JPH10197302A - Ultrasonic flowmeter - Google Patents

Ultrasonic flowmeter

Info

Publication number
JPH10197302A
JPH10197302A JP53997A JP53997A JPH10197302A JP H10197302 A JPH10197302 A JP H10197302A JP 53997 A JP53997 A JP 53997A JP 53997 A JP53997 A JP 53997A JP H10197302 A JPH10197302 A JP H10197302A
Authority
JP
Japan
Prior art keywords
transducers
pair
transmitter
flow
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP53997A
Other languages
Japanese (ja)
Inventor
Shigenori Okamura
繁憲 岡村
Takaomi Ikada
隆臣 筏
明男 ▲富▲田
Akio Tomita
Noriyuki Nabeshima
徳行 鍋島
Yutaka Tanaka
豊 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Aichi Tokei Denki Co Ltd
Original Assignee
Osaka Gas Co Ltd
Aichi Tokei Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Aichi Tokei Denki Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP53997A priority Critical patent/JPH10197302A/en
Publication of JPH10197302A publication Critical patent/JPH10197302A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform measurement with accuracy in response to the distribution of flow velocity in a flow pipe and to prevent the consumption of current and the increase of cost. SOLUTION: The reaching time of ultrasonic waves in forward and reverse directions is measured by a pair of transducers 1A and 2A to calculate flow velocity VA. The reaching time in forward and reverse directions is measured by another pair of transducers 1B and 2B to calculate flow velocity VB. Measurement by the pairs of the transducers is performed not simultaneously but at different times. In an electronic part 5, a switching device 4 is operated by a controller 10 constituted by a microcomputer to selectively use each pair of the transducers. Operation is performed at a control part. The rate of flow and integrated rate of flow are obtained from the flow velocity VA and VB and displayed. A flow pipe 3 has a circular cross section, the pair of the transducers 1A and 2A are arranged on the center axis of the flow pipe 3, and the other pair of transducer 1B and 2B are displaced from the center by r/2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は超音波流量計に関す
る。
[0001] The present invention relates to an ultrasonic flowmeter.

【0002】[0002]

【従来の技術】図4において、静止流体中の音速をC、
流体の流れの速さをVとすると、音波の伝搬方向が流れ
に沿った方向(以下順方向と言う)と一致すればその伝
搬速度は(C+V)となり、流れに逆らった方向(以下
逆方向と言う)の場合には(C−V)となる。
2. Description of the Related Art In FIG.
Assuming that the velocity of the fluid flow is V, if the propagation direction of the sound wave coincides with the direction along the flow (hereinafter referred to as the forward direction), the propagation velocity becomes (C + V), and the direction opposite to the flow (hereinafter the reverse direction) (CV).

【0003】距離Lを隔てて1対の送受波器1,2を流
管3の上流と下流に離して配設し、一方の送受波器1か
ら順方向に超音波パルスを発信したとき、他方の送受波
器2に超音波パルスが到達するに要する伝搬時間を
1 、送受波器2から逆方向に超音波パルスを発信した
ときに、送受波器1に超音波パルスが到達するに要する
伝搬時間をt2 とすれば、 t1 =L/(C+V) t2 =L/(C−V) となる。
When a pair of transducers 1 and 2 are arranged at a distance L from each other upstream and downstream of a flow tube 3 and an ultrasonic pulse is transmitted from one transducer 1 in a forward direction, The propagation time required for the ultrasonic pulse to reach the other transducer 2 is t 1 , and when the ultrasonic pulse is transmitted from the transducer 2 in the opposite direction, the ultrasonic pulse reaches the transducer 1. Assuming that the required propagation time is t 2 , t 1 = L / (C + V) t 2 = L / (C−V)

【0004】従来の超音波流量計では、超音波パルスの
各伝搬時間(以下到達時間とも言う)t1 ,t2 を測定
し、これから流速Vを演算し、さらに流量や積算流量
(流体の体積)を演算していた。
In a conventional ultrasonic flow meter, each propagation time (hereinafter also referred to as arrival time) t 1 and t 2 of an ultrasonic pulse is measured, a flow velocity V is calculated from this, and a flow rate and an integrated flow rate (fluid volume) are calculated. ) Was calculated.

【0005】例えば、上記到達時間t1 ,t2 から (1/t1 )−(1/t2 )=2V/L の関係があるから、流速Vを周知の時間逆数差法を用い
て、 V=(L/2){(1/t1 )−(1/t2 )} として求めていた。
For example, from the arrival times t 1 and t 2 , there is a relation of (1 / t 1 ) − (1 / t 2 ) = 2 V / L. V = (L / 2) {(1 / t 1 ) − (1 / t 2 )}.

