JP2009019879A - Ultrasonic flowmeter and flow measuring method - Google Patents

Ultrasonic flowmeter and flow measuring method Download PDF

Info

Publication number
JP2009019879A
JP2009019879A JP2007180432A JP2007180432A JP2009019879A JP 2009019879 A JP2009019879 A JP 2009019879A JP 2007180432 A JP2007180432 A JP 2007180432A JP 2007180432 A JP2007180432 A JP 2007180432A JP 2009019879 A JP2009019879 A JP 2009019879A
Authority
JP
Japan
Prior art keywords
ultrasonic
flow
flow velocity
flow rate
velocity distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007180432A
Other languages
Japanese (ja)
Other versions
JP5070624B2 (en
Inventor
Yoshihiro Sekine
良浩 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Elemex Corp
Original Assignee
Ricoh Elemex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Elemex Corp filed Critical Ricoh Elemex Corp
Priority to JP2007180432A priority Critical patent/JP5070624B2/en
Publication of JP2009019879A publication Critical patent/JP2009019879A/en
Application granted granted Critical
Publication of JP5070624B2 publication Critical patent/JP5070624B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic flowmeter capable of estimating a pattern of a flow velocity distribution state, even if the flow velocity distribution is changed in a flow rate area, without interposing a partition member or the like inside a channel, and calculating the flow rate of fluid to be measured based on the flow velocity distribution pattern. <P>SOLUTION: The ultrasonic flowmeter includes a flow rate calculation part 13 for calculating the flow rate of the fluid to be measured based on a propagation time of an ultrasonic wave transmitted from/received by a pair of ultrasonic elements 10, 20. The pair of ultrasonic elements 10, 20 transmits/receives two or more ultrasonic beam patterns having each mutually-different directivity in correspondence with two or more different frequencies (an upper limit and a lower limit or the like) included in a frequency band of the pair of ultrasonic elements 10, 20, and thereby divides the channel width direction into a plurality of detection areas. The flow rate calculation part 13 estimates the flow velocity distribution of the fluid to be measured based on a propagation time of the two or more ultrasonic beam patterns having each mutually-different directivity, and calculates the flow rate of the fluid to be measured from the estimated flow velocity distribution. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、超音波流量計及び流量計測方法、より詳細には、主にガスなどの流体の流速や流量を計測する超音波流量計及び該超音波流量計による流量計測方法に関する。   The present invention relates to an ultrasonic flowmeter and a flow rate measuring method, and more particularly to an ultrasonic flowmeter that mainly measures the flow velocity and flow rate of a fluid such as a gas, and a flow rate measuring method using the ultrasonic flowmeter.

従来、流路を流れる流体の流速を計測する際に、流路を流れる流体には、その流量によって流速分布が異なることが流体力学的に一般に知られている。すなわち、流れが遅い時には、流路幅方向で層流と呼ばれる放物線形状の流速分布を示し、ピークの流速と、平均流速とが異なる分布状態となる。逆に流れが速くなると、徐々にその分布は崩れ、乱流域と呼ばれる流域となり、その時の流速分布は、ピーク流速が平均流速と等しい形状となるバスタブ形状と呼ばれる流速分布となり、その流速分布は流路幅方向で一様に等しい分布状態となる。   Conventionally, it is generally known hydrodynamically that when a flow velocity of a fluid flowing through a flow path is measured, the flow velocity distribution of the fluid flowing through the flow path varies depending on the flow rate. That is, when the flow is slow, a parabolic flow velocity distribution called laminar flow is shown in the channel width direction, and the peak flow velocity and the average flow velocity are different from each other. On the other hand, when the flow becomes faster, the distribution gradually collapses and becomes a basin called a turbulent flow area. The distribution is uniformly equal in the road width direction.

また、層流域では、放物線形状の流速分布形状に若干の相異が発生し、幅方向での流速差は一定では無い。更に層流域では、ガス種や、流路形状寸法等により、流速分布が異なることが一般に知られている。   Further, in the laminar flow region, a slight difference occurs in the parabolic flow velocity distribution shape, and the flow velocity difference in the width direction is not constant. Furthermore, it is generally known that in the laminar flow region, the flow velocity distribution varies depending on the gas type, the flow channel geometry, and the like.

このように流量域、流体の種類、流路形状寸法等により、流路幅方向での流速分布に差が存在すると、超音波トランスジューサにより流速分布を横切るように超音波を送受信させ、流路を流れる流体を計測する際に、流量域によって、計測される平均流速は分布の影響を受けてしまう。この分布の影響により計測した値には誤差が含まれるため、正確な流量を算出できないことになる。   Thus, if there is a difference in the flow velocity distribution in the flow channel width direction due to the flow rate range, fluid type, flow channel geometry, etc., the ultrasonic transducer transmits and receives ultrasonic waves across the flow velocity distribution by the ultrasonic transducer, When measuring the flowing fluid, the measured average flow velocity is affected by the distribution depending on the flow rate region. Since an error is included in the value measured due to the influence of this distribution, an accurate flow rate cannot be calculated.

仮にこの誤差の影響を補正するにしても、計測している流速分布そのものが把握出来ないので、流量域による流速分布を平均流速として補正する事は極めて困難である。   Even if the influence of this error is corrected, it is extremely difficult to correct the flow velocity distribution in the flow region as the average flow velocity because the measured flow velocity distribution itself cannot be grasped.

このような問題に対して、例えば、特許文献1には、この分布の影響を低減し、どの流量域でも平均化された流速分布が得られるように、流路内部の幅方向を複数のエリアに分割し、特に層流域で発生する放物線形状の流速分布を平滑化するように、流路内部に仕切部材を配置する構成が記載されている。これによれば、層流域でも乱流域と同様に平均化された流速分布を計測し扱えるようになるため、正確な流速を算出でき、高精度に流量を算出することができる。
特開2005−257363号公報
To deal with such a problem, for example, Patent Document 1 discloses that the influence of this distribution is reduced, and the flow direction inside the flow path is divided into a plurality of areas so as to obtain an averaged flow velocity distribution in any flow rate region. The structure which arrange | positions a partition member inside a flow path is described so that it may divide | segment into 2 and may smooth the parabolic flow velocity distribution which generate | occur | produces especially in a laminar flow area. According to this, since the averaged flow velocity distribution can be measured and handled in the laminar flow region as in the turbulent flow region, an accurate flow velocity can be calculated, and the flow rate can be calculated with high accuracy.
JP 2005-257363 A

しかしながら、上記特許文献1に記載の発明の場合、仕切部材を流路内部に挿入することで、流れに対して抵抗を発生させることになり、圧力損失が顕著化してしまうという問題がある。さらに、仕切部材枚数には限度があり、この有限個の仕切部材だけで、層流域の流速分布を、乱流域に近づけるまでの平均化は困難である。仮にこの圧力損失を一定レベルに抑えることができたとしても、製品の固体差、仕切部材の組み込み精度、バラツキ、温度因子等による影響を考慮すると、製品の安定性、歩留り等にも影響する可能性がある。さらに、仕切部材を追加することで、部品点数が増加し、これに伴いコスト高となってしまうという問題がある。   However, in the case of the invention described in Patent Document 1, by inserting the partition member into the flow path, resistance is generated with respect to the flow, and there is a problem that pressure loss becomes significant. Furthermore, there is a limit to the number of partition members, and it is difficult to average the flow velocity distribution in the laminar flow region close to the turbulent flow region with only this finite number of partition members. Even if this pressure loss can be suppressed to a certain level, the stability of the product, yield, etc. may be affected by taking into account the effects of individual differences in the product, assembly accuracy of the partitioning members, variation, temperature factors, etc. There is sex. Furthermore, there is a problem that the number of parts increases due to the addition of the partition member, and the cost increases accordingly.

本発明は、上述のごとき実情に鑑みてなされたものであり、流路内部に仕切部材などを介在させること無く、流速分布が流量域で変化しても、流速分布状態のパターンを推定し、その流速分布パターンに基づいて被測定流体の流量を算出することができる超音波流量計及び該超音波流量計による流量計測方法を提供すること、を目的とする。   The present invention has been made in view of the circumstances as described above, and even if the flow velocity distribution changes in the flow rate region without interposing a partition member or the like inside the flow path, the flow velocity distribution state pattern is estimated, An object of the present invention is to provide an ultrasonic flowmeter capable of calculating the flow rate of the fluid to be measured based on the flow velocity distribution pattern and a flow rate measurement method using the ultrasonic flowmeter.

上記課題を解決するために、請求項1の発明は、被測定流体が流れる流路と、該流路を挟んで対向する位置に配置された一対の超音波素子と、該一対の超音波素子により送受信される超音波の伝播時間に基づいて前記被測定流体の流量を算出する流量算出手段とを備えた超音波流量計であって、前記一対の超音波素子は、該一対の超音波素子の周波数帯域に含まれる2以上の異なる周波数に対応して、互いに指向性が異なる2以上の超音波ビームパターンを送受信することにより、前記流路の幅方向を複数の検出エリアに分割し、前記流量算出手段は、前記一対の超音波素子間で送受信される前記2以上の超音波ビームパターンの伝播時間あるいは該伝播時間から算出される流速に基づいて、前記被測定流体の流速分布を推定し、該推定した流速分布から前記被測定流体の流量を算出することを特徴としたものである。   In order to solve the above-mentioned problems, the invention of claim 1 is directed to a flow path through which a fluid to be measured flows, a pair of ultrasonic elements disposed at opposite positions across the flow path, and the pair of ultrasonic elements An ultrasonic flowmeter comprising flow rate calculation means for calculating a flow rate of the fluid to be measured based on a propagation time of ultrasonic waves transmitted and received by the pair of ultrasonic elements, wherein the pair of ultrasonic elements is the pair of ultrasonic elements In response to two or more different frequencies included in the frequency band, two or more ultrasonic beam patterns having different directivities are transmitted and received to divide the width direction of the flow path into a plurality of detection areas, The flow rate calculation means estimates a flow velocity distribution of the fluid to be measured based on a propagation time of the two or more ultrasonic beam patterns transmitted and received between the pair of ultrasonic elements or a flow velocity calculated from the propagation time. The estimated Is obtained by the calculating means calculates the flow rate of the fluid to be measured from the speed distribution.

請求項2の発明は、請求項1の発明において、前記2以上の超音波ビームパターンは、前記一対の超音波素子の上限周波数に対応して前記流路の幅よりも狭いビーム幅をもつ第1の超音波ビームパターンと、前記一対の超音波素子の下限周波数に対応して前記流路の幅と略同じビーム幅をもつ第2の超音波ビームパターンとを含むことを特徴としたものである。   According to a second aspect of the present invention, in the first aspect, the two or more ultrasonic beam patterns have a beam width that is narrower than a width of the flow path corresponding to an upper limit frequency of the pair of ultrasonic elements. 1 ultrasonic beam pattern, and a second ultrasonic beam pattern having a beam width substantially the same as the width of the flow path corresponding to the lower limit frequency of the pair of ultrasonic elements. is there.

請求項3の発明は、請求項1又は2の発明において、前記流量算出手段は、前記2以上の超音波ビームパターンによる伝播時間の比の値あるいは該伝播時間から算出される流速の比の値に基づいて、前記流路の幅方向における流速分布を推定し、該推定した流速分布から前記被測定流体の流量を算出することを特徴としたものである。   According to a third aspect of the present invention, in the first or second aspect of the invention, the flow rate calculation means is a value of a ratio of propagation times by the two or more ultrasonic beam patterns or a value of a ratio of flow rates calculated from the propagation times. The flow velocity distribution in the width direction of the flow path is estimated based on the above, and the flow rate of the fluid to be measured is calculated from the estimated flow velocity distribution.

請求項4の発明は、請求項3の発明において、前記流量算出手段は、前記伝播時間の比の値あるいは該伝播時間から算出される流速の比に基づいて、前記流路の幅方向における流速分布を推定し、該推定した流速分布に応じた最適な補正係数を付与し、前記被測定流体の流量を算出することを特徴としたものである。   According to a fourth aspect of the present invention, in the third aspect of the invention, the flow rate calculation means is configured to determine a flow velocity in the width direction of the flow path based on a ratio value of the propagation times or a flow velocity ratio calculated from the propagation times. The distribution is estimated, an optimum correction coefficient corresponding to the estimated flow velocity distribution is applied, and the flow rate of the fluid to be measured is calculated.

請求項5の発明は、請求項4の発明において、前記流量算出手段は、流体の種類、流路寸法、流量レンジの少なくとも1つに基づいて、前記補正係数とは異なる別の補正係数を付与することを特徴としたものである。   According to a fifth aspect of the present invention, in the fourth aspect of the invention, the flow rate calculation unit assigns another correction coefficient different from the correction coefficient based on at least one of a fluid type, a flow path dimension, and a flow rate range. It is characterized by doing.

