量計。
7. A pair of ultrasonic transducers, each of which is composed of a plurality of vibrating portions arranged in the flow direction, capable of transmitting and receiving ultrasonic waves independently of each other and with a phase difference within a half wavelength, An ultrasonic flowmeter which is arranged so as to face the upstream side and the downstream side of the passage, the propagation direction of the ultrasonic wave is set in the longitudinal direction of the rectangular flow path, and is oblique to the direction of the fluid flow.
【請求項8】流れ方向に並んだ複数個の振動部分からな
り、それぞれが互いに独立に、かつ、二分の一波長以内
の位相差で超音波を送受信できる一対の超音波振動子
を、矩形流路の上流と、下流とに対面させ、超音波の伝
搬方向を矩形流路の長手方向に取るとともに、流体の流
れの方向と斜交させ、前記複数個の振動部分からなる超
音波振動子を、各振動部分を、二分の一波長以内の位相
差を順次変化させて駆動し、最大受信感度の得られた位
相差で、複数個の振動部を駆動させて流体の流量を計測
してなる超音波流量計。
8. A pair of ultrasonic transducers, each of which is composed of a plurality of vibrating portions arranged in the flow direction, capable of transmitting and receiving an ultrasonic wave independently of each other and with a phase difference within a half wavelength, The ultrasonic transducer composed of the plurality of vibrating portions is made to face the upstream side and the downstream side of the passage, while the propagation direction of the ultrasonic wave is set in the longitudinal direction of the rectangular flow path, and is obliquely intersected with the flow direction of the fluid. , Each vibration part is driven by sequentially changing the phase difference within a half wavelength, and the flow rate of the fluid is measured by driving the plurality of vibration parts with the phase difference with the maximum receiving sensitivity. Ultrasonic flow meter.
JP7177068A 1995-07-13 1995-07-13 Ultrasonic oscillator and ultrasonic flowmeter using it Pending JPH0926342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7177068A JPH0926342A (en) 1995-07-13 1995-07-13 Ultrasonic oscillator and ultrasonic flowmeter using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7177068A JPH0926342A (en) 1995-07-13 1995-07-13 Ultrasonic oscillator and ultrasonic flowmeter using it

Publications (1)

Publication Number Publication Date
JPH0926342A true JPH0926342A (en) 1997-01-28

Family

ID=16024566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7177068A Pending JPH0926342A (en) 1995-07-13 1995-07-13 Ultrasonic oscillator and ultrasonic flowmeter using it

Country Status (1)

Country Link
JP (1) JPH0926342A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002039823A (en) * 2000-07-24 2002-02-06 Matsushita Electric Ind Co Ltd Gas measurement device
JP2002107194A (en) * 2000-09-29 2002-04-10 Matsushita Electric Ind Co Ltd Ultrasonic wave flow meter
JP2004072461A (en) * 2002-08-07 2004-03-04 Matsushita Electric Ind Co Ltd Ultrasonic wave transmitter/receiver and ultrasonic flowmeter using same
JP2004198339A (en) * 2002-12-20 2004-07-15 National Institute Of Advanced Industrial & Technology Ultrasonic flow meter
JP2006292406A (en) * 2005-04-06 2006-10-26 Tokyo Keiso Co Ltd Ultrasonic flow meter
JP2008014833A (en) * 2006-07-06 2008-01-24 Toshiba Corp Ultrasonic flowmeter