【0006】そして、流管断面積や流管断面における流
速分布を考慮した補正係数を予め記憶しておき、この補
正係数を前記流速Vに乗じて流量を求め、さらにその流
量を積分して積分流量(つまり流体の体積)を算出して
いた。流量分布は前もって割り出しておく。
A correction coefficient taking into account the flow tube cross-sectional area and the flow velocity distribution in the flow tube cross section is stored in advance, the flow rate is obtained by multiplying the correction coefficient by the flow velocity V, and the flow rate is integrated and integrated. The flow rate (that is, the volume of the fluid) was calculated. The flow distribution is determined in advance.

【0007】到達時間は送信側の送受波器をパルス駆動
してから、受信側の送受波器に超音波パルスが到達する
までの時間を計測することで知る。受信波到達時点を知
る方法として、先ず受信の基準電圧レベルとしてのしき
い値VTHを定め、受信側の送受波器の信号を増幅した受
信波の前記しきい値VTHのレベルに最初に達した波がゼ
ロレベルを通るゼロクロスポイントを検知することで行
っている。
The arrival time is known by measuring the time from when the transmitting / receiving transducer on the transmitting side is pulse-driven until the ultrasonic pulse reaches the transmitting / receiving transducer on the receiving side. As a way of knowing the reception wave arrival point, first determine the threshold V TH as the reference voltage level of the received, first the level of the threshold V TH of the received amplified signal on the receiving side transducer wave This is done by detecting the zero cross point where the reached wave passes through the zero level.

【0008】しきい値VTHは受信波の何番目かの特定の
波のゼロクロスポイントを検知するように定めておく。
図5では、受信波の第3波が点「ロ」でしきい値VTH
レベルに達しており、この第3波がゼロレベルを通るゼ
ロクロスポイント「ハ」を検知して受信波検知時点とし
ている。
[0008] The threshold value V TH is set so as to detect the zero cross point of some specific wave of the received wave.
In FIG. 5, the third wave of the received wave reaches the level of the threshold value V TH at the point “b”, and the third wave detects the zero cross point “c” passing through the zero level, and the time when the received wave is detected And

【0009】受信波の先頭は点「イ」の時点であるが、
点「イ」と点「ハ」では時間的に超音波の周期の1.5
倍のずれがあるので、受信波到達時点「ハ」に基づいて
到達時間を計測する。
The head of the received wave is at the point "a",
At points “a” and “c”, the time period of the ultrasonic wave is 1.5 times.
Since there is a double shift, the arrival time is measured based on the arrival time “C” of the reception wave.

【0010】Vpは受信波のピーク値である。また別の
従来技術として、流体の流れ中を流れと斜め方向に超音
波ビームを発射し、超音波ビーム上での線平均流速を測
定し、それを流管断面での平均流速に変換し、これに流
管断面積を乗算することで流量を算出し、さらにそれを
積分して積分流量(流体の体積)を算出していた。
Vp is the peak value of the received wave. As another conventional technique, an ultrasonic beam is emitted in a diagonal direction to a flow in a fluid flow, a linear average flow velocity on the ultrasonic beam is measured, and the average flow velocity is converted into an average flow velocity in a flow tube cross section. The flow rate was calculated by multiplying the flow rate by the flow tube cross-sectional area, and the integrated flow rate was further integrated to calculate the integrated flow rate (fluid volume).

【0011】[0011]

【発明が解決しようとする課題】前記従来の技術のうち
前者は、流速が流路内の位置・場所等の種々の条件で異
なると流速分布も異なるため、補正係数は単純な形で表
せなくなり、計測誤差の要因となるという問題点があっ
た。
The former of the above prior arts has a problem that the correction coefficient cannot be expressed in a simple form because the flow velocity distribution is different if the flow velocity is different under various conditions such as the position and location in the flow path. However, there is a problem that it causes a measurement error.

【0012】この場合、複数組の送受波器を配置し、各
組で求まった流速より全体の流量を割り出すことを行
う。しかし、この方法では送受波器と、その駆動と受信
を行う電子部がその数だけ必要となりコスト的に不利で
ある。更に、従来技術の後者では、1対の超音波送受波
器を使用しているので、送受波器同士を結んだ直線上の
流速がわかるだけであり、その値に基づいて全体を推測
して流量を割り出している。従って流れに偏りが生じる
と計測誤差になるという問題点があった。
In this case, a plurality of sets of transducers are arranged, and the total flow rate is determined from the flow velocity obtained for each set. However, this method is disadvantageous in terms of cost because the number of transducers and the number of electronic parts for driving and receiving the transducers are required. Furthermore, in the latter case of the prior art, since a pair of ultrasonic transducers is used, only the flow velocity on a straight line connecting the transducers can be known, and the whole is estimated based on the value. The flow rate has been determined. Accordingly, there is a problem that a measurement error occurs when the flow is deviated.