請求項6の発明は、請求項2乃至5のいずれか1の発明において、前記一対の超音波素子は、前記2以上の超音波ビームパターンより得られた伝播時間あるいは該伝播時間から算出される流速から、前記被測定流体の流量域が乱流域と判断された場合、前記第1の超音波ビームパターン及び前記第2の超音波ビームパターン以外に、前記上下限周波数の略中間となる中心周波数帯域に対応した第3の超音波ビームパターンを送受信し、前記流量算出手段は、前記第3の超音波ビームパターンの伝播時間あるいは該伝播時間から算出される流速に基づいて、前記被測定流体の流速分布を推定し、該推定した流速分布から前記被測定流体の流量を算出することを特徴としたものである。   The invention of claim 6 is the invention according to any one of claims 2 to 5, wherein the pair of ultrasonic elements is calculated from a propagation time obtained from the two or more ultrasonic beam patterns or from the propagation time. When the flow rate region of the fluid to be measured is determined to be a turbulent flow region based on the flow velocity, a center frequency that is substantially in the middle of the upper and lower limit frequencies in addition to the first ultrasonic beam pattern and the second ultrasonic beam pattern. A third ultrasonic beam pattern corresponding to a band is transmitted and received, and the flow rate calculation means is configured to transmit the third ultrasonic beam pattern based on a propagation time of the third ultrasonic beam pattern or a flow velocity calculated from the propagation time. The flow velocity distribution is estimated, and the flow rate of the fluid to be measured is calculated from the estimated flow velocity distribution.

請求項7の発明は、被測定流体が流れる流路と、該流路を挟んで対向する位置に配置された一対の超音波素子と、該一対の超音波素子により送受信される超音波の伝播時間に基づいて前記被測定流体の流量を算出する流量算出手段とを備えた超音波流量計による流量計測方法であって、前記一対の超音波素子の周波数帯域に含まれる2以上の異なる周波数に対応して、互いに指向性が異なる2以上の超音波ビームパターンを送受信することにより、前記流路の幅方向を複数の検出エリアに分割し、前記一対の超音波素子間で送受信される前記2以上の超音波ビームパターンの伝播時間あるいは該伝播時間から算出される流速に基づいて、前記被測定流体の流速分布を推定し、該推定した流速分布から前記被測定流体の流量を算出することを特徴としたものである。   According to a seventh aspect of the present invention, there is provided a flow path through which a fluid to be measured flows, a pair of ultrasonic elements disposed at positions facing each other across the flow path, and propagation of ultrasonic waves transmitted and received by the pair of ultrasonic elements. A flow rate measurement method using an ultrasonic flowmeter comprising flow rate calculation means for calculating a flow rate of the fluid to be measured based on time, wherein two or more different frequencies included in a frequency band of the pair of ultrasonic elements. Correspondingly, by transmitting and receiving two or more ultrasonic beam patterns having different directivities, the width direction of the flow path is divided into a plurality of detection areas, and transmitted and received between the pair of ultrasonic elements. Estimating the flow velocity distribution of the fluid under measurement based on the propagation time of the ultrasonic beam pattern or the flow velocity calculated from the propagation time, and calculating the flow rate of the fluid under measurement from the estimated flow velocity distribution. Special It is obtained by the.

本発明によれば、流路内部に仕切部材などを介在させること無く、流速分布が流量域で変化しても、流速分布状態のパターンを推定し、その流速分布パターンに基づいて被測定流体の流量を算出することができるため、高精度な流量検出を行うことができる。   According to the present invention, even if the flow velocity distribution changes in the flow rate region without interposing a partition member or the like inside the flow channel, the flow velocity distribution state pattern is estimated, and the measured fluid is measured based on the flow velocity distribution pattern. Since the flow rate can be calculated, highly accurate flow rate detection can be performed.

図1は、本発明の超音波流量計が備える超音波素子の配置例を示す図である。図1(A),(B)は一対の超音波素子を側面から見たときの配置例を示す。本発明の超音波流量計は、被測定流体が流れる流路30と、流路30を挟んで対向する位置に配置された一対の超音波トランスジューサ10,20と、一対の超音波トランスジューサ10,20により送受信される超音波の伝播時間に基づいて流路30を流れる被測定流体の流量を算出する流量算出部13とを備える。   FIG. 1 is a diagram illustrating an arrangement example of ultrasonic elements included in the ultrasonic flowmeter of the present invention. 1A and 1B show examples of arrangement when a pair of ultrasonic elements is viewed from the side. The ultrasonic flowmeter of the present invention includes a flow path 30 through which a fluid to be measured flows, a pair of ultrasonic transducers 10 and 20 disposed at positions facing each other with the flow path 30 therebetween, and a pair of ultrasonic transducers 10 and 20. And a flow rate calculation unit 13 that calculates the flow rate of the fluid to be measured flowing through the flow path 30 based on the propagation time of the ultrasonic waves transmitted and received by.

超音波トランスジューサ10は、音響整合層11、圧電素子12を備える。また、超音波トランスジューサ10と対となる超音波トランスジューサ20は、同様に、音響整合層21、圧電素子22を備える。一対の超音波トランスジューサ10と20は、流れ方向に対して角度θだけ傾いて設置され、両者の放射面間の距離はL(伝播長)となる。なお、本例の場合、流路30の中を、被測定流体が図の矢印の方向に向かって流速Vで流れているものとする。   The ultrasonic transducer 10 includes an acoustic matching layer 11 and a piezoelectric element 12. Similarly, the ultrasonic transducer 20 that is paired with the ultrasonic transducer 10 includes an acoustic matching layer 21 and a piezoelectric element 22. The pair of ultrasonic transducers 10 and 20 is installed at an angle θ with respect to the flow direction, and the distance between both radiation surfaces is L (propagation length). In the case of this example, it is assumed that the fluid to be measured flows in the flow path 30 at the flow velocity V in the direction of the arrow in the figure.

図1(A),(B)に例示するように、流路30の幅方向に対して、圧電素子構造を有する超音波トランスジューサ10,20が、流路30の上流側及び下流側であって、流路流れ方向に対して斜めに対向する位置に配置される。   As illustrated in FIGS. 1A and 1B, the ultrasonic transducers 10 and 20 having a piezoelectric element structure are located upstream and downstream of the flow path 30 with respect to the width direction of the flow path 30. These are disposed at positions that are diagonally opposed to the flow direction of the flow path.

図2は、周波数帯域の異なる超音波ビームパターンの一例を示す図である。ここでは上流側の超音波トランスジューサ10の記載を省略する。図1に示したように、被測定流体が流れる流路30の上流側及び下流側に、流れを横切るように一対の超音波トランスジューサ10,20を対向させて配置させ、上流側の超音波トランスジューサ10から下流側の超音波トランスジューサ20へ(順方向の直接伝播)、また下流側の超音波トランスューサ20から上流側の超音波トランスジューサ10へ(逆方向の直接伝播)と超音波ビームを伝播させる。   FIG. 2 is a diagram illustrating an example of ultrasonic beam patterns having different frequency bands. Here, the description of the upstream ultrasonic transducer 10 is omitted. As shown in FIG. 1, a pair of ultrasonic transducers 10 and 20 are arranged opposite to each other so as to cross the flow on the upstream side and downstream side of the flow path 30 through which the fluid to be measured flows, and the upstream ultrasonic transducer. The ultrasonic beam is propagated from the ultrasonic transducer 20 to the downstream ultrasonic transducer 20 (forward direct propagation) and from the downstream ultrasonic transducer 20 to the upstream ultrasonic transducer 10 (direct propagation in the reverse direction).

超音波トランスジューサの周波数帯域の上限周波数に対応して、流路幅よりも狭いビーム幅をもち、流路幅方向のほぼ中央部を伝播する指向性X(=θ1/2)を有するビームパターンを超音波ビームパターン1(本発明の第1の超音波ビームパターンに相当)とする。この上限周波数による超音波ビームパターン1を図2(A)に示す。また、超音波トランスジューサの周波数帯域の下限周波数に対応して、流路幅全域に広がるビーム幅をもち、指向性Y(=θ1/2)を有するビームパターンを超音波ビームパターン2(本発明の第2の超音波ビームパターンに相当)とする。この下限周波数による超音波ビームパターン2を図2(B)に示す。そして、上下限周波数の略中間となる中心周波数帯域(±50kHz)に対応して、上下限のほぼ中間の指向性を有するビームパターンを超音波ビームパターン3(本発明の第3の超音波ビームパターンに相当)とする。この中心周波数による超音波ビームパターン3を図2(C)に示す。 Corresponding to the upper limit frequency of the frequency band of the ultrasonic transducer, the beam pattern has a beam width narrower than the channel width and has directivity X (= θ 1/2 ) that propagates through the substantially central portion in the channel width direction. Is an ultrasonic beam pattern 1 (corresponding to the first ultrasonic beam pattern of the present invention). An ultrasonic beam pattern 1 with this upper limit frequency is shown in FIG. In addition, a beam pattern having a beam width extending over the entire flow path width and having directivity Y (= θ 1/2 ) corresponding to the lower limit frequency of the frequency band of the ultrasonic transducer is referred to as the ultrasonic beam pattern 2 (the present invention). Equivalent to the second ultrasonic beam pattern. An ultrasonic beam pattern 2 with this lower limit frequency is shown in FIG. Then, in correspondence with the center frequency band (± 50 kHz) which is substantially in the middle of the upper and lower limit frequencies, the beam pattern having directivity in the middle of the upper and lower limits is changed to the ultrasonic beam pattern 3 (the third ultrasonic beam of the present invention). Equivalent to the pattern). An ultrasonic beam pattern 3 based on this center frequency is shown in FIG.

このように、周波数帯域内で互いに異なる2種以上の周波数により指向性の異なる超音波ビームパターンを発生させ、幅方向で発生する流速分布を、ほぼ2つの検出エリアに分割し計測することができる。これにより、流量による流速分布の相異である流速分布パターンを把握し、流速を算出し、流量演算を行うことができる。これらの流量計測は流量算出部13が行うものとする。
なお、図2(A),(B),(C)に示す計算結果(図中右側)は、超音波トランスジューサの放射面の直径が約10mmで、都市ガス(13A)を伝播する際の、周波数帯域上限(600KHz)、下限(400KHz)、及び中心周波数(500KHz)での計算結果を例示したものである。上限周波数での指向性は約3.4°、下限周波数での指向性は6.0°、中心周波数での指向性は4.0°であり、上下限の約倍異なる指向性を利用し、流速分布を把握し、流速を算出する。
In this way, ultrasonic beam patterns having different directivities can be generated with two or more different frequencies within the frequency band, and the flow velocity distribution generated in the width direction can be divided into almost two detection areas and measured. . Thereby, it is possible to grasp a flow velocity distribution pattern that is a difference in flow velocity distribution depending on a flow rate, calculate a flow velocity, and perform a flow rate calculation. The flow rate calculation unit 13 performs these flow rate measurements.
In addition, the calculation results (right side in the figure) shown in FIGS. 2A, 2B, and 2C show that the diameter of the radiation surface of the ultrasonic transducer is about 10 mm, and the city gas (13A) is propagated. The calculation results at the upper frequency band limit (600 KHz), the lower limit (400 KHz), and the center frequency (500 KHz) are illustrated. The directivity at the upper limit frequency is about 3.4 °, the directivity at the lower limit frequency is 6.0 °, and the directivity at the center frequency is 4.0 °. , Grasp the flow velocity distribution and calculate the flow velocity.

流路を流れる被測定流体は、流量により幅方向での流速分布に差ができる。特に、流速が遅い範囲では、幅方向での流速分布は放物線形状であり、流速が速い範囲には、バスタブ形状となることが一般的に知られている。そこで、前述したように、流路幅方向で発生する流速分布を、幅方向全体のエリアと、中心エリアとを伝播する最低2種類の超音波ビームが得られるように、2種類の異なる指向性を備えるようにする。すなわち、広帯域型の超音波トランスジューサから放射される超音波ビームが、周波数が低い時には広がり、逆に高い時には狭くなる効果を利用し、この超音波トランスジューサの上限周波数による超音波ビームとして、ビーム幅が流路幅よりも狭くなる指向性を持つビームパターンを伝播させ、逆に下限周波数による超音波ビームとして、ビーム幅が流路幅方向に一様に広がる指向性を持つビームパターンを伝播させる。更に必要に応じて、中心周波数においてはそのほぼ中間の超音波ビームパターンを伝播させることが可能である。このそれぞれ異なるエリアを有する最低2種類の超音波パターンにより、それぞれ独立に超音波を送受信できる構成とすることで、幅方向で発生する流速分布のパターンによる微妙な相異が識別でき、流量による流速分布の相異による計測誤差を著しく低減することができる。   The fluid to be measured flowing through the flow path can have a difference in flow velocity distribution in the width direction depending on the flow rate. In particular, it is generally known that the flow velocity distribution in the width direction has a parabolic shape in a range where the flow velocity is slow, and a bathtub shape in a region where the flow velocity is fast. Therefore, as described above, the flow velocity distribution generated in the flow path width direction is obtained by using two different directivities so that at least two types of ultrasonic beams propagating through the entire area in the width direction and the central area can be obtained. Be prepared. That is, an ultrasonic beam emitted from a broadband ultrasonic transducer spreads when the frequency is low, and conversely narrows when the frequency is high. As an ultrasonic beam with the upper limit frequency of this ultrasonic transducer, the beam width is A beam pattern having a directivity that becomes narrower than the flow path width is propagated. Conversely, a beam pattern having a directivity that spreads the beam width uniformly in the flow path width direction is propagated as an ultrasonic beam having a lower limit frequency. Further, if necessary, it is possible to propagate a substantially intermediate ultrasonic beam pattern at the center frequency. By adopting a configuration in which ultrasonic waves can be transmitted and received independently by at least two types of ultrasonic patterns having different areas, subtle differences due to the flow velocity distribution pattern generated in the width direction can be identified. Measurement errors due to distribution differences can be significantly reduced.