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56162013A (en) * 1980-05-19 1981-12-12 Toshiba Corp Ultrasonic oscillator for measurement of speed and rate of flow
JPH0221528B2 (en) * 1981-05-26 1990-05-15 Obara Kiki Kogyo Kk
JPH04248466A (en) * 1990-10-02 1992-09-03 British Gas Plc Speed measuring device for fluid
JPH0554889B2 (en) * 1986-06-30 1993-08-13 Tokimec Inc
JPH05223608A (en) * 1992-02-18 1993-08-31 Tokimec Inc Ultrasonic flowmeter
JPH06288803A (en) * 1993-04-06 1994-10-18 Matsushita Electric Ind Co Ltd Gas flowmeter
JPH079052Y2 (en) * 1989-02-27 1995-03-06 株式会社カイジョー Ultrasonic flow meter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56162013A (en) * 1980-05-19 1981-12-12 Toshiba Corp Ultrasonic oscillator for measurement of speed and rate of flow
JPH0221528B2 (en) * 1981-05-26 1990-05-15 Obara Kiki Kogyo Kk
JPH0554889B2 (en) * 1986-06-30 1993-08-13 Tokimec Inc
JPH079052Y2 (en) * 1989-02-27 1995-03-06 株式会社カイジョー Ultrasonic flow meter
JPH04248466A (en) * 1990-10-02 1992-09-03 British Gas Plc Speed measuring device for fluid
JPH05223608A (en) * 1992-02-18 1993-08-31 Tokimec Inc Ultrasonic flowmeter
JPH06288803A (en) * 1993-04-06 1994-10-18 Matsushita Electric Ind Co Ltd Gas flowmeter

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002039823A (en) * 2000-07-24 2002-02-06 Matsushita Electric Ind Co Ltd Gas measurement device
JP2002107194A (en) * 2000-09-29 2002-04-10 Matsushita Electric Ind Co Ltd Ultrasonic wave flow meter
JP2004072461A (en) * 2002-08-07 2004-03-04 Matsushita Electric Ind Co Ltd Ultrasonic wave transmitter/receiver and ultrasonic flowmeter using same
JP2004198339A (en) * 2002-12-20 2004-07-15 National Institute Of Advanced Industrial & Technology Ultrasonic flow meter
JP2006292406A (en) * 2005-04-06 2006-10-26 Tokyo Keiso Co Ltd Ultrasonic flow meter
JP4746903B2 (en) * 2005-04-06 2011-08-10 東京計装株式会社 Ultrasonic flow meter
JP2008014833A (en) * 2006-07-06 2008-01-24 Toshiba Corp Ultrasonic flowmeter

Similar Documents

Publication Publication Date Title
JPH0734344Y2 (en) Clamp type ultrasonic flowmeter
JP3722827B2 (en) Ultrasonic sensor
US7069793B2 (en) Ultrasonic flow meter and ultrasonic sensor
US20110094309A1 (en) Method and measuring system for determining and/or monitoring flow of a measured medium in a measuring tube
JP3554336B2 (en) Ultrasonic flow meter and ultrasonic transducer
US4156158A (en) Double serrated piezoelectric transducer
JPH0926342A (en) Ultrasonic oscillator and ultrasonic flowmeter using it
JPH0943015A (en) Ultrasonic flowmeter
Kang et al. Two-dimensional flexural ultrasonic phased array for flow measurement
JPH0791997A (en) Method and device for measuring flow rate or flow speed of liquid
US6536290B2 (en) Ultrasonic flowmeter and gas flowmeter using the same
JP4764064B2 (en) Ultrasonic flow meter
JP2005345445A (en) Ultrasonic flowmeter
JP2004144701A (en) Ultrasonic flowmeter and ultrasonic transducer
JPH1114649A (en) Flow-rate measuring device
JP7035263B1 (en) Ultrasonic flow meter
JP4746903B2 (en) Ultrasonic flow meter
JPS60212097A (en) Ultrasonic wave transmitter-receiver
JP3584578B2 (en) Ultrasonic flowmeter and ultrasonic transmission / reception module
US20210162463A1 (en) Ultrasonic device
JP5156931B2 (en) Ultrasonic transducer and ultrasonic flow meter
JP2024005405A (en) Fluid device and method for controlling fluid device
KR20100007215A (en) Ultrasonic transducer control method of a ultrasonic flowmeter and ultrasonic flowmeter to applying the method
JPS6061621A (en) Ultrasonic transmitter-receiver of ultrasonic flow velocity measuring apparatus
JP3948335B2 (en) Ultrasonic flow meter

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040720

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050322