【0013】そこで、本発明は複数対の送受波器と唯一
の電子部を活用して、これらの問題点を解消できる超音
波流量計を提供することを目的とする。
Accordingly, an object of the present invention is to provide an ultrasonic flowmeter which can solve these problems by utilizing a plurality of pairs of transducers and a single electronic unit.

【0014】[0014]

【課題を解決するための手段】前記目的を達成するため
に、請求項1の発明は、送信側にも受信側にもはたらく
超音波送受波器を上流側、下流側に設け、流体の流れの
中を、上流から下流、及び下流から上流に超音波の送受
を行うようにしたペアを少なくとも2対設け、それぞれ
のペア間での到達時間より、全体の流量を求めるもので
あって、前記少なくとも2対の送受波器に対し、1つの
電子部を設け、その電子部が送信側の送受波器の駆動を
行い、受信側の送受波器からの受信信号を受けて到達時
間を検知して流量を求めるようにし、前記電子部を構成
する受信波検知部は、増幅部と比較部より構成され、送
信側送受波器からの信号は、まず増幅されその後、基準
電圧レベルと比較されるようになっていて、最初に基準
電圧レベルを越えた波が次にゼロレベルを通る点を、受
信波を検知した点とするようになっており、かつ前記増
幅部の増幅度と前記比較部の基準電圧レベルは、毎回接
続された送受波器に最適なレベルにセットして測定する
ようになっていて、切り替え器で前記少なくとも2対の
送受波器のうち1対を選択して前記電子部に接続できる
ようにし、順次、1対の送受波器を選択しながら超音波
の送受を行い、その全ペアの結果から全体の流量を求め
ることを特徴とする超音波流量計である。
In order to achieve the above object, according to the first aspect of the present invention, there is provided an ultrasonic transducer which works on both a transmitting side and a receiving side on an upstream side and a downstream side, and a flow of a fluid is provided. Is provided with at least two pairs that transmit and receive ultrasonic waves from upstream to downstream, and from downstream to upstream, and obtain the total flow rate from the arrival time between each pair, One electronic part is provided for at least two pairs of transducers, and the electronic part drives the transmitter / receiver on the transmitting side, receives a signal from the transducer on the receiving side, and detects the arrival time. The received wave detecting unit constituting the electronic unit is constituted by an amplifying unit and a comparing unit, and a signal from the transmitting / receiving transducer is first amplified and then compared with a reference voltage level. First, when the reference voltage level is exceeded The point at which the wave next passes through the zero level is set as the point at which the received wave is detected, and the amplification degree of the amplifying unit and the reference voltage level of the comparing unit are set to the transmitter / receiver connected each time. The level is set to an optimum level for measurement, and a switch selects one pair of the at least two pairs of transducers so that the pair can be connected to the electronic unit. This is an ultrasonic flowmeter characterized by transmitting and receiving ultrasonic waves while selecting a vessel, and obtaining the total flow rate from the results of all pairs.

【0015】この発明では、複数対の送受波器のそれぞ
れで検知した流速より管全体の流量を求めるので、流速
分布の変動による計測誤差を小さくできる。また、送受
波器の個体差等で受信波のレベルが異なっても、受信波
検知部の増幅部の増幅度と比較部の基準電圧レベルを、
接続された送受波器に最適の値に毎回セットすることに
より、1つの電子部で全ての送受波器に対応できる。
According to the present invention, since the flow rate of the entire pipe is obtained from the flow rates detected by the plurality of pairs of transducers, measurement errors due to fluctuations in the flow rate distribution can be reduced. Also, even if the level of the received wave differs due to individual differences between the transducers, the amplification degree of the amplifier of the received wave detector and the reference voltage level of the comparator are
By setting the optimum value for the connected transducer every time, one electronic unit can handle all transducers.

【0016】従って、繁雑なピーク値ホールド回路やオ
ートゲインコントロール回路を使用しないため、低コス
ト、低消費電流ですむ。請求項2の発明は、請求項1の
超音波流量計において、前記電子部は、接続された1対
の送受波器に対し、まず送信側の送受波器を発信させ、
送信側送受波器の信号を入力する受信波検知部が受信波
を検知すると、それと同時に再び送信側の送受波器を発
信させるようにし、これを一定(n)回数繰り返すよう
構成し、最初の送信から一定(n)回数目の受信までの
時間つまり到達時間のn倍をまとめて測定し、その結果
から流量を求めることを特徴とするものである。
Therefore, since a complicated peak value hold circuit and an automatic gain control circuit are not used, low cost and low current consumption are required. According to a second aspect of the present invention, in the ultrasonic flowmeter according to the first aspect, the electronic unit first causes a pair of connected transducers to transmit a transducer on a transmission side,
When the received wave detector that inputs the signal of the transmitter / receiver detects the received wave, the transmitter / receiver of the transmitter is transmitted again at the same time, and this is repeated a fixed number (n) times. It is characterized in that the time from transmission to the reception of a fixed (n) number of times, that is, n times of the arrival time is collectively measured, and the flow rate is obtained from the result.