また、流路内部に流速の分布を制御するための仕切板、整流板等の付加部材を使用しなくても、同等な精度が確保出来るため、製造コストの低減を図ることができる。
また、複数の幅方向に分割した超音波ビームのパターンによる伝播時間の相異から、直接流速分布状態が把握できるので、流路寸法、仕切板の配置精度、寸法精度等の固体差による影響を受けることがなく、さらには、温度による影響も少ないため、安定性が良く高精度な流速計測を実現可能とする。
In addition, since the same accuracy can be ensured without using an additional member such as a partition plate or a rectifying plate for controlling the flow velocity distribution inside the flow path, the manufacturing cost can be reduced.
In addition, since the flow velocity distribution state can be directly grasped from the difference in propagation time due to the patterns of ultrasonic beams divided in multiple width directions, the influence of individual differences such as flow path dimensions, partition plate placement accuracy, dimensional accuracy, etc. It is not affected, and furthermore, it is less affected by temperature, so it is possible to realize highly stable flow rate measurement with good stability.

図3は、超音波トランスジューサの周波数帯域内における上限周波数近傍の超音波ビームパターン1の流速分布状態を示す図である。また、図4は、超音波トランスジューサの周波数帯域内における下限周波数近傍の超音波ビームパターン2の流速分布状態を示す図である。   FIG. 3 is a diagram showing the flow velocity distribution state of the ultrasonic beam pattern 1 near the upper limit frequency within the frequency band of the ultrasonic transducer. FIG. 4 is a diagram showing the flow velocity distribution state of the ultrasonic beam pattern 2 near the lower limit frequency within the frequency band of the ultrasonic transducer.

図4に示すように、超音波トランスジューサの周波数帯域内における下限周波数近傍の超音波ビームパターン2は流路幅方向のほぼ全域に広がる指向性Y(=θ1/2)を持ち、一方、図3に示すように、上限周波数近傍の超音波ビームパターン1は流路幅よりも狭い指向性X(=θ1/2)を持つ。2つの異なる周波数における指向性は、X<Yの関係を満足し、これら2種類の超音波ビームパターンにより、上限周波数近傍の周波数における超音波ビームパターン1による伝播時間を計測する。すなわち、超音波トランスジューサ10から放射される超音波が、下流側の超音波トランスジューサ20で受信されるまでの直接伝播による時間計測値(順方向直接伝播時間)を“Tj1”とし、これとは逆に、下流側の超音波トランスジューサ20から放射される超音波が、上流側の超音波トランスジューサ10で受信されるまでの直接伝播による時間計測値(逆方向直接伝播時間)を“Tg1”とする。 As shown in FIG. 4, the ultrasonic beam pattern 2 in the vicinity of the lower limit frequency in the frequency band of the ultrasonic transducer has a directivity Y (= θ 1/2 ) spreading almost in the entire channel width direction. As shown in FIG. 3, the ultrasonic beam pattern 1 near the upper limit frequency has a directivity X (= θ 1/2 ) narrower than the channel width. The directivities at two different frequencies satisfy the relationship X <Y, and the propagation time of the ultrasonic beam pattern 1 at a frequency near the upper limit frequency is measured using these two types of ultrasonic beam patterns. That is, the time measurement value (forward direct propagation time) by direct propagation until the ultrasonic wave radiated from the ultrasonic transducer 10 is received by the ultrasonic transducer 20 on the downstream side is set to “Tj1”, which is the reverse of this. In addition, a time measurement value (reverse direct propagation time) by direct propagation until the ultrasonic wave radiated from the downstream ultrasonic transducer 20 is received by the upstream ultrasonic transducer 10 is defined as “Tg1”.

更に、下限周波数近傍の周波数における超音波ビームパターン2による伝播時間を計測する。すなわち、超音波トランスジューサ10から放射される超音波が、下流側の超音波トランスジューサ20で受信されるまでの直接伝播による時間計測値(順方向直接伝播時間)を“Tj2”とし、これとは逆に、下流側の超音波トランスジューサ20から放射される超音波が、上流側の超音波トランスジューサ10で受信されるまでの直接伝播による時間計測値(逆方向直接伝播時間)を“Tg2”とする。この2種類の伝播時間計測結果及び伝播時間より算出した流速結果に基づいて、流路幅方向で発生する流速分布のパターンによる微妙な流速分布の相異を識別し、流量による流速を算出し流量を演算する。   Furthermore, the propagation time by the ultrasonic beam pattern 2 at a frequency near the lower limit frequency is measured. That is, the time measurement value (forward direct propagation time) by direct propagation until the ultrasonic wave radiated from the ultrasonic transducer 10 is received by the ultrasonic transducer 20 on the downstream side is set to “Tj2”, which is the reverse of this. In addition, the time measurement value (reverse direct propagation time) by direct propagation until the ultrasonic wave radiated from the downstream ultrasonic transducer 20 is received by the upstream ultrasonic transducer 10 is defined as “Tg2”. Based on these two types of propagation time measurement results and the flow velocity results calculated from the propagation times, subtle differences in the flow velocity distribution due to the flow velocity distribution pattern generated in the channel width direction are identified, the flow velocity due to the flow rate is calculated, and the flow rate Is calculated.

図5は、超音波トランスジューサの周波数帯域内の上下限周波数近傍の超音波ビーム及びその超音波ビームによる検出エリアの状態を示す図である。図5(A)に示すように、上下限周波数の指向性の比は、倍程度異なる範囲であり、比較的離れた2種類の周波数による超音波ビームパターンにより流路幅方向を2つのエリアに分割する。図中、14は周波数帯域内の低周波数側の周波数による超音波ビーム、15は周波数帯域内の高周波数側の周波数による超音波ビーム、16は上下限周波数による超音波ビームの指向性を示す。   FIG. 5 is a diagram showing the state of the ultrasonic beam near the upper and lower limit frequencies in the frequency band of the ultrasonic transducer and the detection area by the ultrasonic beam. As shown in FIG. 5A, the directivity ratio of the upper and lower limit frequencies is in a range that differs by about twice, and the flow path width direction is divided into two areas by the ultrasonic beam pattern with two relatively different frequencies. To divide. In the figure, 14 indicates an ultrasonic beam with a frequency on the low frequency side within the frequency band, 15 indicates an ultrasonic beam with a frequency on the high frequency side within the frequency band, and 16 indicates the directivity of the ultrasonic beam with an upper and lower limit frequency.

また、図5(B)は略幅方向全域に広がる指向性を持つ低周波の超音波ビームによる検出エリアの様子を示し、図5(C)は流路幅方向の幅よりも狭い指向性を持つ高周波の超音波ビームによる検出エリアの様子を示す。   FIG. 5B shows a state of a detection area by a low-frequency ultrasonic beam having directivity spreading substantially in the entire width direction, and FIG. 5C shows a directivity narrower than the width in the flow path width direction. The state of the detection area by the high frequency ultrasonic beam which it has is shown.

図5に示すように、超音波トランスジューサの周波数帯域内における上下限周波数近傍の周波数、あるいは周波数帯域内で比較的に周波数が離れた異なる2種類の周波数における超音波ビーム、すなわち、低周波数側の指向性が流路幅に近い超音波ビームのパターン(超音波ビームパターン2)と、高周波数側の指向性が流路幅より狭い超音波ビームのパターン(超音波ビームパターン1)とを利用する。2つの異なる超音波ビームにより流路幅方向を2つのエリアに分割し、それぞれのエリアで伝播時間を計測する。   As shown in FIG. 5, the ultrasonic beam at two frequencies that are different in frequency near the upper and lower limit frequencies in the frequency band of the ultrasonic transducer, or relatively different in the frequency band, that is, on the low frequency side. An ultrasonic beam pattern (ultrasonic beam pattern 2) whose directivity is close to the channel width and an ultrasonic beam pattern (ultrasonic beam pattern 1) whose directivity on the high frequency side is narrower than the channel width are used. . The channel width direction is divided into two areas by two different ultrasonic beams, and the propagation time is measured in each area.

前述したように、上限周波数における超音波ビームパターン1による伝播時間計測として、上流側の超音波トランスジューサ10から放射される超音波が、下流側の超音波トランスジューサ20で受信されるまでの直接伝播による順方向直接伝播時間Tj1と、これとは逆に、下流側の超音波トランスジューサ20から放射される超音波が、上流側の超音波トランスジューサ10で受信されるまでの直接伝播による逆方向直接伝播時間Tg1とを計測する。   As described above, the propagation time measurement by the ultrasonic beam pattern 1 at the upper limit frequency is based on the direct propagation until the ultrasonic wave radiated from the upstream ultrasonic transducer 10 is received by the downstream ultrasonic transducer 20. In contrast to the forward direct propagation time Tj1, the reverse direct propagation time by the direct propagation until the ultrasonic wave radiated from the downstream ultrasonic transducer 20 is received by the upstream ultrasonic transducer 10 is reversed. Tg1 is measured.

更に、下限周波数における超音波ビームパターン2による伝播時間計測として、上流側の超音波トランスジューサ10から放射される超音波が、下流側の超音波トランスジューサ20で受信されるまでの直接伝播による順方向直接伝播時間Tj2と、これとは逆に、下流側の超音波トランスジューサ20から放射される超音波が、上流側の超音波トランスジューサ10で受信されるまでの直接伝播による逆方向直接伝播時間Tg2とを計測する。これら2種類の伝播時間計測結果及び伝播時間より算出した流速結果に基づいて、流路幅方向で発生する流速分布のパターンによる微妙な流速分布の相異を識別し、流量による流速を算出し流量を演算することができる。   Further, as the propagation time measurement by the ultrasonic beam pattern 2 at the lower limit frequency, the forward direct direct propagation until the ultrasonic wave radiated from the upstream ultrasonic transducer 10 is received by the downstream ultrasonic transducer 20 is performed. On the contrary, the propagation time Tj2 and the reverse direct propagation time Tg2 due to the direct propagation until the ultrasonic wave radiated from the ultrasonic transducer 20 on the downstream side is received by the ultrasonic transducer 10 on the upstream side are obtained. measure. Based on these two types of propagation time measurement results and the flow velocity results calculated from the propagation times, subtle differences in the flow velocity distribution due to the flow velocity distribution pattern generated in the channel width direction are identified, the flow velocity due to the flow rate is calculated, and the flow rate is calculated. Can be calculated.

このように、超音波トランスジューサの周波数帯域内で、高周波数による指向性が流路幅よりも狭く流路の中心部エリアを伝播する超音波ビームのパターンと、低周波数による指向性が流路幅方向全体のエリアへ拡散し伝播する超音波ビームのパターンとを利用する。すなわち、少なくとも2種類の異なる周波数によって指向性を異ならせた超音波ビームを利用することで、流路幅方向で発生する流速分布のパターンによる微妙な平均流速の相異が識別できるので、流量による流速分布の相異による計測誤差を著しく低減することが可能となる。   Thus, within the ultrasonic transducer frequency band, the directivity due to high frequency is narrower than the channel width, the pattern of the ultrasonic beam propagating through the central area of the channel, and the directivity due to low frequency is the channel width. The pattern of the ultrasonic beam which diffuses and propagates to the area of the whole direction is utilized. That is, by using an ultrasonic beam having different directivities according to at least two different frequencies, a subtle difference in average flow velocity due to a flow velocity distribution pattern generated in the flow channel width direction can be identified. Measurement errors due to differences in flow velocity distribution can be significantly reduced.

また、互いに異なる2種類の指向性を持つ超音波ビームのパターンにより計測された伝播時間計測結果あるいはこの伝播時間計測結果から演算し算出した流速結果から、流路幅方向を最低2つに区分けされた各エリアによる流速が算出できるので、各超音波パターンによる最低2種類のエリアから算出された流速より流量を演算し、算出することが可能となる。   Also, the flow path width direction is divided into at least two from the propagation time measurement result measured by the pattern of ultrasonic beams having two different directivities or the flow velocity result calculated from the propagation time measurement result. In addition, since the flow velocity by each area can be calculated, it is possible to calculate and calculate the flow rate from the flow velocity calculated from at least two types of areas by each ultrasonic pattern.

また、超音波トランスジューサの帯域内の異なる2種類の周波数を相対的に変更し利用することが可能なため、ある程度の媒質の変更や、流路寸法に伴う流速分布の変化があっても、また幅方向での指向性エリアに差があっても、基準となる媒質での異なる2種類の周波数を上下限以外の任意の周波数として選定し計測させることができる。このため、適応範囲が広く、汎用性が高い。また計測精度がそれほど必要でない場合には、更に適応範囲が拡大できる。
更に、同一のトランスジューサにおいて、上下限周波数以外の異なる2種類の周波数を選定し、異なる2種類の指向性を利用できるので、温度による指向特性の微妙な差にも対応可能となる。
In addition, since it is possible to relatively change and use two different frequencies within the band of the ultrasonic transducer, even if there is a change in the medium to some extent or a change in flow velocity distribution due to the flow path dimensions, Even if there is a difference in the directivity area in the width direction, two different frequencies in the reference medium can be selected and measured as arbitrary frequencies other than the upper and lower limits. For this reason, the adaptation range is wide and versatility is high. In addition, when the measurement accuracy is not so necessary, the applicable range can be further expanded.
Furthermore, since two different types of frequencies other than the upper and lower limit frequencies can be selected and the two different types of directivity can be used in the same transducer, it is possible to cope with subtle differences in directivity characteristics due to temperature.