【0017】この発明では、到達時間を計数するクロッ
クの分解能を上げることなく、到達時間の計測精度を上
げ、結果として消費電流を増大することなく流量計の精
度を向上できる。
According to the present invention, the accuracy of measuring the arrival time can be increased without increasing the resolution of the clock for counting the arrival time, and as a result, the accuracy of the flow meter can be improved without increasing the current consumption.

【0018】そして、請求項3の発明は、請求項1又は
2の超音波流量計において、少なくとも2対の送受波器
を、それぞれの対が送受する超音波が流速の異なる経路
を伝搬するよう配置したことを特徴とするものである。
According to a third aspect of the present invention, in the ultrasonic flowmeter of the first or second aspect, at least two pairs of transducers are provided so that the ultrasonic waves transmitted and received by each pair propagate through paths having different flow velocities. It is characterized by being arranged.

【0019】この発明では、流速の異なる経路を超音波
が伝搬するように各送受波器の対(ペア)を配置するこ
とにより、流速分布のパターンが検知できるため、例え
ば層流か乱流か等の区別が可能となり、全体の流量をよ
り高精度で導くことができる。
According to the present invention, by arranging the pairs of the transducers so that the ultrasonic waves propagate along the paths having different flow velocities, the pattern of the flow velocity distribution can be detected. And the like can be distinguished, and the overall flow rate can be derived with higher accuracy.

【0020】[0020]

【発明の実施の形態】次に本発明の好ましい実施の形態
を図面の実施例に従って説明する。図1のように、A,
B2対(以下2組と言う)の送受波器のうちA組を断面
円形の流管3の中心軸上に配置し、B組を中心軸から半
径方向にr/2のとろに配置している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, preferred embodiments of the present invention will be described with reference to the drawings. As shown in FIG.
Out of the B2 pairs (hereinafter referred to as two sets) of the transducers, set A is arranged on the central axis of the flow tube 3 having a circular cross section, and set B is arranged at a radius of r / 2 in the radial direction from the central axis. I have.

【0021】符号1A,2AはA組をなす送受波器で、
1B,2BがB組をなす送受波器である。rは流管3の
半径である。なお2組の送受波器1A,2A、1B,2
Bを配置することによって流速に偏りが生じるのを避け
るため、流管の中心軸に対してB組の送受波器1B,2
Bと対称の位置に送受波器と同等の形状のダミー1′,
2′を配置した。
Reference numerals 1A and 2A denote transmitters and receivers forming group A.
1B and 2B are the transducers that make up the B group. r is the radius of the flow tube 3. The two sets of transducers 1A, 2A, 1B, 2
In order to prevent the flow velocity from being deviated by arranging B, B sets of transducers 1B and 2 are set with respect to the central axis of the flow tube.
A dummy 1 'having the same shape as the transducer at a position symmetrical to B,
2 'was arranged.

【0022】2組(2対)の送受波器1A,2Aと1
B,2Bは切り替え器4を介して、そのどちらかの組が
電子部5に接続されるようになっている。その選択は電
子部5からの組選択信号によって切り替え器4を操作す
ることで行うようになっている。
Two sets (two pairs) of transducers 1A, 2A and 1
One of the sets B and 2B is connected to the electronic section 5 via the switch 4. The selection is made by operating the switch 4 with a set selection signal from the electronic unit 5.

【0023】電子部5は、接続された1組(対)の送受
波器(例えば1B,2B)のうち、受信側の送受波器
(例えば2B)が接続され、受信波を検知すると受信波
検知信号を出力する受信波検知部6と、測定ON・OF
F信号がOFF側からON側になる毎に、選択された1
対のうちの送信側の送受波器(例えば1B)を駆動しそ
の後は受信波検知信号が入力されるごとに駆動し、第n
受信波検知信号が入力されるか測定ON・OFF信号が
OFF側になると駆動を停止する送波器駆動部7と、受
信波検知部6よりの受信波検知信号が入力されていて、
測定ON・OFF信号がON側になる毎にゼロからカウ
ントを開始しn番目の受信波検知信号を検知して第n受
信波検知信号を出力する第1のカウンタ8と、測定ON
・OFF信号がON側になってから第n受信波検知信号
までの時間を測定する第2のカウンタ9と、測定時は測
定ON・OFF信号をOFF側からON側にし第n受信
波検知信号を受けると第2のカウンタ9の測定値(カウ
ント値)を読み取り、流速、流量等の演算を行うコント
ロール部10を有するものであって、前記受信波検知部
6は、増幅部と比較部より構成され、送信側送受波器か
らの信号は、まず増幅部で増幅されその後、比較部で基
準電圧レベルVTHと比較されうようになっていて、最初
に基準電圧レベルVTHを越えた波が次にゼロレベルを通
る点を、受信波を検知した点とするようになっていて、
前記増幅部の増幅度は8段階用意されていて、コントロ
ール部10よりの増幅度選択信号により1つが選択され
る。また基準電圧レベルVTHもコントロール部10の基
準電圧レベル選択信号により用意さた8つより1つを選
択して使用するようになっている。
The electronic unit 5 is connected to a transmitter / receiver (for example, 2B) on the receiving side of a set (pair) of transmitters / receivers (for example, 1B and 2B) connected, and detects a received wave. Received wave detector 6 for outputting a detection signal, measurement ON / OF
Each time the F signal changes from OFF to ON,
The transmitter / receiver (e.g., 1B) on the transmitting side of the pair is driven, and thereafter driven every time a received wave detection signal is input.
When a received wave detection signal is input or the measurement ON / OFF signal is turned to the OFF side, the transmitter driving unit 7 that stops driving, and a received wave detection signal from the received wave detection unit 6 are input,
A first counter 8 which starts counting from zero every time the measurement ON / OFF signal is turned ON, detects the nth received wave detection signal and outputs the nth received wave detection signal,
A second counter 9 for measuring the time from when the OFF signal is turned ON to the nth received wave detection signal, and when measuring, the measurement ON / OFF signal is changed from the OFF side to the ON side to detect the nth received wave detection signal The control unit 10 has a control unit 10 that reads the measured value (count value) of the second counter 9 when receiving the signal, and calculates the flow velocity, flow rate, and the like. configured, a signal from the transmitting transducer is then is first amplified by the amplifying section, beyond they become as will be compared with the reference voltage level V TH comparison unit, the first reference voltage level V TH waves The next point that passes through the zero level is the point where the received wave is detected,
Eight levels of amplification of the amplifying unit are prepared, and one of them is selected by an amplifying degree selection signal from the control unit 10. The reference voltage level V TH is also selected from eight prepared by the reference voltage level selection signal of the control unit 10 and used.

【0024】また、測定の順方向と逆方向の切り替え
は、切り替え器11をコントロール部10からの送受切
り替え信号で操作することで行う。図1(b)の状態は
B組の送受波器による順方向測定時の態様を示す。
The switching between the forward direction and the reverse direction of the measurement is performed by operating the switching unit 11 with a transmission / reception switching signal from the control unit 10. The state shown in FIG. 1B shows a state at the time of forward measurement by the set B of transducers.

【0025】コントロール部10はマイクロコンピュー
タで構成されていて、2組の送受波器による同方向の続
けての測定を2秒間隔で方向を替えながら行うようにプ
ログラムされている。
The control unit 10 is constituted by a microcomputer, and is programmed to perform continuous measurements in the same direction by two sets of transducers while changing directions at intervals of 2 seconds.

【0026】即ち、先ず送受切り替え信号を、上流側の
送受波器が送信で下流側の送受波器が受信となる順方向
とし、組選択信号をA組として測定する。その測定を終
了した後、続いて組選択信号をB組として測定する。こ
うして順方向の1組の測定とし、これと次に送受切り替
え信号を逆方向にした同様の1組の測定とを2秒間隔で
交互に行うようにしてある。
That is, first, the transmission / reception switching signal is measured in the forward direction in which the upstream transmitter / receiver transmits and the downstream transmitter / receiver receives, and the set selection signal is set as Group A. After the measurement is completed, the group selection signal is subsequently measured as group B. Thus, a set of measurements in the forward direction is made, and then a similar set of measurements in which the transmission / reception switching signal is reversed is alternately performed at 2-second intervals.

【0027】この各測定に際しては、予め記憶してある
それぞれの測定(受信)に最適な増幅度と基準電圧レベ
ルVTHが受信波検知部6でセットされるよう増幅度選択
信号と基準電圧レベル選択信号をコントロール部10を
構成するマイクロコンピュータが出力するようにしてあ
る。
In each measurement, the amplification degree selection signal and the reference voltage level are set so that the amplification degree and the reference voltage level V TH which are stored in advance and are optimal for each measurement (reception) are set by the reception wave detector 6. The microcomputer constituting the control unit 10 outputs the selection signal.

【0028】コントロール部10は2秒おきに行う前後
の到達時間測定結果(第2のカウンタ9のカウント値)
から、A組の送受波器による中心軸上の流速VA の値
と、B組の送受波器による中心軸からr/2半径方向に
離れたところの流速VB の値を算出する。
The control unit 10 measures the arrival time before and after every two seconds (count value of the second counter 9).
Then, the value of the flow velocity V A on the central axis by the set A of transducers and the value of the flow velocity V B at a distance r / 2 in the radial direction from the central axis by the set B of transducers are calculated.