図6は、本発明の超音波流量計による流量計測方法の一例を説明するための図である。図6(A)は指向性Xを持つ超音波ビームパターン1によるビームエリアの状態を示し、図6(B)は指向性Yを持つ超音波ビームパターン2によるビームエリアの状態を示す。
このように、流路幅方向を2つの異なる超音波ビームにより、2つのエリアに分割し、それぞれのエリアにおいて、順方向直接伝播時間Tj1、逆方向直接伝播時間Tg1、順方向直接伝播時間Tj2、逆方向直接伝播時間Tg2を計測する。
FIG. 6 is a diagram for explaining an example of a flow rate measuring method using the ultrasonic flowmeter of the present invention. 6A shows the state of the beam area by the ultrasonic beam pattern 1 having directivity X, and FIG. 6B shows the state of the beam area by the ultrasonic beam pattern 2 having directivity Y.
In this way, the channel width direction is divided into two areas by two different ultrasonic beams, and in each area, the forward direct propagation time Tj1, the backward direct propagation time Tg1, the forward direct propagation time Tj2, The reverse direct propagation time Tg2 is measured.

超音波ビームパターン1による指向性X(=θ1/2)と、超音波ビームパターン2による指向性Y(=θ1/2)とにより、互いのビームパターンにおける各伝播時間の比は、
Tj1/Tj2=α、Tg1/Tg2=β …式(1)
となる。この比α,βの値を比較し、その大小関係に基づいて、流路幅方向における流速分布のパターンを推定し、妥当な流量域を予測し、被測定流体の流量を算出することができる。
Due to the directivity X (= θ 1/2 ) by the ultrasonic beam pattern 1 and the directivity Y (= θ 1/2 ) by the ultrasonic beam pattern 2, the ratio of the propagation times in the beam patterns is
Tj1 / Tj2 = α, Tg1 / Tg2 = β Equation (1)
It becomes. It is possible to compare the values of the ratios α and β, estimate the flow velocity distribution pattern in the channel width direction based on the magnitude relationship, predict an appropriate flow rate range, and calculate the flow rate of the fluid to be measured. .

また、2種類の超音波ビームパターンにおける各伝播時間の計測結果から算出した2種類の流速値をV1、V2とすると、
V1={L/(2・COSθ)}・(1/Tj1−1/Tg1) …式(2)
V2={L/(2・COSθ)}・(1/Tj2−1/Tg2) …式(3)
より算出される。なお、Lは超音波トランスジューサ10,20の放射面間の距離、θは流れ方向とのなす角度である。これらの流速結果から、2種類の超音波ビームパターンによる流速の比の値を比較し、その大小関係に基づいて、流路幅方向における流速分布のパターンを推定し、妥当な流量域を予測し、被測定流体の流量を算出することができる。
Further, when two kinds of flow velocity values calculated from measurement results of propagation times in two kinds of ultrasonic beam patterns are V1 and V2,
V1 = {L / (2 · COSθ)} · (1 / Tj1-1 / Tg1) (2)
V2 = {L / (2 · COSθ)} · (1 / Tj2-1 / Tg2) (3)
It is calculated from. Here, L is the distance between the radiation surfaces of the ultrasonic transducers 10 and 20, and θ is the angle formed with the flow direction. From these flow velocity results, the ratio of flow velocity ratios of the two types of ultrasonic beam patterns is compared, and based on the magnitude relationship, the flow velocity distribution pattern in the channel width direction is estimated, and an appropriate flow area is predicted. The flow rate of the fluid to be measured can be calculated.

図6(C)は図6(A)に示す超音波ビームパターン1の流量域による流速分布の差を示し、図6(D)は図6(B)に示す超音波ビームパターン2の流量域による流速分布の差を示す。図中、流速パターン(1)は層流域であり、層流域(1)によるα及びβをα1及びβ1とし、また、流速パターン(2)は層流域であり、層流域(2)によるα及びβをα2及びβ2とし、更に、流速パターン(3)は乱流域であり、乱流域(3)によるα及びβをα3及びβ3とする。   6C shows the difference in flow velocity distribution depending on the flow rate region of the ultrasonic beam pattern 1 shown in FIG. 6A, and FIG. 6D shows the flow rate region of the ultrasonic beam pattern 2 shown in FIG. 6B. The difference in flow velocity distribution due to. In the figure, the flow velocity pattern (1) is a laminar flow region, α and β by the laminar flow region (1) are α1 and β1, and the flow velocity pattern (2) is a laminar flow region, and α and β by the laminar flow region (2) β is α2 and β2, and the flow velocity pattern (3) is a turbulent region, and α and β by the turbulent region (3) are α3 and β3.

この場合、その大小関係は、
α1(β1)>α2(β2)>α3(β3)≒1 …式(4)
の関係となり、それぞれの比の値により、流量域による妥当な流速分布パターンを推定し、この推定した流速分布から被測定流体の流量を算出することができる。
In this case, the magnitude relationship is
α1 (β1)> α2 (β2)> α3 (β3) ≈1 (4)
Thus, an appropriate flow velocity distribution pattern depending on the flow rate region can be estimated from the ratio values, and the flow rate of the fluid to be measured can be calculated from the estimated flow velocity distribution.

もちろん流量域の把握は、2種類のビームパターンより計測されたそれぞれの伝播時間から算出した流速値としてもよく、その流速の大小関係から流量域を予測しても良い。
すなわち、図6(C)に示す各流速分布パターン、すなわち層流域(1),(2)、乱流域(3)において、図6(A)に示す超音波ビームパターン1による流速をVc、図6(B)に示す超音波ビームパターン2による流速をVwとすると、その大小関係により流量域を予測し、妥当な流速を決定するようにしても良い。
Needless to say, the flow rate range may be grasped as a flow velocity value calculated from the propagation times measured from the two types of beam patterns, or the flow rate range may be predicted from the magnitude relationship between the flow rates.
That is, in each flow velocity distribution pattern shown in FIG. 6C, that is, in the laminar flow regions (1) and (2) and the turbulent flow region (3), the flow velocity by the ultrasonic beam pattern 1 shown in FIG. If the flow velocity by the ultrasonic beam pattern 2 shown in FIG. 6 (B) is Vw, the flow rate region may be predicted based on the magnitude relationship, and an appropriate flow velocity may be determined.

ここで、Vc>Vwの場合は層流域と推定され、その時の比(Vc/Vw)の値により妥当な流速を決定する。また、Vc/Vw≒1の場合は乱流域と推定され、これにより妥当な流速を決定する。層流域(1)の分布パターンにおける流速比をVc1/Vw1とし、層流域(2)の分布パターンにおける流速比をVc2/Vw2とし、乱流域(3)の分布パターンにおける流速比をVc3/Vw3とする。この場合、
(Vc1/Vw1)>(Vc2/Vw2)>(Vc3/Vw3)≒1 …式(5)
の関係となり、流速比のオーダーにより現在の流量域を推定することができ、現時点で妥当な流速を算出できる。なお、流量域の推定は、予め記憶されたデータと比較し、データの範囲に適合した値に応じた流量域を判定し、流量域で妥当な係数を割り振ることで、流速を算出し流量を演算する。媒質を都市ガス(13A)としたときの流量Qと流速分布の比ζ(=Vc/Vw)の関係を図7に示す。
Here, in the case of Vc> Vw, it is estimated that the region is a laminar flow region, and an appropriate flow velocity is determined by the value of the ratio (Vc / Vw) at that time. Further, in the case of Vc / Vw≈1, it is estimated that the region is a turbulent flow region, thereby determining an appropriate flow velocity. The flow velocity ratio in the distribution pattern of the laminar flow region (1) is Vc1 / Vw1, the flow velocity ratio in the distribution pattern of the laminar flow region (2) is Vc2 / Vw2, and the flow velocity ratio in the distribution pattern of the turbulent flow region (3) is Vc3 / Vw3. To do. in this case,
(Vc1 / Vw1)> (Vc2 / Vw2)> (Vc3 / Vw3) ≈1 (5)
Therefore, the current flow rate region can be estimated from the order of the flow rate ratio, and the current flow rate can be calculated. The estimation of the flow rate range is compared with the data stored in advance, the flow rate range is determined according to the value suitable for the range of the data, and a reasonable coefficient is assigned in the flow rate range to calculate the flow velocity and calculate the flow rate. Calculate. FIG. 7 shows the relationship between the flow rate Q and the flow velocity distribution ratio ζ (= Vc / Vw) when the medium is city gas (13A).

このように、超音波トランスジューサの周波数帯域内で、指向性が異なる2種類の超音波ビームパターンを送受信させ、流路幅方向を少なくとも2種類の異なるエリアに分割できるため、流路幅方向で異なる流速分布に応じた伝播時間結果が得られ、その伝播時間の結果から、2種類の超音波ビームによる伝播時間の比の値を比較し、その大小関係に基づいて、妥当な流量域を予測し、被測定流体の流量を算出することができる。
また、時間計測情報から演算し算出した流速結果から、2種類の超音波ビームによる流速の比の値を比較し、その大小関係に基づいて、流路幅方向における流速分布のパターンを推定し、妥当な流量域を予測し、被測定流体の流量を算出することができる。
この結果、流路幅方向で発生する流速分布のパターンによる微妙な相異が識別できるので、流量域による流速分布の相異があっても計測誤差を著しく低減し高精度な流量計測が実現できる。
In this way, two types of ultrasonic beam patterns having different directivities can be transmitted and received within the frequency band of the ultrasonic transducer, and the flow path width direction can be divided into at least two different areas. Propagation time results corresponding to the flow velocity distribution are obtained. From the results of the propagation times, the ratio of the propagation times of the two types of ultrasonic beams is compared, and an appropriate flow rate range is predicted based on the magnitude relationship. The flow rate of the fluid to be measured can be calculated.
Also, from the flow velocity result calculated and calculated from the time measurement information, the ratio value of the flow velocity ratio of the two ultrasonic beams is compared, and based on the magnitude relationship, the flow velocity distribution pattern in the channel width direction is estimated, A reasonable flow rate region can be predicted and the flow rate of the fluid to be measured can be calculated.
As a result, subtle differences due to the flow velocity distribution pattern generated in the flow path width direction can be identified, so even if there is a difference in flow velocity distribution due to the flow rate range, measurement errors can be significantly reduced and highly accurate flow measurement can be realized. .

前述したように、超音波トランスジューサの周波数帯域内で、異なる2種類の周波数による超音波ビームパターンによる伝播時間を計測し、各伝播時間より算出した流速比の値に応じて流量域を把握し、流速比の値に応じて妥当な補正係数を割り振り、平均流速を演算し流量を算出するようにしてもよい。異なる2種類の周波数が上下限以外で互いに離れた周波数の場合、各超音波ビームにより流路幅方向を2種類に区分し、計測された流速をVc,Vwとすれば、流速Vcは超音波ビームパターン1(ビーム幅の狭い高周波数による伝播時間計測)に対応し、流速Vwは超音波ビームパターン2(ビーム幅がほぼ流路幅全域に広がる低周波数による伝播時間計測)に対応する。これらの流速Vc,Vwは、
Vc={L/(2・COSθ)}・(1/Tj1−1/Tg1) …式(6)
Vw={L/(2・COSθ)}・(1/Tj2−1/Tg2) …式(7)
と表記できる。なお、Lは送受信トランスジューサ10,20の放射面間の距離、θは流れ方向とのなす角度である。
As described above, within the frequency band of the ultrasonic transducer, the propagation time by the ultrasonic beam pattern with two different frequencies is measured, and the flow rate range is grasped according to the value of the flow rate ratio calculated from each propagation time, An appropriate correction coefficient may be assigned according to the value of the flow rate ratio, the average flow rate may be calculated, and the flow rate may be calculated. When two different types of frequencies are frequencies apart from each other except for the upper and lower limits, if the flow width direction is divided into two types by each ultrasonic beam and the measured flow velocity is Vc and Vw, the flow velocity Vc is ultrasonic. Corresponding to the beam pattern 1 (measurement of propagation time by a high frequency with a narrow beam width), the flow velocity Vw corresponds to the ultrasonic beam pattern 2 (measurement of propagation time by a low frequency in which the beam width extends over the entire channel width). These flow velocities Vc, Vw are
Vc = {L / (2 · COSθ)} · (1 / Tj1-1 / Tg1) (6)
Vw = {L / (2 · COSθ)} · (1 / Tj2-1 / Tg2) (7)
Can be written. Here, L is the distance between the radiation surfaces of the transmitting and receiving transducers 10 and 20, and θ is the angle formed with the flow direction.