【0029】流速の算出は前記時間逆数差法を用いてい
る。実施例では、VB /VA が一定値α以下の時は層流
と判断して層流時の補正係数、例えばK1 を使い、流量
QをA組による流速VA とから、 Q=K1 ・VA として求める。
The calculation of the flow velocity uses the time reciprocal difference method. From the example, V B / V A correction coefficient at the time of laminar flow it is determined that the laminar flow when below a certain value alpha, for example using a K 1, the flow rate Q and the flow rate V A by Group A, Q = Calculate as K 1 · V A.

【0030】また、VB /VA が一定値αより大きい時
は乱流と判断して、乱流時の補正係数K2 とA組の送受
波器による流速VA を用いて、 Q=K2 ・VA として求める。
When V B / V A is larger than the fixed value α, it is determined that the flow is turbulent, and the correction coefficient K 2 at the time of the turbulence and the flow velocity V A of the set A of the transducers are used. Calculate as K 2 · VA .

【0031】さらに実施例では、この流量を用いて積算
を行い積算流量(流体の体積)を表示するようにしてい
る。図2は受信波検知部6に用いる増幅部の電子回路の
具体例で、オペアンプ15にアナログスイッチ16を介
して8個の帰還抵抗R20〜R27が接続され、前記コ
ントロール部14からの増幅度選択信号S10,S1
1,S12でアナログスイッチ16のうちの何れかのス
イッチを選択してオンとすることで、増幅部の増幅度を
選択する。
Further, in this embodiment, the flow rate is integrated using the flow rate, and the integrated flow rate (volume of the fluid) is displayed. FIG. 2 is a specific example of an electronic circuit of an amplification unit used for the reception wave detection unit 6. Eight feedback resistors R 20 to R 27 are connected to an operational amplifier 15 via an analog switch 16, and an amplification degree selection from the control unit 14 is performed. Signals S10 and S1
At 1, S12, any one of the analog switches 16 is selected and turned on, thereby selecting the amplification degree of the amplifier.

【0032】Vinは受信側の送受波器(例えば2B)か
らの受信波信号で抵抗R1を介してオペアンプ15の反
転入力に入力される。帰還抵抗の抵抗値は、 R20<R21<…<R27 の関係に定められ、増幅度は相互に、 (R20/R1)<(R21/R1)<…<(R27/
R1) の関係となる。
V in is a received wave signal from the transmitter / receiver (for example, 2B) on the receiving side, and is input to the inverting input of the operational amplifier 15 via the resistor R1. The resistance value of the feedback resistor is determined by the relationship of R20 <R21 <... <R27, and the amplification factors are mutually expressed as (R20 / R1) <(R21 / R1) <.
R1).

【0033】図3は受信波検知部10の比較部の電子回
路の一部の具体例で、コンパレータ17の非反転入力に
は前記図2の増幅部からの出力Vout が入力される。そ
して反転入力には、基準電圧レベルVTHが入力される。
FIG. 3 is a specific example of a part of the electronic circuit of the comparison unit of the reception wave detection unit 10. The output Vout from the amplification unit of FIG. The reference voltage level V TH is input to the inverting input.

【0034】S20,S21,S22はコントロール部
14からの基準電圧レベル選択信号で、アナログスイッ
チ18のうちの何れか1つのスイッチを選択してオンと
することで、8個の抵抗R40〜R47の何れか1つと
抵抗R3とで一定の基準電圧19を分圧してコンパレー
タ17の反転入力に入力する基準電圧レベルVTHを作
る。
S20, S21 and S22 are reference voltage level selection signals from the control unit 14, and when one of the analog switches 18 is selected and turned on, the eight resistors R40 to R47 are turned on. A constant reference voltage 19 is divided by one of them and the resistor R3 to generate a reference voltage level V TH to be input to the inverting input of the comparator 17.

【0035】8個の抵抗R40〜R47の各抵抗値同士
の関係は、 R40<R41<R42<…<R47 となっていて、コントロール部14からの基準電圧レベ
ル選択信号でアナログスイッチ17を選択して基準電圧
レベルVTHを決める。
The relationship between the resistance values of the eight resistors R40 to R47 is as follows: R40 <R41 <R42 <... <R47, and the analog switch 17 is selected by the reference voltage level selection signal from the control unit 14. To determine the reference voltage level V TH .

【0036】[0036]

【発明の効果】本発明の超音波流量計は上述のように構
成されているので測定精度が良く、かつ低消費電流の超
音波流量計を低コストで実現できる。
Since the ultrasonic flowmeter of the present invention is constructed as described above, it is possible to realize an ultrasonic flowmeter with good measurement accuracy and low current consumption at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例で(a)は送受波器の配置を示
す略図、(b)はブロック図である。
FIG. 1A is a schematic diagram showing an arrangement of a transducer in an embodiment of the present invention, and FIG. 1B is a block diagram.