このように、各伝播時間より算出された流速Vc,Vwの大小関係と、この流速比(Vc/Vw)の値により流量域を予測し、妥当な流速を決定する。
すなわち、Vc>Vwの場合には層流域と推定され、Vc/Vwの値により、妥当な流速係数を決定し、平均流速を算出することで、被測定流体の流量を算出できる。また、Vc≒Vwの場合には乱流域と推定できるため、係数無しに平均流速を決定することができる。乱流に関する速度分布はピーク速度が平均速度となるため、基本的には補正係数を用いないが、比の値に応じて乱流域に切替わるまで妥当な補正係数を割り振ることで、流量域に関わらず、平均流速を算出し流量を演算し算出することが可能となる。
Thus, the flow rate region is predicted based on the magnitude relationship between the flow velocities Vc and Vw calculated from each propagation time and the value of the flow velocity ratio (Vc / Vw), and an appropriate flow velocity is determined.
That is, in the case of Vc> Vw, it is estimated as a laminar flow region, and the flow rate of the fluid to be measured can be calculated by determining an appropriate flow velocity coefficient based on the value of Vc / Vw and calculating the average flow velocity. In addition, when Vc≈Vw, since it can be estimated that the region is a turbulent flow region, the average flow velocity can be determined without a coefficient. The velocity distribution related to turbulent flow does not use the correction factor basically because the peak velocity is the average velocity, but by assigning a reasonable correction factor until switching to the turbulent flow region according to the ratio value, Regardless, the average flow velocity can be calculated and the flow rate can be calculated and calculated.

図8は、流路幅方向における流速分布パターン(層流域)の様子を説明するための図である。
図8(A)に示すように、幅方向の流速分布に応じて、例えば、実線のような中心が最大で、中心から対称な速度分布パターン、すなわち層流域での流速分布パターン(1)の場合、指向性Xが流路幅より狭い超音波ビームパターン1によって算出された流速Vcと、指向性Yが流路幅とほぼ等しい超音波ビームパターン2によって算出された流速Vwとの比(Vc/Vw)の値を“ζ1”とする。
FIG. 8 is a diagram for explaining the state of the flow velocity distribution pattern (laminar flow region) in the flow channel width direction.
As shown in FIG. 8 (A), according to the flow velocity distribution in the width direction, for example, the velocity distribution pattern (1) in the laminar basin where the center as shown by the solid line is the largest and symmetrical from the center. In this case, the ratio (Vc) between the flow velocity Vc calculated by the ultrasonic beam pattern 1 whose directivity X is narrower than the flow path width and the flow velocity Vw calculated by the ultrasonic beam pattern 2 whose directivity Y is substantially equal to the flow path width. The value of / Vw) is “ζ1”.

また、図8(B)に示すように、点線のような流速分布パターン、すなわち層流域での流速分布パターン(2)の場合、流速VcとVwとの比(Vc/Vw)の値を“ζ2”とした場合、比の値ζ1、ζ2の大きさに比例した補正係数をそれぞれφ1、φ2とすれば、図7(A),(B)に示す各流速パターンにおける平均流速V1(実線),V2(点線)は、
V1=φ1・(Vc+Vw)/2 …式(8)
V2=φ2・(Vc+Vw)/2 …式(9)
として算出できる。
Further, as shown in FIG. 8B, in the case of the flow velocity distribution pattern as shown by the dotted line, that is, the flow velocity distribution pattern (2) in the laminar basin, the value of the ratio (Vc / Vw) between the flow velocity Vc and Vw is “ In the case of ζ2 ″, if the correction coefficients proportional to the ratio values ζ1 and ζ2 are φ1 and φ2, respectively, the average flow velocity V1 (solid line) in each flow velocity pattern shown in FIGS. , V2 (dotted line) is
V1 = φ1 · (Vc + Vw) / 2 Formula (8)
V2 = φ2 · (Vc + Vw) / 2 Formula (9)
Can be calculated as

あるいは、
V1=φ1′・Vc …式(10)
V2=φ2′・Vc …式(11)
として算出することもできる。但し、φ1′、φ2′はζ1、ζ2に比例した別の補正係数である。無論、別の補正係数を用いて、Vwに対する補正として流速を算出するようにしてもよい。
このように、流路幅方向で互いに指向性が異なる2種類の超音波ビームパターンによる、流速比のオーダーに応じて、分布パターンを推定し、流速分布パターンに応じて妥当な補正係数を割り振ることにより、平均流速を算出し、被測定流体の流量を算出できる。
Or
V1 = φ1 ′ · Vc Formula (10)
V2 = φ2 ′ · Vc Formula (11)
Can also be calculated as However, φ1 ′ and φ2 ′ are other correction coefficients proportional to ζ1 and ζ2. Of course, the flow velocity may be calculated as a correction for Vw using another correction coefficient.
In this way, the distribution pattern is estimated according to the flow rate ratio order by the two types of ultrasonic beam patterns having different directivities in the flow path width direction, and an appropriate correction coefficient is assigned according to the flow velocity distribution pattern. By calculating the average flow velocity, the flow rate of the fluid to be measured can be calculated.

このように、流路幅方向を少なくとも2種類の周波数による指向性が異なる超音波ビームパターンを送受信させ、流路幅方向を少なくとも2種類の異なるエリアに分割することで、流路幅方向で異なる流速分布に応じた伝播時間結果が得られるので、その伝播時間の結果から、少なくとも2種類の超音波ビームによる伝播時間の比の値を比較し、その大小関係に基づいて、流路幅方向における流速分布のパターンを推定し、妥当な流量域を予測すると同時に、その比の値に応じて最適な流速分布補正係数を割り振ることで、流路断面を横切る平均流速を演算し算出することができる。このため流量域による幅方向の流速分布の影響を受けず、全流量域に渡って安定し高精度な計測が実現できる。   As described above, the ultrasonic beam patterns having different directivities with at least two kinds of frequencies in the flow path width direction are transmitted and received, and the flow path width direction is divided into at least two different areas, thereby being different in the flow path width direction. Since the propagation time result corresponding to the flow velocity distribution is obtained, the value of the ratio of the propagation time by at least two kinds of ultrasonic beams is compared from the result of the propagation time, and based on the magnitude relationship, in the channel width direction By estimating the flow velocity distribution pattern and predicting an appropriate flow rate range, and assigning the optimum flow velocity distribution correction coefficient according to the ratio value, the average flow velocity across the channel cross section can be calculated and calculated. . For this reason, it is not affected by the flow velocity distribution in the width direction due to the flow rate region, and stable and highly accurate measurement can be realized over the entire flow rate region.

また、時間計測情報から演算し算出した流速結果から、流速の比の値を比較し、その大小関係に基づいて、流路幅方向における流速分布のパターンを推定し、妥当な流量域を予測すると同時に、その比の値に応じて最適な流速分布補正係数を割り振ることで、流路断面を横切る平均流速を演算し算出することができる。このため流量域による幅方向の流速分布の影響を受けず、全流量域に渡って安定し高精度な計測が実現できる。   In addition, from the flow velocity result calculated and calculated from the time measurement information, the flow velocity ratio value is compared, the flow velocity distribution pattern in the channel width direction is estimated based on the magnitude relationship, and a reasonable flow rate region is predicted. At the same time, by assigning an optimum flow velocity distribution correction coefficient according to the ratio value, it is possible to calculate and calculate the average flow velocity across the channel cross section. For this reason, it is not influenced by the flow velocity distribution in the width direction due to the flow rate range, and stable and highly accurate measurement can be realized over the entire flow rate range.

図6及び図8に示すように、高周波数による超音波ビームパターン1での順方向直接伝播時間Tj1、逆方向直接伝播時間Tg1、さらに、低周波数による超音波ビームパターン2での順方向直接伝播時間Tj2、逆方向直接伝播時間結果:Tg2とすると、その比は、Tj1/Tg1=αで、αがα3≒1、Tj2/Tg2=βで、βがβ3≒1となる。この場合、2種類の異なる周波数による各伝播時間の比がほぼ等しく“1”となることでその流速分布パターンは乱流域(3)であると推定される。   As shown in FIGS. 6 and 8, the forward direct propagation time Tj1 and the backward direct propagation time Tg1 in the ultrasonic beam pattern 1 due to the high frequency, and the forward direct propagation in the ultrasonic beam pattern 2 due to the low frequency. When time Tj2 and reverse direct propagation time result: Tg2, the ratio is Tj1 / Tg1 = α, α is α3≈1, Tj2 / Tg2 = β, and β is β3≈1. In this case, the ratio of the propagation times by two different frequencies is almost equal to “1”, so that the flow velocity distribution pattern is estimated to be the turbulent flow region (3).

また、指向性が流路幅より狭い超音波ビームパターン1によって算出された流速Vcと、指向性が流路幅とほぼ等しい超音波ビームパターン2によって算出された流速Vwとの比の値がVc/Vw≒1として乱流域(3)の流速分布パターンであると推定された場合、前述の図2(C)に示したように、超音波トランスジューサの周波数帯域内での中心周波数による超音波ビームパターン3であって、帯域のほぼ中央の音圧が最大となる超音波ビームにより、順方向伝播時間計測及び逆方向伝播時間計測を行う。   Further, the value of the ratio between the flow velocity Vc calculated by the ultrasonic beam pattern 1 whose directivity is narrower than the flow path width and the flow velocity Vw calculated by the ultrasonic beam pattern 2 whose directivity is substantially equal to the flow path width is Vc. When it is estimated that the flow velocity distribution pattern of the turbulent flow region (3) is assumed as / Vw≈1, as shown in FIG. 2 (C), the ultrasonic beam with the center frequency within the frequency band of the ultrasonic transducer is used. The forward propagation time measurement and the backward propagation time measurement are performed with an ultrasonic beam that is the pattern 3 and has the maximum sound pressure in the center of the band.

すなわち、超音波トランスジューサ10から放射される超音波が、下流側の超音波トランスジューサ20で受信されるまでの直接伝播による順方向直接伝播時間Tj3とし、これとは逆に、下流側の超音波トランスジューサ20から放射される超音波が、上流側の超音波トランスジューサ10で受信されるまでの直接伝播による逆方向直接伝播時間Tg3とすれば、
V3={L/(2・COSθ)}・(1/Tj3−1/Tg3) …式(12)
として直接平均流速を算出し、被測定流体の流量を演算すれば良い。
That is, the forward direct propagation time Tj3 by direct propagation until the ultrasonic wave radiated from the ultrasonic transducer 10 is received by the downstream ultrasonic transducer 20 is set, and conversely, the downstream ultrasonic transducer is used. If the ultrasonic wave radiated from 20 is the direct propagation time Tg3 by the direct propagation until it is received by the ultrasonic transducer 10 on the upstream side,
V3 = {L / (2 · COSθ)} · (1 / Tj3-1 / Tg3) (12)
It is sufficient to calculate the average flow velocity directly and calculate the flow rate of the fluid to be measured.

また、図8(A),(B)に示すように、各流速パターン(超音波ビームパターン1,2)における平均流速V1,V2は、式(8)〜式(11)に基づいて算出することができる。   Further, as shown in FIGS. 8A and 8B, the average flow velocities V1 and V2 in the respective flow velocity patterns (ultrasonic beam patterns 1 and 2) are calculated based on the equations (8) to (11). be able to.

同様に、図8(A),(B)において、ガス種が都市ガス13Aの場合、ζ1,ζ2の大きさに比例した補正係数をそれぞれφ5,φ6とすれば、各流速パターンにおける平均流速V1(実線),V2(点線)は、
V1=φ5・(Vc+Vw)/2 …式(12)
V2=φ6・(Vc+Vw)/2 …式(13)
として算出できる。
Similarly, in FIGS. 8A and 8B, when the gas type is city gas 13A, if the correction coefficients proportional to the magnitudes of ζ1 and ζ2 are φ5 and φ6, respectively, the average flow velocity V1 in each flow velocity pattern is shown. (Solid line) and V2 (dotted line) are
V1 = φ5 · (Vc + Vw) / 2 Formula (12)
V2 = φ6 · (Vc + Vw) / 2 Formula (13)
Can be calculated as

あるいは、
V1=φ5′・Vc …式(14)
V2=φ6′・Vc …式(15)
として算出することも可能である。但し、φ5′、φ6′はζ1、ζ2に比例した別の補正係数である。無論、別の補正係数を用いて、Vwに対する補正として流速を算出するようにしても良い。
ガスの種類で変化する微妙な流速分布の相異に応じて、妥当な補正係数となるよう補正係数を変化させる事で、流速分布に関わらず平均流速を算出し流量を演算し算出できる。
Or
V1 = φ5 ′ · Vc (14)
V2 = φ6 ′ · Vc (15)
It is also possible to calculate as However, φ5 ′ and φ6 ′ are other correction coefficients proportional to ζ1 and ζ2. Of course, the flow velocity may be calculated as a correction for Vw using another correction coefficient.
By changing the correction coefficient so as to be an appropriate correction coefficient according to the subtle difference in flow velocity distribution that varies depending on the type of gas, the average flow velocity can be calculated and the flow rate can be calculated regardless of the flow velocity distribution.

ここで、被測定流体の種類によって、流体の粘性や、密度などに相異があるため、ガス種(媒質)を伝播する超音波の縦波流速が異なり、超音波ビームの指向特性に差が発生する。また流路形状、寸法などにより、最適な超音波ビームのエリアによる差に対して補正係数の値は微妙に異なり、異なる指向特性を示す2種類の超音波ビームによる計測が、流量域における流速分布パターンの差に対して、充分な相異を識別出来ないことも起こり得る。   Here, since the viscosity and density of the fluid differ depending on the type of fluid to be measured, the longitudinal wave velocity of the ultrasonic wave propagating through the gas type (medium) differs, and there is a difference in the directivity characteristics of the ultrasonic beam. appear. The correction coefficient value is slightly different depending on the flow path shape, dimensions, etc., depending on the area of the optimal ultrasonic beam, and the measurement with two types of ultrasonic beams with different directivity characteristics is the flow velocity distribution in the flow rate range. It may happen that a sufficient difference cannot be identified with respect to the difference in pattern.

図9は被測定流体の種類による超音波ビームパターン1の流速分布の相異を説明するための図で、図10は被測定流体の種類による超音波ビームパターン2の流速分布の相異を説明するための図である。
図9(A)はLPGの場合における超音波ビームパターン1の流速分布の例を示し、LPG中の帯域上限の高周波数による超音波ビームパターン1の指向性をX(=θ1/2)とする。図9(B)は都市ガス(13A)の場合における超音波ビームパターン1の流速分布の例を示し、同一の圧電素子を有する超音波トランスジューサから放射される直接伝播波による指向特性をX′(=θ1/2)とする。同様に、図10(A)はLPGの場合における超音波ビームパターン2の流速分布の例を示し、LPG中の帯域下限の低周波数による超音波ビームパターン2の指向性をY(=θ1/2)とする。図10(B)は都市ガス(13A)の場合における超音波ビームパターン1の流速分布の例を示し、同一の圧電素子を有する超音波トランスジューサから放射される直接伝播波による指向特性をY′(=θ1/2)とする。
FIG. 9 is a diagram for explaining the difference in flow velocity distribution of the ultrasonic beam pattern 1 depending on the type of fluid to be measured. FIG. 10 is a diagram for explaining the difference in flow velocity distribution of the ultrasonic beam pattern 2 depending on the type of fluid to be measured. It is a figure for doing.
FIG. 9A shows an example of the flow velocity distribution of the ultrasonic beam pattern 1 in the case of LPG, and the directivity of the ultrasonic beam pattern 1 by the high frequency at the upper limit of the band in the LPG is X (= θ 1/2 ). To do. FIG. 9B shows an example of the flow velocity distribution of the ultrasonic beam pattern 1 in the case of city gas (13A), and the directivity characteristics due to direct propagation waves radiated from an ultrasonic transducer having the same piezoelectric element are expressed as X ′ ( = Θ 1/2 ). Similarly, FIG. 10A shows an example of the flow velocity distribution of the ultrasonic beam pattern 2 in the case of LPG. The directivity of the ultrasonic beam pattern 2 at the low frequency at the lower limit of the band in the LPG is represented by Y (= θ 1 / 2 ). FIG. 10B shows an example of the flow velocity distribution of the ultrasonic beam pattern 1 in the case of city gas (13A), and the directivity characteristics due to the direct propagation wave radiated from the ultrasonic transducer having the same piezoelectric element are indicated by Y ′ ( = Θ 1/2 ).

上記において、LPGの縦波による伝播速度は、都市ガス(13A)に比べて遅いため、同一の圧電素子を有する超音波トランスジューサから放射される直接伝播波による指向性X′(=θ1/2)、指向性Y′(=θ1/2)の何れも都市ガス(13A)の方が広くなる。すなわち、X′>X、Y′>Yの関係となる。従って、同一の圧電素子を有する超音波トランスジューサでは、速度に大きな差があるガス種(媒質)による流速分布パターンを計測する場合、ガス種(媒質)によって広がりの異なる超音波ビームが、区分けされた流速分布パターンを横切る際、ビームエリアによる検出エリアの相異により、計測される伝播時間には微妙なズレが発生し、補正係数が微妙に異なってしまうことになる。無論その伝播時間から算出した流速結果にも微妙なズレが発生することになる。 In the above, since the propagation speed of the longitudinal wave of LPG is slower than that of city gas (13A), the directivity X ′ (= θ 1/2) by the direct propagation wave radiated from the ultrasonic transducer having the same piezoelectric element. ) And directivity Y ′ (= θ 1/2 ) are both wider for city gas (13A). That is, the relationship is X ′> X, Y ′> Y. Therefore, in an ultrasonic transducer having the same piezoelectric element, when measuring a flow velocity distribution pattern due to a gas type (medium) having a large difference in velocity, an ultrasonic beam having a different spread depending on the gas type (medium) is classified. When crossing the flow velocity distribution pattern, due to the difference in the detection area depending on the beam area, a slight deviation occurs in the measured propagation time, and the correction coefficient is slightly different. Of course, subtle deviations will also occur in the flow velocity results calculated from the propagation time.

更に、流路寸法が異なる場合、LPG計測時と同じ超音波トランスジューサによる2種類の指向性ビームで都市ガス(13A)を計測すると、流路幅が狭い場合は媒質による指向性の拡大により、帯域上限の高周波数による超音波ビームを流路幅より狭く出来ないため、指向性の差を識別することができず、流速分布パターンの推定が困難となる。またこれとは反対に、媒質の変化で指向性が拡大するよりも、流路幅の拡大のほうが大きい場合、帯域下限の低周波数による指向性が流路幅と同等以上に広がる効果が期待できず、2種類の指向性は流速分布の中央部エリアに集中し、流速分布の識別分解能が充分に得られないことがある。   Furthermore, when the channel dimensions are different, if the city gas (13A) is measured with two types of directional beams using the same ultrasonic transducer as in the LPG measurement, if the channel width is narrow, the directivity due to the medium is increased. Since the ultrasonic beam with the upper limit high frequency cannot be made narrower than the channel width, the directivity difference cannot be identified, making it difficult to estimate the flow velocity distribution pattern. On the other hand, if the expansion of the channel width is larger than the increase in directivity due to changes in the medium, the directivity due to the low frequency at the lower limit of the band can be expected to be equal to or greater than the channel width. In addition, the two types of directivity are concentrated in the central area of the flow velocity distribution, and the identification resolution of the flow velocity distribution may not be sufficiently obtained.

そこで、ガス種に応じて、また流路寸法に応じて、超音波トランスジューサを構成する圧電素子の寸法と、その寸法によって変化する共振周波数と、音響整合層の寸法を調整し最適化することで、流路幅方向を中央部エリアと、全幅エリアとの2つに分割したエリアに、異なる2種類の超音波ビームパターンを伝播させ、ガス種の変化や、流路寸法に最適な指向特性を満足できる超音波ビームをそれぞれ送受信させる。これにより、幅方向の区分けされたそれぞれのエリアで、流路幅方向で異なる流速分布に応じた超音波送受信による伝播時間結果が得られ、その伝播時間の結果から、伝播時間の比の値を比較し、その大小関係に基づいて、妥当な流量域を推測すると同時に、比の値に応じて最適な流速分布補正係数を割り振ることで、平均流速を演算し算出することができ、流量域による幅方向の流速分布の影響を受けず安定した高精度な計測が実現できる。   Therefore, by adjusting and optimizing the dimensions of the piezoelectric elements that make up the ultrasonic transducer, the resonance frequency that varies depending on the dimensions, and the dimensions of the acoustic matching layer according to the gas type and the flow path dimensions, , Two different types of ultrasonic beam patterns are propagated to the area divided into two areas, the central area and the full width area, and the directional characteristics that are optimal for changes in gas types and channel dimensions Send and receive satisfactory ultrasonic beams. As a result, in each area divided in the width direction, a propagation time result by ultrasonic transmission / reception corresponding to a flow velocity distribution different in the flow path width direction is obtained, and the value of the propagation time ratio is calculated from the result of the propagation time. By comparing and estimating the appropriate flow rate range based on the magnitude relationship, the optimal flow rate distribution correction coefficient is allocated according to the ratio value, and the average flow rate can be calculated and calculated. Stable and highly accurate measurement can be realized without being affected by the flow velocity distribution in the width direction.

または、超音波送受信による時間計測結果から演算し算出した流速結果から、流速の比の値を比較し、その大小関係に基づいて、妥当な流量域を予測すると同時に、比の値に応じて最適な流速分布補正係数を割り振るようにしてもよい。この場合も同様に、平均流速を演算し算出することができ、流量域による幅方向の流速分布の影響を受けず安定した高精度な計測が実現できる。   Or, from the flow velocity result calculated and calculated from the time measurement result by ultrasonic transmission / reception, compare the flow velocity ratio value, predict the appropriate flow rate range based on the magnitude relationship, and at the same time optimize the ratio value A different flow velocity distribution correction coefficient may be assigned. In this case as well, the average flow velocity can be calculated and calculated, and stable and highly accurate measurement can be realized without being affected by the flow velocity distribution in the width direction depending on the flow rate region.

流路形状・寸法や、計測レンジ、計測分解能に伴って変化する流速分布パターンの変化や、流速の偏り度合を判断するのに必要な異なる2種類の超音波ビームを得るために、超音波トランスジューサから放射される超音波ビームを送受信する位置と、ビーム数を変化させ、最適な超音波エリアを満足させるようにしてもよい。   An ultrasonic transducer is used to obtain two different types of ultrasonic beams necessary to determine the flow rate distribution pattern that changes with the flow path shape / dimension, measurement range, and measurement resolution, and the degree of flow velocity bias. The position of transmitting and receiving the ultrasonic beam radiated from and the number of beams may be changed to satisfy the optimum ultrasonic area.

図11は流路幅の拡大による超音波ビームパターン1の流速分布の相異を説明するための図で、図12は流路幅の拡大による超音波ビームパターン2の流速分布の相異を説明するための図である。
図11(A)は超音波ビームパターン1の流速分布の例を示し、図11(B)は流路幅を拡大した場合における超音波ビームパターン1の流速分布の例を示し、図12(A)は超音波ビームパターン2の流速分布の例を示し、図12(B)は流路幅を拡大した場合における超音波ビームパターン2の流速分布の例を示す。
FIG. 11 is a diagram for explaining the difference in the flow velocity distribution of the ultrasonic beam pattern 1 due to the expansion of the flow path width, and FIG. 12 illustrates the difference in the flow velocity distribution of the ultrasonic beam pattern 2 due to the expansion of the flow path width. It is a figure for doing.
11A shows an example of the flow velocity distribution of the ultrasonic beam pattern 1, FIG. 11B shows an example of the flow velocity distribution of the ultrasonic beam pattern 1 when the flow path width is enlarged, and FIG. ) Shows an example of the flow velocity distribution of the ultrasonic beam pattern 2, and FIG. 12B shows an example of the flow velocity distribution of the ultrasonic beam pattern 2 when the flow path width is enlarged.

このように、流量レンジの拡大(流量計測範囲の拡大)に伴い、流路幅方向の拡大が顕著化すると、1つの圧電素子を有する超音波トランスジューサによる超音波ビームでは、流速分布を充分に推定するのに必要な有効な検出エリアが確保できない。これは、圧電素子の寸法と、それによって変化する共振周波数、音響整合層の寸法により指向特性が変化し、流路幅の中央部と流路幅全域へと充分広がる2種類の超音波ビームパターンを1つの超音波トランスジューサにより最適化するのは困難であるためである。   As described above, when the enlargement in the flow path width direction becomes conspicuous with the enlargement of the flow rate range (expansion of the flow measurement range), the flow velocity distribution is sufficiently estimated with the ultrasonic beam by the ultrasonic transducer having one piezoelectric element. It is not possible to secure an effective detection area necessary for this. This is because the directivity changes depending on the size of the piezoelectric element, the resonant frequency that changes with the size, and the size of the acoustic matching layer, and two types of ultrasonic beam patterns that sufficiently spread to the center of the channel width and the entire channel width. This is because it is difficult to optimize the frequency with one ultrasonic transducer.

圧電素子の共振周波数を下げて、指向性を広げることにより、最適な指向性を確保出来るが、計測分解能を得るため、周波数を下げるにも限界がある。このため、1つの圧電素子を有する超音波トランスジューサで、計測分解能を満足しつつ、流速分布を識別するのに必要な指向性を満足するのは不可能に近い。特に、流速分布が流路幅の中央で対称でなく、且つ、流路幅が広い場合には、必要となる検出エリアに流速分布を把握するのに充分な、異なる2種類の指向性を有する超音波ビームを送受信することが困難となってしまう。   Although the optimum directivity can be ensured by lowering the resonance frequency of the piezoelectric element and widening the directivity, there is a limit to lowering the frequency in order to obtain measurement resolution. For this reason, it is almost impossible to satisfy the directivity necessary for identifying the flow velocity distribution while satisfying the measurement resolution with an ultrasonic transducer having one piezoelectric element. In particular, when the flow velocity distribution is not symmetrical at the center of the flow channel width and the flow channel width is wide, two different directivities sufficient to grasp the flow velocity distribution in the required detection area are provided. It becomes difficult to transmit and receive an ultrasonic beam.

このような問題に対して、図11(B)及び図12(B)に示すように、例えば、圧電素子を2つに分割し、それぞれ独立に動作できる構成の超音波トランスジューサ20′を備えるようにしてもよい。超音波トランスジューサ20′は、音響整合層21′と、2つに分割された圧電素子22′とで構成される。なお、超音波トランスジューサ20′と対となる相手方の超音波トランスジューサも同様の構成とする。   To solve such a problem, as shown in FIGS. 11B and 12B, for example, the piezoelectric element is divided into two, and an ultrasonic transducer 20 ′ having a configuration capable of independently operating is provided. It may be. The ultrasonic transducer 20 'includes an acoustic matching layer 21' and a piezoelectric element 22 'divided into two. The counterpart ultrasonic transducer paired with the ultrasonic transducer 20 'has the same configuration.