【図2】図1の実施例に用いる増幅部の電子回路の具体
例である。
FIG. 2 is a specific example of an electronic circuit of an amplification unit used in the embodiment of FIG.

【図3】図1の実施例に用いる比較部の電子回路の一部
の具体例である。
FIG. 3 is a specific example of a part of an electronic circuit of a comparison unit used in the embodiment of FIG. 1;

【図4】超音波流量計の原理を説明する略図である。FIG. 4 is a schematic diagram illustrating the principle of an ultrasonic flowmeter.

【図5】超音波流量計の受信波検知部の動作を説明する
ための電気信号波形を示す線図である。
FIG. 5 is a diagram showing electric signal waveforms for explaining an operation of a reception wave detection unit of the ultrasonic flowmeter.

【符号の説明】[Explanation of symbols]

1′,2′ ダミー 1A A組の上流側送受波器 2A A組の下流側送受波器 1B B組の上流側送受波器 2B B組の下流側送受波器 3 流管 4 切り替え器 5 電子部 6 受信波検知部 7 送波器駆動部 9 到達時間を測定するカウンタ 1 ', 2' Dummy 1A A set of upstream transducers 2A A set of downstream transducers 1B B set of upstream transducers 2B B set of downstream transducers 3 Flow tube 4 Switcher 5 Electronics Unit 6 Received wave detector 7 Transmitter driver 9 Counter to measure arrival time

フロントページの続き (72)発明者 ▲富▲田 明男 大阪市中央区平野町四丁目1番2号 大阪 瓦斯株式会社内 (72)発明者 鍋島 徳行 愛知県名古屋市熱田区千年一丁目2番70号 愛知時計電機株式会社内 (72)発明者 田中 豊 愛知県名古屋市熱田区千年一丁目2番70号 愛知時計電機株式会社内Continuation of the front page (72) Inventor ▲ Tomi ▲ Akio Tada 4-1-2, Hirano-cho, Chuo-ku, Osaka-shi Inside Osaka Gas Co., Ltd. (72) Inventor Tokuyuki Nabeshima 1-chome 2-70, Atsuta-ku, Nagoya-shi, Aichi Prefecture No. within Aichi Watch Electric Co., Ltd. (72) Inventor Yutaka Tanaka Inside Aichi Watch Electric Co., Ltd. 2-70, Millennial, Atsuta-ku, Nagoya-shi, Aichi

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 送信側にも受信側にもはたらく超音波送
受波器を上流側、下流側に設け、流体の流れの中を、上
流から下流、及び下流から上流に超音波の送受を行うよ
うにしたペアを少なくとも2対設け、それぞれのペア間
での到達時間より、全体の流量を求めるものであって、 前記少なくとも2対の送受波器に対し、1つの電子部を
設け、その電子部が送信側の送受波器の駆動を行い、受
信側の送受波器からの受信信号を受けて到達時間を検知
して流量を求めるようにし、 前記電子部を構成する受信波検知部は、増幅部と比較部
より構成され、送信側送受波器からの信号は、まず増幅
されその後、基準電圧レベルと比較されるようになって
いて、最初に基準電圧レベルを越えた波が次にゼロレベ
ルを通る点を、受信波を検知した点とするようになって
おり、 かつ前記増幅部の増幅度と前記比較部の基準電圧レベル
は、毎回接続された送受波器に最適なレベルにセットし
て測定するようになっていて、 切り替え器で前記少なくとも2対の送受波器のうち1対
を選択して前記電子部に接続できるようにし、 順次、1対の送受波器を選択しながら超音波の送受を行
い、その全ペアの結果から全体の流量を求めることを特
徴とする超音波流量計。
1. An ultrasonic transmitter / receiver that works on both a transmitting side and a receiving side is provided on an upstream side and a downstream side, and transmits and receives ultrasonic waves in a fluid flow from upstream to downstream and from downstream to upstream. At least two pairs of such pairs are provided, and the total flow rate is obtained from the arrival time between each pair. One electronic unit is provided for the at least two pairs of transducers, and The unit drives the transmitter / receiver on the transmission side, receives the reception signal from the transmitter / receiver on the reception side, detects the arrival time, and obtains the flow rate, The reception wave detection unit constituting the electronic unit, The signal from the transmitter / receiver is composed of an amplifier and a comparator.The signal from the transmitter / receiver is first amplified and then compared with the reference voltage level. The point that passes the level is the point where the received wave is detected The amplification degree of the amplifying unit and the reference voltage level of the comparing unit are set and measured at an optimum level for the connected transducer every time, and the switching unit One pair of the two transducers is selected so that it can be connected to the electronic unit. The ultrasonic wave is transmitted and received while sequentially selecting one pair of the transducers. An ultrasonic flowmeter for determining a flow rate.
【請求項2】 前記電子部は、接続された1対の送受波
器に対し、 まず送信側の送受波器を発信させ、送信側送受波器の信
号を入力する受信波検知部が受信波を検知すると、それ
と同時に再び送信側の送受波器を発信させるようにし、
これを一定(n)回数繰り返すよう構成し、最初の送信
から一定(n)回数目の受信までの時間つまり到達時間
のn倍をまとめて測定し、その結果から流量を求めるこ
とを特徴とする請求項1記載の超音波流量計。
2. The electronic part transmits a transmitting-side transducer to a pair of connected transducers, and a receiving-wave detecting part that inputs a signal of the transmitting-side transducer receives a receiving wave. Is detected, and at the same time, the transmitter and receiver on the transmitting side are transmitted again,
This is repeated a certain number of times (n), and the time from the first transmission to the reception of the certain number (n) times, that is, n times of the arrival time is collectively measured, and the flow rate is obtained from the result. The ultrasonic flowmeter according to claim 1.
【請求項3】 少なくとも2対の送受波器を、それぞれ
の対が送受する超音波が流速の異なる経路を伝搬するよ
う配置したことを特徴とする請求項1又は2記載の超音
波流量計。
3. The ultrasonic flowmeter according to claim 1, wherein at least two pairs of transducers are arranged so that ultrasonic waves transmitted and received by each pair propagate through paths having different flow velocities.
JP53997A 1997-01-07 1997-01-07 Ultrasonic flowmeter Pending JPH10197302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53997A JPH10197302A (en) 1997-01-07 1997-01-07 Ultrasonic flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53997A JPH10197302A (en) 1997-01-07 1997-01-07 Ultrasonic flowmeter

Publications (1)

Publication Number Publication Date
JPH10197302A true JPH10197302A (en) 1998-07-31

Family

ID=11476561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53997A Pending JPH10197302A (en) 1997-01-07 1997-01-07 Ultrasonic flowmeter

Country Status (1)

Country Link
JP (1) JPH10197302A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008268090A (en) * 2007-04-24 2008-11-06 Ricoh Elemex Corp Ultrasonic flowmeter
JP2008298560A (en) * 2007-05-31 2008-12-11 Ricoh Elemex Corp Ultrasonic flow meter and flow rate measurement method
JP2009019879A (en) * 2007-07-10 2009-01-29 Ricoh Elemex Corp Ultrasonic flowmeter and flow measuring method
CN104864923A (en) * 2014-02-24 2015-08-26 通用电气公司 Circuit assemblies for transmitting and receiving ultrasonic signals as well as system and method adopting circuit assemblies

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008268090A (en) * 2007-04-24 2008-11-06 Ricoh Elemex Corp Ultrasonic flowmeter
JP2008298560A (en) * 2007-05-31 2008-12-11 Ricoh Elemex Corp Ultrasonic flow meter and flow rate measurement method
JP2009019879A (en) * 2007-07-10 2009-01-29 Ricoh Elemex Corp Ultrasonic flowmeter and flow measuring method
CN104864923A (en) * 2014-02-24 2015-08-26 通用电气公司 Circuit assemblies for transmitting and receiving ultrasonic signals as well as system and method adopting circuit assemblies
WO2015126914A1 (en) * 2014-02-24 2015-08-27 General Electric Company Ultrasonic signal transmitting and receiving circuit assembly and ultrasonic system and method using the same

Similar Documents

Publication Publication Date Title
JP2007187506A (en) Ultrasonic flowmeter
JP4760115B2 (en) Fluid flow measuring device
JPH10197302A (en) Ultrasonic flowmeter
JP3624642B2 (en) Fluid measuring device
WO2014006881A1 (en) Flow quantity measuring apparatus
JP3766728B2 (en) Ultrasonic flow meter
JP2018138891A (en) Ultrasonic flowmeter
JP5965292B2 (en) Ultrasonic flow meter
JP3781485B2 (en) Ultrasonic flow meter
JP4688253B2 (en) Ultrasonic flow meter
JP3624743B2 (en) Ultrasonic flow meter
JP4797515B2 (en) Ultrasonic flow measuring device
JP5489635B2 (en) Ultrasonic flow meter
JP2008185441A (en) Ultrasonic flowmeter
JP3958834B2 (en) Ultrasonic flow meter
JP2004085421A (en) Ultrasonic flow meter
JPH10221139A (en) Ultrasonic flowmeter
JP6767628B2 (en) Flow measuring device
JP2005300244A (en) Ultrasonic flow meter
JP2000329597A5 (en)
JPH0584849B2 (en)
JP3672997B2 (en) Correlation flowmeter and vortex flowmeter
JP4485641B2 (en) Ultrasonic flow meter
JPH09250939A (en) Ultrasonic flow meter
JP4366753B2 (en) Ultrasonic flow meter