図11(B)において、流路幅の中央を境界として、中央と上下の境界のエリアに対して、直接伝播波はこの中央と上下の境界の中央部を伝播する超音波ビームエリア(1),(2)となる超音波を伝播させる。また、図12(B)において、超音波ビームは、流路幅の中央部と上下の境界であって流路幅の半分の超音波ビームエリア(3),(4)を満足する超音波を伝播させる。各圧電素子中央部から音響整合層を介して送受信される、2種類の超音波ビームによる伝播時間の計測結果から、流路幅方向の流速分布パターンを推定し、伝播時間の比の値を比較し、その大小関係に基づいて、妥当な流量域を推測すると同時に、比の値に応じて最適な流速分布補正係数を割り振ることで平均流速を演算し算出する。これにより、流量域による幅方向の流速分布の影響を受けず安定した高精度な計測が実現できる。   In FIG. 11B, an ultrasonic beam area (1) in which a directly propagated wave propagates through the center of the center and the upper and lower boundaries with respect to the area of the center and the upper and lower boundaries with the center of the channel width as a boundary. , (2) is propagated. In FIG. 12B, the ultrasonic beam is an ultrasonic wave that satisfies the ultrasonic beam areas (3) and (4) that are the upper and lower boundaries of the center of the channel width and half the channel width. Propagate. Estimate the flow velocity distribution pattern in the channel width direction from the measurement results of the propagation time of two types of ultrasonic beams transmitted and received from the center of each piezoelectric element through the acoustic matching layer, and compare the ratio of propagation time ratios Then, based on the magnitude relationship, an appropriate flow rate range is estimated, and at the same time, an optimum flow velocity distribution correction coefficient is allocated according to the ratio value, thereby calculating and calculating the average flow velocity. Thereby, stable and highly accurate measurement can be realized without being affected by the flow velocity distribution in the width direction due to the flow rate region.

また、超音波の送受信による時間計測結果から演算し算出した流速結果から、流速の比の値を比較し、その大小関係に基づいて、妥当な流量域を予測すると同時に、比の値に応じて最適な流速分布補正係数を割り振ることで平均流速を演算し算出するようにしてもよい。これにより、流量域による幅方向の流速分布の影響を受けず安定した高精度な計測が実現できる。無論、計測分解能がそれほど必要でない場合では、周波数により超音波ビームを最適化しても良い。   In addition, from the flow velocity result calculated and calculated from the time measurement result by ultrasonic transmission / reception, the flow rate ratio value is compared, and based on the magnitude relationship, an appropriate flow rate range is predicted, and at the same time, the ratio value The average flow velocity may be calculated and calculated by assigning an optimal flow velocity distribution correction coefficient. Thereby, stable and highly accurate measurement can be realized without being affected by the flow velocity distribution in the width direction due to the flow rate region. Of course, when the measurement resolution is not so necessary, the ultrasonic beam may be optimized according to the frequency.

このように、複数の指向性の異なる超音波ビームにより、流速分布のパターンを推定できる結果、流量域が予測でき、その結果が乱流域と判定された場合には、超音波の音圧がほぼ最大となる中心周波数帯域(±50kHz)により超音波ビームを利用することで、乱流により超音波ビームの送受信効率が低下したとしても、計測に影響されず、安定した流速を算出し、被測定流体の流量を算出できる。   As described above, the flow velocity distribution pattern can be estimated by a plurality of ultrasonic beams having different directivities, and as a result, the flow area can be predicted, and when the result is determined to be a turbulent flow area, the sound pressure of the ultrasonic wave is almost equal. By using an ultrasonic beam in the maximum center frequency band (± 50 kHz), even if the transmission / reception efficiency of the ultrasonic beam is reduced due to turbulence, the measurement is not affected by the measurement, and a stable flow velocity is calculated and measured. The flow rate of the fluid can be calculated.

また、同一の流体での流量による流速分布の補正係数の妥当な値は、流体の種類や、流路寸法に応じて微妙に変動する。従って、流体の種類や、流路寸法、流量レンジの少なくとも1つに基づいて、流速分布補正係数とは異なる別の補正係数を付与することで、流路幅方向に流体の粘性や密度の相異で微妙に変化する流速分布の影響を考慮した最適な補正係数を割り振ることができる。   In addition, the appropriate value of the correction coefficient of the flow velocity distribution due to the flow rate in the same fluid varies slightly depending on the type of fluid and the flow path dimensions. Therefore, by applying another correction coefficient different from the flow velocity distribution correction coefficient based on at least one of the type of fluid, the flow path dimensions, and the flow rate range, the viscosity and density phases of the fluid in the flow path width direction. It is possible to assign an optimal correction factor that takes into account the effects of different and subtly changing flow velocity distributions.

このように、流路幅方向の流速分布が流体の種類や、流路寸法に影響を受け無いよう、流体の種類や、流路寸法、流量レンジの少なくとも1つに基づいて、流速分布補正係数とは異なる別の補正係数を付与することで、補正係数を最適化させることができるので、流量域による幅方向の流速分布の影響を気にせず、全流量域に渡って安定し高精度な計測が実現できる。
すなわち、時間計測情報から演算し算出した流速結果から、各流速値における比の値を比較し、その大小関係に基づいて、流路幅方向における流速分布のパターンを推定し、妥当な流量域を予測すると同時に、比の値に応じて最適化された流速分布補正係数を変更し、さらには、流体の種類や、流路寸法、流量レンジの少なくとも1つに基づいて、流速分布補正係数とは異なる別の補正係数を付与することで、流量域による幅方向の流速分布が流体の種類や流路寸法に関わらず、全流量域に渡って安定した高精度な計測が実現できる。
Thus, the flow velocity distribution correction coefficient is based on at least one of the fluid type, the channel size, and the flow rate range so that the flow velocity distribution in the channel width direction is not affected by the fluid type and the channel size. By applying another correction coefficient different from, it is possible to optimize the correction coefficient, so that the influence of the flow velocity distribution in the width direction due to the flow area is not concerned, and stable and highly accurate over the entire flow area. Measurement can be realized.
That is, from the flow velocity result calculated and calculated from the time measurement information, the ratio value in each flow velocity value is compared, the flow velocity distribution pattern in the channel width direction is estimated based on the magnitude relationship, and an appropriate flow area is determined. At the same time as the prediction, the flow velocity distribution correction coefficient optimized according to the ratio value is changed, and further, based on at least one of the type of fluid, the channel size, and the flow range, what is the flow velocity distribution correction coefficient? By applying different correction coefficients, stable and highly accurate measurement can be realized over the entire flow rate range regardless of the type of fluid flow and the flow path dimensions.

超音波トランスジューサを構成する圧電素子の寸法と、それに伴う共振周波数、また音響整合層の寸法を、流路を流れる流体の種類や、流路形状・寸法に応じて変化させることで、流体の種類によって異なる粘性、密度の相異に伴う流速値の相異により、流体を伝播する超音波の指向性に差があっても、また流路形状・寸法によるビームエリアに差があっても、流路幅方向を少なくとも2つのエリアに分割し、最適な超音波ビームをそれぞれ送受信させることができる。   By changing the dimensions of the piezoelectric elements that make up the ultrasonic transducer, the resonance frequency associated therewith, and the dimensions of the acoustic matching layer according to the type of fluid that flows through the flow path and the shape and dimensions of the flow path, Even if there is a difference in the directivity of the ultrasonic wave propagating through the fluid due to the difference in the viscosity and density depending on the viscosity and density, The road width direction can be divided into at least two areas, and optimal ultrasonic beams can be transmitted and received.

幅方向の区分けされたそれぞれのエリアで、流路幅方向で異なる流速分布に応じた超音波送受信による伝播時間を得ることができ、その伝播時間の結果から、伝播時間の比の値を比較し、その大小関係に基づいて、流路幅方向における流速分布のパターンを推定し、妥当な流量域を予測すると同時に、比の値に応じて最適な流速分布補正係数を割り振ることで、流路断面を横切る平均流速を演算し算出することができる。このため、流量域による幅方向の流速分布の影響を受けず、全流量域に渡って安定し高精度な計測が実現できる。   In each area divided in the width direction, it is possible to obtain the propagation time by ultrasonic transmission / reception according to the flow velocity distribution different in the channel width direction, and compare the propagation time ratio value from the propagation time result. Based on the magnitude relationship, the flow velocity distribution pattern in the flow channel width direction is estimated, and a reasonable flow rate region is predicted, and at the same time, the optimum flow velocity distribution correction coefficient is assigned according to the ratio value, The average flow velocity across the can be calculated and calculated. For this reason, it is not influenced by the flow velocity distribution in the width direction due to the flow rate region, and stable and highly accurate measurement can be realized over the entire flow rate region.

また、超音波の送受信による時間計測結果に基づいて演算し算出した流速結果から、流速の比の値を比較し、その大小関係に基づいて、流路幅方向における流速分布のパターンを推定し妥当な流量域を予測すると同時に、比の値に応じて最適な流速分布補正係数を割り振ることで、流路断面を横切る平均流速を演算し算出する事ができる。このため、流量域による幅方向の流速分布の影響を受けず、全流量域に渡って安定し高精度な計測が実現できる。   Also, based on the flow velocity result calculated and calculated based on the time measurement result by ultrasonic transmission / reception, the flow rate ratio value is compared, and based on the magnitude relationship, the flow velocity distribution pattern in the channel width direction is estimated and validated. By predicting an appropriate flow rate region and assigning an optimum flow velocity distribution correction coefficient according to the ratio value, it is possible to calculate and calculate the average flow velocity across the cross section of the flow path. For this reason, it is not influenced by the flow velocity distribution in the width direction due to the flow rate region, and stable and highly accurate measurement can be realized over the entire flow rate region.

超音波トランスジューサから放射される超音波のビーム数を、流路を流れる流体の種類や、計測する流量レンジに伴う計測音場の相異に応じて変化させることで、流体の種類によって異なる粘性、密度に応じた流速分布の差があっても、また計測すべき流量レンジによる流速分布に差があっても、2種類の超音波ビームパターン、すなわち、流路幅よりも狭い高周波数の超音波ビームパターンと、流路幅と略等しい低周波数の超音波ビームパターンとを送受信させることができる。   By changing the number of ultrasonic beams emitted from the ultrasonic transducer according to the type of fluid flowing in the flow path and the difference in the measurement sound field associated with the flow range to be measured, the viscosity varies depending on the type of fluid, Even if there is a difference in flow velocity distribution depending on the density, and even if there is a difference in flow velocity distribution depending on the flow range to be measured, two types of ultrasonic beam patterns, that is, high-frequency ultrasonic waves that are narrower than the channel width A beam pattern and a low-frequency ultrasonic beam pattern substantially equal to the channel width can be transmitted and received.

これにより、流路幅方向を区分けされたそれぞれのエリアで、流路幅方向で異なる流速分布に応じた超音波送受信による伝播時間が得られるので、その伝播時間の結果から、伝播時間の比の値を比較し、その大小関係に基づいて、流路幅方向における流速分布のパターンを推定し、妥当な流量域を予測すると同時に、比の値に応じて最適な流速分布補正係数を割り振ることで、流路断面を横切る平均流速を演算し算出することができる。これにより、流量域による幅方向の流速分布の影響を受けず、全流量域に渡って安定し高精度な計測が実現できる。   As a result, propagation time by ultrasonic transmission / reception corresponding to different flow velocity distributions in the channel width direction can be obtained in each area divided in the channel width direction. By comparing the values, estimating the flow velocity distribution pattern in the channel width direction based on the magnitude relationship, predicting an appropriate flow rate range, and assigning the optimum flow velocity distribution correction coefficient according to the ratio value The average flow velocity across the channel cross section can be calculated and calculated. As a result, stable and highly accurate measurement can be realized over the entire flow rate range without being affected by the flow velocity distribution in the width direction due to the flow rate range.

また、超音波の送受信による時間計測結果から演算し算出した流速結果から、流速の比の値を比較し、その大小関係に基づいて、流路幅方向における流速分布のパターンを推定し、妥当な流量域を予測すると同時に、比の値に応じて最適な流速分布補正係数を割り振ることで、流路断面を横切る平均流速を演算し算出することができる。このため、流量域による幅方向の流速分布の影響を受けず、全流量域に渡って安定し高精度な計測が実現できる。   Also, from the flow velocity result calculated and calculated from the time measurement result by ultrasonic transmission / reception, the ratio value of the flow velocity is compared and the flow velocity distribution pattern in the channel width direction is estimated based on the magnitude relationship, At the same time as predicting the flow rate region, by assigning an optimum flow velocity distribution correction coefficient according to the ratio value, the average flow velocity across the cross section of the flow path can be calculated and calculated. For this reason, it is not influenced by the flow velocity distribution in the width direction due to the flow rate region, and stable and highly accurate measurement can be realized over the entire flow rate region.

本発明の超音波流量計が備える超音波素子の配置例を示す図である。It is a figure which shows the example of arrangement | positioning of the ultrasonic element with which the ultrasonic flowmeter of this invention is provided. 周波数帯域の異なる超音波ビームパターンの一例を示す図である。It is a figure which shows an example of the ultrasonic beam pattern from which a frequency band differs. 超音波トランスジューサの周波数帯域内における上限周波数近傍の超音波ビームパターンの流速分布状態を示す図である。It is a figure which shows the flow-velocity distribution state of the ultrasonic beam pattern of the upper limit frequency vicinity in the frequency band of an ultrasonic transducer. 超音波トランスジューサの周波数帯域内における下限周波数近傍の超音波ビームパターンの流速分布状態を示す図である。It is a figure which shows the flow rate distribution state of the ultrasonic beam pattern of the vicinity of the lower limit frequency within the frequency band of an ultrasonic transducer. 超音波トランスジューサの周波数帯域内の上下限周波数近傍の超音波ビーム及びその超音波ビームによる検出エリアの状態を示す図である。It is a figure which shows the state of the detection area by the ultrasonic beam near the upper-lower limit frequency in the frequency band of an ultrasonic transducer, and the ultrasonic beam. 本発明の超音波流量計による流量計測方法の一例を説明するための図である。It is a figure for demonstrating an example of the flow measurement method by the ultrasonic flowmeter of this invention. 媒質を都市ガス(13A)としたときの流量と流速分布の比の関係を示した図である。It is the figure which showed the relationship between the flow rate and ratio of flow velocity distribution when a medium is city gas (13A). 流路幅方向における流速分布パターン(層流域)の様子を説明するための図である。It is a figure for demonstrating the mode of the flow-velocity distribution pattern (laminar flow area) in a flow path width direction. 被測定流体の種類による超音波ビームパターンの流速分布の相異を説明するための図である。It is a figure for demonstrating the difference in the flow velocity distribution of the ultrasonic beam pattern by the kind of to-be-measured fluid. 被測定流体の種類による超音波ビームパターンの流速分布の相異を説明するための図である。It is a figure for demonstrating the difference in the flow velocity distribution of the ultrasonic beam pattern by the kind of to-be-measured fluid. 流路幅の拡大による超音波ビームパターンの流速分布の相異を説明するための図である。It is a figure for demonstrating the difference in the flow velocity distribution of an ultrasonic beam pattern by expansion of a flow path width. 流路幅の拡大による超音波ビームパターンの流速分布の相異を説明するための図である。It is a figure for demonstrating the difference in the flow velocity distribution of an ultrasonic beam pattern by expansion of a flow path width.

符号の説明Explanation of symbols

10,20…超音波素子(超音波トランスジューサ)、11,21…音響整合層、12,22…圧電素子、13…流量算出部、30…流路。 DESCRIPTION OF SYMBOLS 10,20 ... Ultrasonic element (ultrasonic transducer), 11, 21 ... Acoustic matching layer, 12, 22 ... Piezoelectric element, 13 ... Flow rate calculation part, 30 ... Flow path.

Claims (7)

被測定流体が流れる流路と、該流路を挟んで対向する位置に配置された一対の超音波素子と、該一対の超音波素子により送受信される超音波の伝播時間に基づいて前記被測定流体の流量を算出する流量算出手段とを備えた超音波流量計であって、
前記一対の超音波素子は、該一対の超音波素子の周波数帯域に含まれる2以上の異なる周波数に対応して、互いに指向性が異なる2以上の超音波ビームパターンを送受信することにより、前記流路の幅方向を複数の検出エリアに分割し、
前記流量算出手段は、前記一対の超音波素子間で送受信される前記2以上の超音波ビームパターンの伝播時間あるいは該伝播時間から算出される流速に基づいて、前記被測定流体の流速分布を推定し、該推定した流速分布から前記被測定流体の流量を算出することを特徴とする超音波流量計。
Based on a flow path through which the fluid to be measured flows, a pair of ultrasonic elements arranged at positions facing each other across the flow path, and a propagation time of ultrasonic waves transmitted and received by the pair of ultrasonic elements An ultrasonic flowmeter comprising a flow rate calculation means for calculating a flow rate of fluid,
The pair of ultrasonic elements transmits and receives the two or more ultrasonic beam patterns having different directivities corresponding to two or more different frequencies included in the frequency band of the pair of ultrasonic elements, thereby transmitting the flow. Divide the width direction of the road into multiple detection areas,
The flow rate calculation unit estimates a flow velocity distribution of the fluid to be measured based on a propagation time of the two or more ultrasonic beam patterns transmitted and received between the pair of ultrasonic elements or a flow velocity calculated from the propagation time. And calculating the flow rate of the fluid under measurement from the estimated flow velocity distribution.
請求項1に記載の超音波流量計において、前記2以上の超音波ビームパターンは、前記一対の超音波素子の上限周波数に対応して前記流路の幅よりも狭いビーム幅をもつ第1の超音波ビームパターンと、前記一対の超音波素子の下限周波数に対応して前記流路の幅と略同じビーム幅をもつ第2の超音波ビームパターンとを含むことを特徴とする超音波流量計。   2. The ultrasonic flowmeter according to claim 1, wherein the two or more ultrasonic beam patterns have a beam width narrower than a width of the flow path corresponding to an upper limit frequency of the pair of ultrasonic elements. An ultrasonic flowmeter comprising: an ultrasonic beam pattern; and a second ultrasonic beam pattern having a beam width substantially equal to the width of the flow path corresponding to a lower limit frequency of the pair of ultrasonic elements. . 請求項1又は2に記載の超音波流量計において、前記流量算出手段は、前記2以上の超音波ビームパターンによる伝播時間の比の値あるいは該伝播時間から算出される流速の比の値に基づいて、前記流路の幅方向における流速分布を推定し、該推定した流速分布から前記被測定流体の流量を算出することを特徴とする超音波流量計。   3. The ultrasonic flowmeter according to claim 1, wherein the flow rate calculation means is based on a value of a ratio of propagation times by the two or more ultrasonic beam patterns or a value of a ratio of flow rates calculated from the propagation times. An ultrasonic flowmeter characterized by estimating a flow velocity distribution in the width direction of the flow path and calculating a flow rate of the fluid to be measured from the estimated flow velocity distribution. 請求項3に記載の超音波流量計において、前記流量算出手段は、前記伝播時間の比の値あるいは該伝播時間から算出される流速の比に基づいて、前記流路の幅方向における流速分布を推定し、該推定した流速分布に応じた最適な補正係数を付与し、前記被測定流体の流量を算出することを特徴とする超音波流量計。   4. The ultrasonic flowmeter according to claim 3, wherein the flow rate calculation means calculates a flow velocity distribution in the width direction of the flow path based on a value of the propagation time ratio or a flow velocity ratio calculated from the propagation time. An ultrasonic flowmeter characterized by estimating and applying an optimum correction coefficient according to the estimated flow velocity distribution and calculating a flow rate of the fluid to be measured. 請求項4に記載の超音波流量計において、前記流量算出手段は、流体の種類、流路寸法、流量レンジの少なくとも1つに基づいて、前記補正係数とは異なる別の補正係数を付与することを特徴とする超音波流量計。   5. The ultrasonic flowmeter according to claim 4, wherein the flow rate calculation means gives another correction coefficient different from the correction coefficient based on at least one of a fluid type, a flow path dimension, and a flow rate range. Ultrasonic flow meter characterized by. 請求項2乃至5のいずれか1項に記載の超音波流量計において、前記一対の超音波素子は、前記2以上の超音波ビームパターンより得られた伝播時間あるいは該伝播時間から算出される流速から、前記被測定流体の流量域が乱流域と判断された場合、前記第1の超音波ビームパターン及び前記第2の超音波ビームパターン以外に、前記上下限周波数の略中間となる中心周波数帯域に対応した第3の超音波ビームパターンを送受信し、
前記流量算出手段は、前記第3の超音波ビームパターンの伝播時間あるいは該伝播時間から算出される流速に基づいて、前記被測定流体の流速分布を推定し、該推定した流速分布から前記被測定流体の流量を算出することを特徴とする超音波流量計。
6. The ultrasonic flowmeter according to claim 2, wherein the pair of ultrasonic elements has a propagation time obtained from the two or more ultrasonic beam patterns or a flow velocity calculated from the propagation time. When the flow area of the fluid to be measured is determined to be a turbulent flow area, a center frequency band that is substantially in the middle of the upper and lower limit frequencies other than the first ultrasonic beam pattern and the second ultrasonic beam pattern. A third ultrasonic beam pattern corresponding to
The flow rate calculation means estimates a flow velocity distribution of the fluid to be measured based on a propagation time of the third ultrasonic beam pattern or a flow velocity calculated from the propagation time, and the measured flow rate from the estimated flow velocity distribution. An ultrasonic flowmeter for calculating a flow rate of a fluid.
被測定流体が流れる流路と、該流路を挟んで対向する位置に配置された一対の超音波素子と、該一対の超音波素子により送受信される超音波の伝播時間に基づいて前記被測定流体の流量を算出する流量算出手段とを備えた超音波流量計による流量計測方法であって、
前記一対の超音波素子の周波数帯域に含まれる2以上の異なる周波数に対応して、互いに指向性が異なる2以上の超音波ビームパターンを送受信することにより、前記流路の幅方向を複数の検出エリアに分割し、
前記一対の超音波素子間で送受信される前記2以上の超音波ビームパターンの伝播時間あるいは該伝播時間から算出される流速に基づいて、前記被測定流体の流速分布を推定し、該推定した流速分布から前記被測定流体の流量を算出することを特徴とする流量計測方法。
Based on a flow path through which the fluid to be measured flows, a pair of ultrasonic elements arranged at positions facing each other across the flow path, and a propagation time of ultrasonic waves transmitted and received by the pair of ultrasonic elements A flow rate measurement method using an ultrasonic flowmeter comprising a flow rate calculation means for calculating a flow rate of fluid,
A plurality of ultrasonic beam patterns having different directivities are transmitted / received corresponding to two or more different frequencies included in the frequency band of the pair of ultrasonic elements, thereby detecting a plurality of width directions of the flow path. Divided into areas,
Based on the propagation time of the two or more ultrasonic beam patterns transmitted and received between the pair of ultrasonic elements or the flow velocity calculated from the propagation time, the flow velocity distribution of the fluid to be measured is estimated, and the estimated flow velocity A flow rate measuring method, wherein the flow rate of the fluid to be measured is calculated from the distribution.
JP2007180432A 2007-07-10 2007-07-10 Ultrasonic flow meter and flow measurement method Expired - Fee Related JP5070624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007180432A JP5070624B2 (en) 2007-07-10 2007-07-10 Ultrasonic flow meter and flow measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007180432A JP5070624B2 (en) 2007-07-10 2007-07-10 Ultrasonic flow meter and flow measurement method

Publications (2)

Publication Number Publication Date
JP2009019879A true JP2009019879A (en) 2009-01-29
JP5070624B2 JP5070624B2 (en) 2012-11-14

Family

ID=40359661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007180432A Expired - Fee Related JP5070624B2 (en) 2007-07-10 2007-07-10 Ultrasonic flow meter and flow measurement method

Country Status (1)

Country Link
JP (1) JP5070624B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018026128A1 (en) * 2016-08-05 2018-02-08 전자부품연구원 Ultrasonic flowmeter and flow rate measurement method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09280916A (en) * 1996-04-11 1997-10-31 Aichi Tokei Denki Co Ltd Ultrasonic flowmeter
JPH10197302A (en) * 1997-01-07 1998-07-31 Osaka Gas Co Ltd Ultrasonic flowmeter
JP2005345445A (en) * 2004-06-07 2005-12-15 Ricoh Elemex Corp Ultrasonic flowmeter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09280916A (en) * 1996-04-11 1997-10-31 Aichi Tokei Denki Co Ltd Ultrasonic flowmeter
JPH10197302A (en) * 1997-01-07 1998-07-31 Osaka Gas Co Ltd Ultrasonic flowmeter
JP2005345445A (en) * 2004-06-07 2005-12-15 Ricoh Elemex Corp Ultrasonic flowmeter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018026128A1 (en) * 2016-08-05 2018-02-08 전자부품연구원 Ultrasonic flowmeter and flow rate measurement method

Also Published As

Publication number Publication date
JP5070624B2 (en) 2012-11-14

Similar Documents

Publication Publication Date Title
WO2010070891A1 (en) Ultrasonic flowmeter
KR100492308B1 (en) Ultrasonic wave flow measuring method
JP2008134267A (en) Ultrasonic flow measurement method
JP5974307B2 (en) Ultrasonic flow meter
KR20050100004A (en) Ultrasonic type fluid measuring device
JP5070620B2 (en) Ultrasonic flow meter and flow measurement method
JP2895704B2 (en) Ultrasonic flow meter
JP2002520583A (en) Multi-code flow meter
Calogirou et al. Effect of wall roughness changes on ultrasonic gas flowmeters
JP5070624B2 (en) Ultrasonic flow meter and flow measurement method
JP2001304931A (en) Clamping-on ultrasonic flow rate measuring method and multipath ultrasonic flow rate measuring method as well as clamping-on ultrasonic flowmeter and multipath ultrasonic flowmeter
JP5145580B2 (en) Ultrasonic flow meter and flow measurement method
JP4604520B2 (en) Flow measuring device
JP2004170384A (en) Apparatus for measuring flow of fluid
KR100935876B1 (en) Method of measuring flow velocity by ultrasonic waves and method of measuring flux by ultrasonic waves
JP2009103460A (en) Ultrasonic flowmeter
JP6982737B2 (en) Ultrasonic flow meter
JP2008268090A (en) Ultrasonic flowmeter
JP2956805B2 (en) Ultrasonic flow meter
JP2004138628A (en) Ultrasonic wave flowmeter
JP2000065613A (en) Ultrasonic flowmeter
JP4424936B2 (en) Uniform flow rate structure and flow rate measuring device in flow path
JP7211830B2 (en) ultrasonic flow meter
CN110799808B (en) Apparatus and method for ultrasonic flow measurement
US20210310839A1 (en) Flowmeter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120802

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees