JP2004138628A - Ultrasonic wave flowmeter - Google Patents

Ultrasonic wave flowmeter Download PDF

Info

Publication number
JP2004138628A
JP2004138628A JP2004039069A JP2004039069A JP2004138628A JP 2004138628 A JP2004138628 A JP 2004138628A JP 2004039069 A JP2004039069 A JP 2004039069A JP 2004039069 A JP2004039069 A JP 2004039069A JP 2004138628 A JP2004138628 A JP 2004138628A
Authority
JP
Japan
Prior art keywords
ultrasonic
flow
wave
propagation
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004039069A
Other languages
Japanese (ja)
Other versions
JP3916162B2 (en
Inventor
Akihisa Adachi
足立 明久
Yuji Nakabayashi
中林 裕治
Masahiko Hashimoto
橋本 雅彦
Toshiharu Sato
佐藤 利春
Shigeru Iwanaga
岩永 茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004039069A priority Critical patent/JP3916162B2/en
Publication of JP2004138628A publication Critical patent/JP2004138628A/en
Application granted granted Critical
Publication of JP3916162B2 publication Critical patent/JP3916162B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic wave flowmeter in which the influence of a phase difference between direct wave and reflected wave exerted on a result of measurement is reduced. <P>SOLUTION: The ultrasonic wave flowmeter comprises a pair of ultrasonic vibrators 10 and 11, an instrument section 12 which measures a time of ultrasonic wave transfer across the pair of ultrasonic vibrators 10 and 11, and a computation section 13 which calculates a volume of a fluid flowing through a flow measurement section 7 based on an output from the instrument section 12. The flow measuring section 7 and the pair of ultrasonic vibrators 10 and 11 are composed so as to reduce the influence exerted on the result of measurement by a reflected wave reflected from a wall surface of the flow measuring section 7. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は、超音波により流体の流量の計測を行う超音波流量計に関するものである。 The present invention relates to an ultrasonic flowmeter for measuring a flow rate of a fluid by ultrasonic waves.

 従来のこの種の超音波流量計は、例えば特開平8−233628号公報が知られており、図27Aおよび図27Bに示すように、断面4が矩形の流路1の一部に超音波振動子2と3を対向するよう配置し、超音波振動子2から送信した超音波を超音波振動子3で受信するまでの伝搬時間と、超音波振動子3から送信した超音波を超音波振動子2で受信するまでの伝搬時間の差から流量演算手段5で流体の速度を算出するとともにその時の流体のレイノルズ数から流路1内の流速分布を類推し、補正係数を求め流量を演算していた。
特開平8−233628号公報
A conventional ultrasonic flow meter of this type is known, for example, from Japanese Patent Application Laid-Open No. Hei 8-233628. As shown in FIGS. 27A and 27B, an ultrasonic vibration meter The transducers 2 and 3 are arranged so as to face each other, the propagation time until the ultrasonic wave transmitted from the ultrasonic transducer 2 is received by the ultrasonic transducer 3 and the ultrasonic wave transmitted from the ultrasonic transducer 3 The flow velocity calculating means 5 calculates the velocity of the fluid from the difference in the propagation time until the signal is received by the child 2, and also estimates the flow velocity distribution in the flow path 1 from the Reynolds number of the fluid at that time to obtain a correction coefficient and calculate the flow rate. I was
JP-A-8-233628

 しかしながら、従来の超音波流量計では、流路内壁面で反射された反射波と反射されずに伝搬する直接波の伝搬距離が異なるため、反射波と直接波に位相差が生じ、この反射波と直接波の合成波を受信波として観測しているので反射波と直接波の位相差により受信波の振幅が増減したり、受信波の周期が変化してしまい、測定精度や測定可能な流量範囲が狭くなるという課題を有していた。 However, in the conventional ultrasonic flowmeter, since the propagation distance between the reflected wave reflected on the inner wall surface of the flow path and the direct wave propagating without being reflected is different, a phase difference occurs between the reflected wave and the direct wave. Because the combined wave of the direct wave and the direct wave is observed as the received wave, the amplitude of the received wave increases or decreases due to the phase difference between the reflected wave and the direct wave, or the period of the received wave changes, resulting in measurement accuracy and measurable flow rate. There was a problem that the range became narrow.

 本発明は上記課題を解決するするために、直接波と反射波との間の位相差が測定結果に与える影響が低減されるように、流量測定部と一対の超音波振動子を構成したものである。 In order to solve the above-mentioned problems, the present invention comprises a flow rate measuring unit and a pair of ultrasonic vibrators so that the effect of a phase difference between a direct wave and a reflected wave on a measurement result is reduced. It is.

 上記発明によれば、流路測定部内での反射波の影響を小さくすることができるので広範囲にわたって測定精度が向上できる。 According to the above invention, the influence of the reflected wave in the flow path measurement unit can be reduced, so that the measurement accuracy can be improved over a wide range.

 本発明の第1の形態の超音波流量計は、一対の超音波振動子と、前記一対の超音波振動子間を超音波が伝搬する時間を計測する計測部と、前記計測部の出力に基づいて、流量測定部を流れる流体の量を計算する計算部とを備え、前記流量測定部の壁面によって反射される反射波が前記測定結果に与える影響が低減されるように、前記流量測定部と前記一対の超音波振動子とが構成されているため、流量測定部内での反射波の影響を低減でき、高精度な超音波流量計を得ることができる。 An ultrasonic flowmeter according to a first embodiment of the present invention includes a pair of ultrasonic transducers, a measuring unit that measures the time that ultrasonic waves propagate between the pair of ultrasonic transducers, and an output of the measuring unit. A calculation unit for calculating the amount of fluid flowing through the flow measurement unit based on the flow measurement unit, so that the effect of the reflected wave reflected by the wall surface of the flow measurement unit on the measurement result is reduced. And the pair of ultrasonic transducers, the influence of the reflected wave in the flow measuring unit can be reduced, and a high-accuracy ultrasonic flow meter can be obtained.

 本発明の第2の形態の超音波流量計は、超音波を用いて流体の流量を測定する超音波流量計において、一対の超音波振動子と、前記一対の超音波振動子間を超音波が伝搬する時間を計測する計測部と、前記計測部の出力に基づいて流量測定部を流れる流体の量を計算する計算部とを備え、前記流量測定部は当該流量測定部の壁面に反射することなく前記流量測定部を流れる流体中を伝搬する直接波と前記流量測定部の壁面によって反射される反射波との間の位相差が測定結果に影響を与える構成で、前記直接波と前記反射波との位相差が前記測定結果に与える影響が低減されるように、前記流量測定部と前記一対の超音波振動子とが構成されているため、流量測定部内での反射波の影響を低減でき、高精度な超音波流量計を得ることができる。 An ultrasonic flowmeter according to a second embodiment of the present invention is an ultrasonic flowmeter for measuring a flow rate of a fluid using ultrasonic waves, wherein an ultrasonic wave is transmitted between a pair of ultrasonic vibrators and the pair of ultrasonic vibrators. A measuring unit that measures the time that the light propagates, and a calculating unit that calculates the amount of fluid flowing through the flow measuring unit based on the output of the measuring unit, wherein the flow measuring unit reflects off the wall surface of the flow measuring unit The phase difference between the direct wave propagating in the fluid flowing through the flow measurement unit and the reflected wave reflected by the wall surface of the flow measurement unit without affecting the measurement result, wherein the direct wave and the reflection Since the flow rate measuring unit and the pair of ultrasonic transducers are configured so that the phase difference between the wave and the effect on the measurement result is reduced, the influence of the reflected wave in the flow measuring unit is reduced. Can obtain a high-accuracy ultrasonic flowmeter .

 本発明の第3の形態の超音波流量計は、超音波を用いて流体の流量を測定する超音波流量計において、一対の超音波振動子と、前記一対の超音波振動子間を超音波が伝搬する時間を計測する計測部と、前記計測部の出力に基づいて流量測定部を流れる流体の量を計算する計算部とを備え、前記流量測定部は当該流量測定部の壁面に反射することなく前記流量測定部を流れる流体中を伝搬する直接波と前記流量測定部の壁面によって反射される反射波との間の位相差が測定結果に影響を与える構成で、前記直接波と前記反射波との位相差が前記測定結果に与える影響が低減されるように、前記一対の超音波振動子の周波数と、前記一対の超音波振動子間の距離と、前記流量測定部の断面形状に関連するパラメータとの組合せによって特徴づけられるため、簡易な構成で流量測定部内での反射波の影響を低減でき、高精度な超音波流量計を得ることができる。 An ultrasonic flowmeter according to a third embodiment of the present invention is an ultrasonic flowmeter for measuring a flow rate of a fluid using ultrasonic waves, wherein an ultrasonic wave is transmitted between a pair of ultrasonic vibrators and the pair of ultrasonic vibrators. A measuring unit that measures the time that the light propagates, and a calculating unit that calculates the amount of fluid flowing through the flow measuring unit based on the output of the measuring unit, wherein the flow measuring unit reflects off the wall surface of the flow measuring unit The phase difference between the direct wave propagating in the fluid flowing through the flow measurement unit and the reflected wave reflected by the wall surface of the flow measurement unit without affecting the measurement result, wherein the direct wave and the reflection As the effect of the phase difference with the wave on the measurement result is reduced, the frequency of the pair of ultrasonic transducers, the distance between the pair of ultrasonic transducers, and the cross-sectional shape of the flow rate measurement unit Characterized by combination with related parameters Is therefore possible to reduce the influence of the reflected wave in the flow measurement portion with a simple configuration, it is possible to obtain a high-precision ultrasonic flowmeter.

 本発明の第4の形態の超音波流量計は、第3の形態の超音波流量計において、前記直接波は、前記一対の超音波振動子の中心を結ぶ直線に沿って伝搬する波であり、前記反射波は、前記一対の超音波振動子の中心と前記流量測定部の壁面上の点とを結ぶことによって形成される二等辺三角形の二等辺に沿って伝搬する波であり、前記直接波の伝搬距離と前記反射波の伝搬距離との差から生じる伝搬位相差が3π/2以上であるため、簡易な構成で流量測定部内での反射波の影響を低減でき、高精度な超音波流量計を得ることができる。 An ultrasonic flowmeter according to a fourth aspect of the present invention is the ultrasonic flowmeter according to the third aspect, wherein the direct wave is a wave that propagates along a straight line connecting the centers of the pair of ultrasonic transducers. The reflected wave is a wave that propagates along the isosceles of an isosceles triangle formed by connecting the center of the pair of ultrasonic transducers and a point on the wall surface of the flow rate measurement unit, Since the propagation phase difference resulting from the difference between the propagation distance of the wave and the propagation distance of the reflected wave is 3π / 2 or more, the influence of the reflected wave in the flow measurement unit can be reduced with a simple configuration, and a highly accurate ultrasonic wave A flow meter can be obtained.

 本発明の第5の形態の超音波流量計は、第3の形態の超音波流量計において、前記直接波は、前記一対の超音波振動子の中心を結ぶ直線に沿って伝搬する波であり、前記反射波は、前記流量測定部の壁面によって1回だけ反射される波であり、前記直接波の伝搬時間に比べ前記反射波の最短伝搬時間が長くなるよう前記一対の超音波振動子の有効放射面の1つの辺あるい直径を前記流量測定部の高さより短くしたため、簡易な構成で流量測定部内での反射波の影響を低減でき、高精度な超音波流量計を得ることができる。 An ultrasonic flowmeter according to a fifth aspect of the present invention is the ultrasonic flowmeter according to the third aspect, wherein the direct wave is a wave that propagates along a straight line connecting the centers of the pair of ultrasonic transducers. The reflected wave is a wave that is reflected only once by the wall surface of the flow rate measurement unit, and the pair of ultrasonic vibrators are arranged such that the shortest propagation time of the reflected wave is longer than the propagation time of the direct wave. Since one side or diameter of the effective radiation surface is shorter than the height of the flow measurement unit, the influence of the reflected wave in the flow measurement unit can be reduced with a simple configuration, and a high-accuracy ultrasonic flow meter can be obtained. .

 本発明の第6の形態の超音波流量計は、第4または第5の形態の超音波流量計において、前記一対の超音波振動子の周波数は所定値以上に設定されているため、流量測定部内での反射波の影響を低減でき、時間分解能も向上できるので、さらに高精度な超音波流量計を得ることができる。 An ultrasonic flowmeter according to a sixth aspect of the present invention is the ultrasonic flowmeter according to the fourth or fifth aspect, wherein the frequency of the pair of ultrasonic transducers is set to a predetermined value or more. Since the influence of the reflected waves in the section can be reduced and the time resolution can be improved, a more accurate ultrasonic flowmeter can be obtained.

 本発明の第7の形態の超音波流量計は、第3の形態の超音波流量計において、前記直接波は、前記一対の超音波振動子の中心を結ぶ直線に沿って伝搬する波であり、前記反射波は、前記一対の超音波振動子の中心と前記流量測定部の壁面上の点とを結ぶことによって形成される二等辺三角形の二等辺に沿って伝搬する波であり、前記直接波の伝搬距離と前記反射波の伝搬距離との差から生じる伝搬位相差が0.2π以下であるため、簡易な構成で流量測定部内での反射波の影響を低減でき、高精度な超音波流量計を得ることができる。 An ultrasonic flowmeter according to a seventh aspect of the present invention is the ultrasonic flowmeter according to the third aspect, wherein the direct wave is a wave propagating along a straight line connecting the centers of the pair of ultrasonic transducers. The reflected wave is a wave that propagates along the isosceles of an isosceles triangle formed by connecting the center of the pair of ultrasonic transducers and a point on the wall surface of the flow rate measurement unit, Since the propagation phase difference resulting from the difference between the propagation distance of the wave and the propagation distance of the reflected wave is 0.2π or less, the influence of the reflected wave in the flow measurement unit can be reduced with a simple configuration, and a highly accurate ultrasonic wave A flow meter can be obtained.

 本発明の第8の形態の超音波流量計は、第7の形態の超音波流量計において、前記超音波流量計は、前記流量測定部を複数の部分に分割する少なくとも1つ以上の分割板をさらに備えているため、流量測定部内での反射波の影響を低減でき、高精度な超音波流量計を得ることができる。 An ultrasonic flowmeter according to an eighth aspect of the present invention is the ultrasonic flowmeter according to the seventh aspect, wherein the ultrasonic flowmeter has at least one or more dividing plates that divide the flow measuring unit into a plurality of parts. Is further provided, the influence of the reflected wave in the flow measurement unit can be reduced, and a highly accurate ultrasonic flowmeter can be obtained.

 本発明の第9の形態の超音波流量計は、第8の形態の超音波流量計において、前記一対の超音波振動子の周波数は所定値以下に設定されているため、流量測定部内での反射波の影響を低減でき、高精度な超音波流量計を得ることができる。 An ultrasonic flowmeter according to a ninth aspect of the present invention is the ultrasonic flowmeter according to the eighth aspect, wherein the frequency of the pair of ultrasonic transducers is set to a predetermined value or less. The influence of the reflected wave can be reduced, and a highly accurate ultrasonic flowmeter can be obtained.

 本発明の第10の形態の超音波流量計は、第1〜5、7のいづれかの形態の超音波流量計において、前記流量測定部の断面形状は矩形であり、前記流量測定部の断面形状に関連するパラメータは前記矩形の高さであるため、簡易な構成で流量測定部内での反射波の影響を低減でき、高精度な超音波流量計を得ることができる。 An ultrasonic flowmeter according to a tenth aspect of the present invention is the ultrasonic flowmeter according to any one of the first to fifth and seventh aspects, wherein the cross-sectional shape of the flow measuring unit is rectangular, and the cross-sectional shape of the flow measuring unit is rectangular. Since the parameter related to is the height of the rectangle, the influence of the reflected wave in the flow measurement unit can be reduced with a simple configuration, and a highly accurate ultrasonic flowmeter can be obtained.

 本発明の第11の形態の超音波流量計は、第1〜5、7のいづれかの形態の超音波流量計において、前記流量測定部の断面形状は円であり、前記流量測定部の断面形状に関連するパラメータは前記円の直径であるため、簡易な構成で流量測定部内での反射波の影響を低減でき、高精度な超音波流量計を得ることができる。 An ultrasonic flowmeter according to an eleventh aspect of the present invention is the ultrasonic flowmeter according to any one of the first to fifth and seventh aspects, wherein the cross-sectional shape of the flow measuring unit is a circle, and the cross-sectional shape of the flow measuring unit is Is related to the diameter of the circle, the influence of the reflected wave in the flow measuring unit can be reduced with a simple configuration, and a high-accuracy ultrasonic flow meter can be obtained.

 本発明の第12の形態の超音波流量計は、第1〜5、7のいづれかの形態の超音波流量計において、前記一対の超音波振動子は、前記一対の超音波振動子の中心を結ぶ線が前記流量測定部の断面の所定方向の中心線に対してシフトするように配置されるため、流量測定部内での反射波の影響を低減でき、高精度な超音波流量計を得ることができる。 An ultrasonic flowmeter according to a twelfth aspect of the present invention is the ultrasonic flowmeter according to any one of the first to fifth and seventh aspects, wherein the pair of ultrasonic vibrators is arranged such that the center of the pair of ultrasonic vibrators is at the center. Since the connecting line is arranged so as to be shifted with respect to the center line in a predetermined direction of the cross section of the flow measurement unit, the influence of the reflected wave in the flow measurement unit can be reduced, and a highly accurate ultrasonic flow meter can be obtained. Can be.

 本発明の第13の形態の超音波流量計は、第12の形態の超音波流量計において、前記一対の超音波振動子の中心を結ぶ線と前記流量測定部の断面の所定方向の中心線とは互いに平行であるため、流量測定部内での反射波の影響を低減でき、高精度な超音波流量計を得ることができる。 An ultrasonic flowmeter according to a thirteenth aspect of the present invention is the ultrasonic flowmeter according to the twelfth aspect, wherein a line connecting the centers of the pair of ultrasonic transducers and a center line in a predetermined direction of a cross section of the flow rate measurement unit are provided. Are parallel to each other, the influence of the reflected wave in the flow measurement unit can be reduced, and a highly accurate ultrasonic flowmeter can be obtained.

 本発明の第14の形態の超音波流量計は、第12の形態の超音波流量計において、前記一対の超音波振動子の中心を結ぶ線と前記流量測定部の断面の所定方向の中心線とは所定の角度をなしているため、流量測定部内での反射波の影響を低減でき、高精度な超音波流量計を得ることができる。 An ultrasonic flowmeter according to a fourteenth aspect of the present invention is the ultrasonic flowmeter according to the twelfth aspect, wherein a line connecting the centers of the pair of ultrasonic transducers and a center line in a predetermined direction of a cross section of the flow measurement part are provided. Is at a predetermined angle, the influence of the reflected wave in the flow measuring unit can be reduced, and a highly accurate ultrasonic flow meter can be obtained.

 本発明の第15の形態の超音波流量計は、第1または第2の形態の超音波流量計において、前記超音波流量計は、前記流量測定部の壁面によって1回だけ反射される反射波の発生を阻止する構成をさらに備えているため、流量測定部内での反射波の影響を低減でき、高精度な超音波流量計を得ることができる。 An ultrasonic flowmeter according to a fifteenth aspect of the present invention is the ultrasonic flowmeter according to the first or second aspect, wherein the ultrasonic flowmeter is a reflected wave reflected only once by a wall surface of the flow measurement unit. Is further provided, so that the influence of the reflected wave in the flow measuring unit can be reduced, and a highly accurate ultrasonic flowmeter can be obtained.

 本発明の第16の形態の超音波流量計は、第15の形態の超音波流量計において、前記一対の超音波振動子の中心を結ぶ線と前記流量測定部の断面の所定方向の中心線とは所定の角度をなしているため、流量測定部内での反射波の影響を低減でき、高精度な超音波流量計を得ることができる。 An ultrasonic flowmeter according to a sixteenth aspect of the present invention is the ultrasonic flowmeter according to the fifteenth aspect, wherein a line connecting the centers of the pair of ultrasonic transducers and a center line in a predetermined direction of a cross section of the flow rate measurement unit are provided. Is at a predetermined angle, the influence of the reflected wave in the flow measuring unit can be reduced, and a highly accurate ultrasonic flow meter can be obtained.

 本発明の第17の形態の超音波流量計は、第1または第2の形態の超音波流量計において、前記超音波流量計は、前記流量測定部に設けられた少なくとも1つの構造体をさらに備えているため、流量測定部内での反射波の影響を低減でき、高精度な超音波流量計を得ることができる。 An ultrasonic flowmeter according to a seventeenth aspect of the present invention is the ultrasonic flowmeter according to the first or second aspect, wherein the ultrasonic flowmeter further includes at least one structure provided in the flow rate measurement unit. Since it is provided, the influence of the reflected wave in the flow rate measuring unit can be reduced, and a high-accuracy ultrasonic flow meter can be obtained.

 本発明の第18の形態の超音波流量計は、第17の形態の超音波流量計において、前記少なくとも1つの構造体は、前記一対の超音波振動子の近傍に配置されているため、流量測定部内での反射波の影響を低減でき、高精度な超音波流量計を得ることができる。 An ultrasonic flowmeter according to an eighteenth aspect of the present invention is the ultrasonic flowmeter according to the seventeenth aspect, wherein the at least one structure is disposed near the pair of ultrasonic transducers. The influence of the reflected wave in the measuring section can be reduced, and a highly accurate ultrasonic flowmeter can be obtained.

 本発明の第19の形態の超音波流量計は、第17の形態の超音波流量計において、前記少なくとも1つの構造体は、前記流量測定部の壁面に配置されているため、流量測定部内での反射波の影響を低減でき、高精度な超音波流量計を得ることができる。 An ultrasonic flowmeter according to a nineteenth aspect of the present invention is the ultrasonic flowmeter according to the seventeenth aspect, wherein the at least one structure is disposed on a wall surface of the flow measurement unit. The effect of the reflected wave can be reduced, and a highly accurate ultrasonic flowmeter can be obtained.

 本発明の第20の形態の超音波流量計は、第1または第2の形態の超音波流量計において、前記流量測定部の壁面には、少なくとも1つ以上の凹部または凸部が設けられているため、流量測定部内での反射波の影響を低減でき、高精度な超音波流量計を得ることができる。 An ultrasonic flowmeter according to a twentieth aspect of the present invention is the ultrasonic flowmeter according to the first or second aspect, wherein at least one concave or convex part is provided on a wall surface of the flow rate measuring unit. Therefore, the influence of the reflected wave in the flow measuring unit can be reduced, and a high-accuracy ultrasonic flow meter can be obtained.

 本発明の第21の形態の超音波流量計は、第20の形態の超音波流量計において、前記超音波流量計は、前記凹部を覆うメッシュ構造体をさらに備えているため、流量測定部内での反射波の影響を低減でき、高精度な超音波流量計を得ることができる。 An ultrasonic flowmeter according to a twenty-first aspect of the present invention is the ultrasonic flowmeter according to the twentieth aspect, wherein the ultrasonic flowmeter further includes a mesh structure that covers the concave portion. The effect of the reflected wave can be reduced, and a highly accurate ultrasonic flowmeter can be obtained.

 本発明の第22の形態の超音波流量計は、第1または第2の形態の超音波流量計において、前記一対の超音波振動子は、前記一対の超音波振動子の中心を結ぶ線と前記一対の超音波振動子の少なくとも一方の指向性を示す方向とが所定の角度をなすように配置されているため、流量測定部内での反射波の影響を低減でき、高精度な超音波流量計を得ることができる。 An ultrasonic flowmeter according to a twenty-second aspect of the present invention is the ultrasonic flowmeter according to the first or second aspect, wherein the pair of ultrasonic vibrators are connected to a line connecting centers of the pair of ultrasonic vibrators. Since the direction indicating the directivity of at least one of the pair of ultrasonic transducers is arranged so as to form a predetermined angle, it is possible to reduce the influence of the reflected wave in the flow measurement unit, and to achieve a high-precision ultrasonic flow rate. You can get a total.

 本発明の第23の形態の超音波流量計は、第1〜5、7のいづれかの形態の超音波流量計において、少なくとも前記流量測定部の上流側に流れの方向を整える整流手段を有しており、流量測定部内の流れの方向を均一化でき、さらに高精度な超音波流量計を得ることができる。 An ultrasonic flowmeter according to a twenty-third aspect of the present invention is the ultrasonic flowmeter according to any one of the first to fifth and seventh aspects, further comprising a rectifying means for arranging a flow direction at least upstream of the flow measuring unit. As a result, the direction of the flow in the flow measurement unit can be made uniform, and a more accurate ultrasonic flowmeter can be obtained.

 以下、本発明の実施例について図面を用いて説明する。なお図面中で同一符号
を付しているものは同一のものであり、詳細な説明は省略する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that components denoted by the same reference numerals in the drawings are the same, and detailed description thereof will be omitted.

 (実施例1)
 図1は本発明の実施例1の超音波流量計の構成図である。また図2は図1の流路6のa−a’線を横から見た断面図である。図1において、6は流路で、7は流量測定部、8、9は流路6の側壁部で、10、11は側壁部8、9に取り付けられた超音波振動子である。12は超音波振動子10、11に接続された計測部で、13は計測部12に接続された計算部である。図2において、14は流路6の下板部で、15は側壁部8、9に接続された上板部である。また流量測定部7の断面形状は矩形で、幅はW0、高さはH0である。
(Example 1)
FIG. 1 is a configuration diagram of an ultrasonic flowmeter according to Embodiment 1 of the present invention. FIG. 2 is a cross-sectional view of the flow path 6 in FIG. In FIG. 1, reference numeral 6 denotes a flow path, 7 denotes a flow rate measuring unit, 8 and 9 denote side walls of the flow path 6, and 10 and 11 denote ultrasonic vibrators attached to the side walls 8 and 9. Reference numeral 12 denotes a measurement unit connected to the ultrasonic transducers 10 and 11, and reference numeral 13 denotes a calculation unit connected to the measurement unit 12. In FIG. 2, reference numeral 14 denotes a lower plate portion of the flow path 6, and 15 denotes an upper plate portion connected to the side wall portions 8 and 9. The cross-sectional shape of the flow measuring unit 7 is rectangular, the width is W0, and the height is H0.

 以上のように構成された超音波流量計の流路の作製方法の一例について図1、図2を用いて説明する。流路6を構成する側壁部8、9、下板部14、上板部15に用いる材料は被測定流体に対して化学変化を生じない材質を用いる。本実施例では被測定流体を例えば空気としたため、材質にはABS樹脂を選択した。 例 An example of a method for manufacturing the flow path of the ultrasonic flowmeter configured as described above will be described with reference to FIGS. The material used for the side walls 8 and 9, the lower plate 14, and the upper plate 15 constituting the flow path 6 is a material that does not cause a chemical change to the fluid to be measured. In this embodiment, since the fluid to be measured is, for example, air, the material is ABS resin.

 側壁部8、9の端面にシール材を介して上板部15をネジどめして、矩形断面の流量測定部7を構成する。また超音波振動子10、11は送受波面が相対するよう側壁部8、9に設けられた取り付け口10a、11aにシール材を介して固定する。 上 The upper plate portion 15 is screwed on the end surfaces of the side wall portions 8 and 9 via a sealing material to form the flow measuring section 7 having a rectangular cross section. The ultrasonic vibrators 10 and 11 are fixed to mounting holes 10a and 11a provided in the side walls 8 and 9 via a sealing material so that the transmitting and receiving surfaces face each other.

 以上のように構成された超音波流量計についてその動作を説明する。超音波振動子10と超音波振動子11の中心を結ぶ距離をLとし、この直線と流れの方向である流量測定部7の長手方向となす角をθとする。また被測定流体である空気の無風状態での音速をC、流量測定部7内での空気の流速をVとする。流路6の上流側に配置された超音波振動子10から送信された超音波は流量測定部7を斜に横断し、下流側に配置された超音波振動子11で受信する。このときの伝搬時間t1は、 The operation of the ultrasonic flowmeter configured as described above will be described. Let L be the distance connecting the centers of the ultrasonic vibrator 10 and the ultrasonic vibrator 11, and let θ be the angle between this straight line and the longitudinal direction of the flow measuring unit 7, which is the direction of flow. The sound velocity of the air to be measured in a windless state is C, and the flow velocity of the air in the flow rate measuring unit 7 is V. The ultrasonic wave transmitted from the ultrasonic transducer 10 arranged on the upstream side of the flow path 6 obliquely crosses the flow rate measuring unit 7 and is received by the ultrasonic transducer 11 arranged on the downstream side. The propagation time t1 at this time is

Figure 2004138628
Figure 2004138628

で示される。次に送信・受信する超音波振動子を切り替え、超音波振動子11から超音波を送信し、超音波振動子10で受信する。このときの伝搬時間t2は、 Indicated by Next, the ultrasonic transducers to be transmitted and received are switched, and ultrasonic waves are transmitted from the ultrasonic transducer 11 and received by the ultrasonic transducer 10. The propagation time t2 at this time is

Figure 2004138628
Figure 2004138628

で示される。t1とt2の式から空気の音速Cを消去すると、 Indicated by Eliminating the sound velocity C of air from the equations of t1 and t2,

Figure 2004138628
Figure 2004138628

の式が得られる。Lとθが既知ならば、計測部12にてt1とt2を測定すれば流速Vが求められる。 Is obtained. If L and θ are known, the flow rate V can be obtained by measuring t1 and t2 with the measuring unit 12.

 この流速Vから流量Qは、流量測定部7の断面面積をS、補正係数をKとすれば、計算部13で、 Q=KSVを演算し、流量を求めることができる。 か ら From the flow velocity V, the flow rate Q can be obtained by calculating Q = KSV in the calculation section 13 assuming that the sectional area of the flow rate measurement section 7 is S and the correction coefficient is K.

 以上のような動作原理で流量を計測する超音波流量計の流量測定部7での超音波の伝搬について図3を用いて説明する。図3は図1の流路6のb−b’線を横から見た断面図である。 (4) The propagation of ultrasonic waves in the flow rate measuring unit 7 of the ultrasonic flow meter that measures the flow rate based on the above operation principle will be described with reference to FIG. FIG. 3 is a cross-sectional view of the flow path 6 in FIG. 1 taken along the line b-b ′.

 超音波振動子10には指向性があるため送信された超音波は一般的に広がりながら流量測定部7を伝搬する。このため超音波振動子11で受信される超音波は、例えば流量測定部7内の伝搬経路17に沿って伝搬する直接波と、伝搬経路18のように上板部15の内壁面で1回反射して受信される反射波が存在する。ここで、伝搬経路17、18は代表的な伝搬経路であり、伝搬経路17以外の直接波や伝搬経路18以外の反射波も存在し、例えば下板部14で反射されて伝搬する反射波や反射回数も1回だけでなく2回以上反射して受信される反射波も存在する。この結果超音波振動子11で受信される受信波は、直接波と反射波の合成波として観測される。ここで、直接波と反射波は伝搬経路17、18が示すように伝搬距離差が生じる。伝搬経路17と伝搬経路18の伝搬距離差をΔLとすると、 (4) Since the ultrasonic vibrator 10 has directivity, the transmitted ultrasonic wave generally propagates through the flow measurement unit 7 while spreading. For this reason, the ultrasonic wave received by the ultrasonic vibrator 11 is, for example, a direct wave propagating along the propagation path 17 in the flow rate measuring unit 7 and one time on the inner wall surface of the upper plate 15 like the propagation path 18. There is a reflected wave that is reflected and received. Here, the propagation paths 17 and 18 are representative propagation paths, and there are direct waves other than the propagation path 17 and reflected waves other than the propagation path 18, such as reflected waves reflected by the lower plate portion 14 and propagated. The number of reflections is not only one, but there are also reflected waves that are reflected and received two or more times. As a result, the received wave received by the ultrasonic transducer 11 is observed as a combined wave of the direct wave and the reflected wave. Here, a difference in propagation distance occurs between the direct wave and the reflected wave as indicated by the propagation paths 17 and 18. Assuming that the propagation distance difference between the propagation path 17 and the propagation path 18 is ΔL,

Figure 2004138628
Figure 2004138628

で示される。超音波振動子の波長λより代表伝搬経路17、18の伝搬距離差を伝搬位相差Δθに換算すると、 Indicated by When the propagation distance difference between the representative propagation paths 17 and 18 is converted into a propagation phase difference Δθ from the wavelength λ of the ultrasonic transducer,

Figure 2004138628
Figure 2004138628

が得られる。このように流量計測部7の内部を伝搬する超音波に伝搬位相差が存在するため、全ての伝搬経路を伝搬する直接波と反射波の重ねあわせである受信波は伝搬位相差による干渉の影響を受けると考えられる。 Is obtained. As described above, since the ultrasonic wave propagating inside the flow rate measuring unit 7 has a propagation phase difference, the received wave which is a superposition of the direct wave and the reflected wave propagating in all the propagation paths is affected by the interference due to the propagation phase difference. It is thought to receive.

 そこで直接波に対する反射波の影響を推定するため、直接波と反射波の伝搬経路分布およびそれぞれの波形の計算を行った。本計算では超音波振動子10、11の放射面形状を正方形(一定)、超音波振動子10、11の距離をL、流量測定部7は無限に広い2枚の平行平板からなると仮定した。また被測定流体の流れは無いものとする。 Therefore, in order to estimate the influence of the reflected wave on the direct wave, the propagation path distribution of the direct wave and the reflected wave and the respective waveforms were calculated. In this calculation, it is assumed that the radiation surface shapes of the ultrasonic vibrators 10 and 11 are square (constant), the distance between the ultrasonic vibrators 10 and 11 is L, and the flow measuring unit 7 is composed of two infinitely wide parallel flat plates. It is assumed that there is no flow of the fluid to be measured.

 伝搬経路17、18の伝搬位相差が例えば0.7π〜2.2πとなるように高さ(H0)を変えた場合の、超音波振動子10から送信され超音波振動子11で受信される超音波の伝搬経路分布を求めた計算結果を図4Aおよび図4Bに示す。直接波を実線、1回反射の反射波を破線、2回反射の反射波を1点鎖線とする。図4Aおよび図4Bの横軸はそれぞれの伝搬経路の伝搬距離、縦軸は相対的な経路別強度を示している。 When the height (H0) is changed so that the propagation phase difference between the propagation paths 17 and 18 is, for example, 0.7π to 2.2π, the signal is transmitted from the ultrasonic transducer 10 and received by the ultrasonic transducer 11. FIGS. 4A and 4B show calculation results of obtaining the propagation path distribution of the ultrasonic wave. The direct wave is a solid line, the reflected wave of one reflection is a broken line, and the reflected wave of two reflections is a one-dot chain line. 4A and 4B, the horizontal axis represents the propagation distance of each propagation path, and the vertical axis represents the relative intensity for each path.

 直接波の伝搬経路分布は超音波振動子10、11の形状が一定であるため変化が見られないが、1回反射波の伝搬経路分布は直接波より広いうえ、伝搬位相差が大きいほうが広い傾向を示している。2回反射の反射波の伝搬経路分布は1回反射よりもさらに広い。また直接波の経路別強度が最も大きくなる距離は伝搬経路17の距離とほぼ等しく、1回反射の反射波の経路別強度が最も大きくなる距離も伝搬経路18の距離とほぼ等しい。 The propagation path distribution of the direct wave does not change because the shapes of the ultrasonic transducers 10 and 11 are constant, but the propagation path distribution of the once reflected wave is wider than that of the direct wave, and the propagation phase difference is larger when the propagation phase difference is larger. Shows the trend. The propagation path distribution of the reflected wave of the twice reflection is wider than that of the single reflection. The distance at which the intensity of the direct wave by the path becomes the largest is substantially equal to the distance of the propagation path 17, and the distance at which the intensity of the once-reflected reflected wave by the path becomes the largest is also substantially equal to the distance of the propagation path 18.

 次に図4Aおよび図4Bの計算結果に、超音波振動子10、11のパルス応答特性を加えて計算した受信波形を図5Aおよび図5Bに示す。ただし超音波振動子10、11の周波数は270kHzとし、直接波を実線、1回反射の反射波を破線、2回反射の反射波を1点鎖線とする。伝搬位相差が大きいほうが1回反射の反射波の振幅は小さい。また2回反射の反射波は1回反射の反射波よりさらに小さい。これは図4Aおよび図4Bに示されるように代表伝搬経路17、18の伝搬位相差が大きいほど、伝搬経路分布が広くかつ傾斜がなだらかなため、全ての伝搬経路について考えると伝搬位相差が広範囲に存在し、反射波同士の干渉により打ち消しあっている。 Next, FIGS. 5A and 5B show reception waveforms calculated by adding the pulse response characteristics of the ultrasonic transducers 10 and 11 to the calculation results of FIGS. 4A and 4B. However, the frequency of the ultrasonic transducers 10 and 11 is 270 kHz, the direct wave is a solid line, the reflected wave once reflected is a broken line, and the reflected wave twice reflected is a one-dot chain line. The larger the propagation phase difference, the smaller the amplitude of the reflected wave once reflected. The reflected wave of the double reflection is even smaller than the reflected wave of the single reflection. This is because, as shown in FIGS. 4A and 4B, the larger the propagation phase difference between the representative propagation paths 17 and 18, the wider the propagation path distribution and the gentler the slope. And cancel each other due to interference between reflected waves.

 また図5Aおよび図5Bにおいて、伝搬位相差が大きいほうが直接波に対する反射波の立上り時間が遅くなる傾向が見られる。 5A and FIG. 5B, the larger the propagation phase difference, the longer the rise time of the reflected wave with respect to the direct wave tends to be.

 以上の計算結果から、反射波の伝搬経路分布が広くなるよう高さ(H0)を設定すれば、あるいは伝搬経路17、18の伝搬位相差が大きくなるように高さ(H0)を設定すれば、直接波への影響を低減できる。さらに超音波振動子の放射面を高さ(H0)より小さくすれば、直接波に対する反射波の影響をさらに低減できる。 From the above calculation results, if the height (H0) is set so that the propagation path distribution of the reflected wave becomes wide, or if the height (H0) is set so that the propagation phase difference between the propagation paths 17 and 18 becomes large, , The influence on the direct wave can be reduced. Further, if the radiation surface of the ultrasonic transducer is smaller than the height (H0), the influence of the reflected wave on the direct wave can be further reduced.

 直接波に対する反射波の影響を確認するため、超音波振動子10、11の距離をL、超音波振動子10、11の有効放射面を正方形、幅をW0(一定)とし、高さ(H0)は伝搬経路17、18の伝搬位相差が0.7π〜2.2πとなるように設定し、空気を用いて行った実験結果を図6、図7に示す。なお超音波振動子10、11の周波数は270kHzとする。 In order to confirm the influence of the reflected wave on the direct wave, the distance between the ultrasonic vibrators 10 and 11 is L, the effective radiation surface of the ultrasonic vibrators 10 and 11 is square, the width is W0 (constant), and the height (H0 ) Are set so that the propagation phase difference between the propagation paths 17 and 18 is 0.7π to 2.2π, and the results of experiments performed using air are shown in FIGS. The frequency of the ultrasonic transducers 10 and 11 is 270 kHz.

 図6、図7の横軸は(式5)を用い求めた直接波の伝搬経路17と反射波の伝搬経路18の伝搬位相差である。なおλは、超音波振動子10、11の流れの無い室温での波長とする。図6の縦軸は超音波振動子10、11を開空間に配置して測定した受信電圧に対する流路6に配置して測定した受信電圧の相対受信電圧である。ただし流れは無しとする。また図7の縦軸は流れが無しでの受信電圧に対する6000リットル/時間程度流して得られた受信電圧の変化率である。 6 and 7 represent the propagation phase difference between the propagation path 17 of the direct wave and the propagation path 18 of the reflected wave obtained by using (Equation 5). Note that λ is a wavelength at room temperature where there is no flow of the ultrasonic transducers 10 and 11. The vertical axis in FIG. 6 is a relative reception voltage of the reception voltage measured by arranging the ultrasonic transducers 10 and 11 in the flow path 6 with respect to the reception voltage measured by arranging the ultrasonic transducers 10 and 11 in the open space. However, there is no flow. The vertical axis in FIG. 7 is the rate of change of the reception voltage obtained by flowing at about 6000 liter / hour with respect to the reception voltage without flow.

 流れが無しでの受信電圧は、図6から伝搬位相差がπ〜1.4π程度の時最も小さくなる傾向が見られる。流れによる受信電圧の変化率は図7から伝搬位相差が0.8π〜1.2π程度の場合、超音波振動子10で送信、超音波振動子11で受信での組合せは受信電圧が最も減少し、反対に超音波振動子11で送信、超音波振動子10で受信での組合せは受信電圧が最も増加する。このように受信電圧が増加する現象は、直接波と反射波の重ね合わせにおいて位相的な影響がなければ起こらない。 6. From FIG. 6, the reception voltage without flow tends to be the smallest when the propagation phase difference is about π to 1.4π. The rate of change of the received voltage due to the flow is as shown in FIG. 7. When the propagation phase difference is about 0.8π to 1.2π, the combination of transmission by the ultrasonic transducer 10 and reception by the ultrasonic transducer 11 has the lowest reception voltage. On the contrary, in the combination of transmission by the ultrasonic transducer 11 and reception by the ultrasonic transducer 10, the reception voltage is the highest. The phenomenon that the reception voltage increases as described above must occur unless the direct wave and the reflected wave are superposed on each other without a phase influence.

 伝搬位相差が3π/2以上では超音波振動子10で送信、超音波振動子11で受信での組合せも、超音波振動子11で送信、超音波振動子10で受信での組合せも、両組合せともに受信電圧が減少する傾向が見られる。これは流れにより超音波振動子10、超音波振動子11の指向性が偏向されたためと考えられる。 When the propagation phase difference is 3π / 2 or more, both the combination of transmission by the ultrasonic transducer 10 and the reception by the ultrasonic transducer 11 and the combination of transmission by the ultrasonic transducer 11 and reception by the ultrasonic transducer 10 are both There is a tendency that the reception voltage decreases in each combination. This is probably because the directivity of the ultrasonic transducers 10 and 11 was deflected by the flow.

 以上の結果より、直接波の伝搬経路17と反射波の伝搬経路18の伝搬位相差が0.8π〜1.4π程度となる高さ(H0)では反射波の影響が大きいため広い測定範囲での高精度な流量計測が困難である。反対に伝搬位相差がおよそ3π/2以上となるように超音波振動子10、11の周波数、超音波振動子10、11の距離(L)、高さ(H0)の組合せを設定すれば反射波の影響を低減でき広い測定範囲での高精度な流量計測が可能となる。また距離(L)、高さ(H0)
を一定とすれば、超音波振動子10、11の周波数を高く設定するほうが伝搬位相差を大きくできるので、さらに高精度な流量計測が可能となる。
From the above results, at the height (H0) where the propagation phase difference between the propagation path 17 of the direct wave and the propagation path 18 of the reflected wave is about 0.8π to 1.4π, the influence of the reflected wave is large, so that the measurement is performed over a wide measurement range. It is difficult to measure the flow rate with high accuracy. Conversely, if the combination of the frequency of the ultrasonic transducers 10 and 11, the distance (L) and the height (H0) of the ultrasonic transducers 10 and 11 is set so that the propagation phase difference becomes about 3π / 2 or more, reflection occurs. The effect of waves can be reduced and high-precision flow measurement over a wide measurement range is possible. Distance (L), height (H0)
If is kept constant, it is possible to increase the propagation phase difference by setting the frequency of the ultrasonic transducers 10 and 11 to be higher, so that a more accurate flow rate measurement can be performed.

 以上のように、本発明によれば直接波と反射波の伝搬位相差が測定結果に影響を与えるような超音波流量計において、伝搬経路17と伝搬経路18の伝搬位相差が3π/2以上となるよう流量測定部7の高さ(H0)、超音波振動子10、11の距離(L)、周波数の組合せを選択することにより簡易な構成で反射波の影響を低減でき、被測定流体の流量を短時間に広範囲に高精度で測定することができる。また流量測定部7に凹部や凸部を設けないため、流れを乱したり、圧力損失を増加させることが少ない。 As described above, according to the present invention, in the ultrasonic flowmeter in which the propagation phase difference between the direct wave and the reflected wave affects the measurement result, the propagation phase difference between the propagation paths 17 and 18 is 3π / 2 or more. By selecting a combination of the height (H0) of the flow rate measuring unit 7, the distance (L) between the ultrasonic transducers 10 and 11, and the frequency so that the influence of the reflected wave can be reduced with a simple configuration, the fluid to be measured can be reduced. Can be measured in a short time with high accuracy over a wide range. Further, since no concave portion or convex portion is provided in the flow rate measuring section 7, the flow is hardly disturbed and the pressure loss is rarely increased.

 なお、実施例1では伝搬経路17、18の伝搬位相差が0.7π〜2.2πとなる高さ(H0)を選択したが、伝搬経路17、18の伝搬位相差が2.2π以上となる高さ(H0)を選択しても構わないし、超音波振動子10、11の距離(L)や周波数を選択しても構わない。 In the first embodiment, the height (H0) at which the propagation phase difference between the propagation paths 17 and 18 is 0.7π to 2.2π is selected, but the propagation phase difference between the propagation paths 17 and 18 is 2.2π or more. The height (H0) may be selected, or the distance (L) and frequency of the ultrasonic transducers 10 and 11 may be selected.

 (実施例2)
 以下、本発明の実施例2について、図8、9を参照しながら説明する。
(Example 2)
Hereinafter, a second embodiment of the present invention will be described with reference to FIGS.

 図8は本発明の実施例2における超音波流量計の流路6のa−a’線を横から見た断面図である。図9は流路6のb−b’線を横から見た断面図である。図8において14、15は流路6の側壁部、下板部、上板部で、以上は図2の構成と同様なものである。図9において10、11は超音波振動子で以上は図3の構成と同様なものである。上記のように構成された超音波流量計の流路の作製方法、動作原理は実施例1と同様となるため省略する。 FIG. 8 is a cross-sectional view of the flow path 6 of the ultrasonic flow meter according to the second embodiment of the present invention, taken along the line a-a ′. FIG. 9 is a cross-sectional view of the flow path 6 taken along line b-b ′. In FIG. 8, reference numerals 14 and 15 denote side walls, a lower plate, and an upper plate of the flow path 6, which are the same as those shown in FIG. In FIG. 9, reference numerals 10 and 11 denote ultrasonic vibrators which have the same configuration as that of FIG. The manufacturing method and operation principle of the flow path of the ultrasonic flowmeter configured as described above are the same as those in the first embodiment, and thus description thereof is omitted.

 圧力損失を少なくするため一般的に流量測定部7の断面積は、被測定流体を供給する配管の内径と同程度とし、流速分布の観点から高さ(H1)と幅(W1)のアスペクト比(W1/H1)を大きくしいたい場合がある。このような場合、伝搬経路19と伝搬経路20の伝搬位相差が3π/2以上となるような超音波振動子10、11の距離(L)、高さ(H1)、周波数の組合せを選択できない場合がある。そこで、アスペクト比を大きくしながら、反射波の影響を低減する手段について考える。 In order to reduce the pressure loss, the cross-sectional area of the flow rate measuring unit 7 is generally set to be substantially the same as the inner diameter of the pipe for supplying the fluid to be measured, and the aspect ratio of the height (H1) and the width (W1) from the viewpoint of the flow velocity distribution. (W1 / H1) may be desired to be large. In such a case, a combination of the distance (L), the height (H1), and the frequency of the ultrasonic transducers 10 and 11 such that the propagation phase difference between the propagation path 19 and the propagation path 20 becomes 3π / 2 or more cannot be selected. There are cases. Therefore, means for reducing the influence of the reflected wave while increasing the aspect ratio will be considered.

 直接波に対する反射波の影響を確認するため、実施例1と同様に超音波振動子10、11の距離をL、超音波振動子10、11の有効放射面を正方形、幅をW1(一定)とし、高さ(H1)は伝搬経路19、20の伝搬位相差が0.05π〜0.7πとなるように設定し、空気を用いて行った実験結果を図10、図11に示す。なお超音波振動子10、11の周波数は270kHzとする。 In order to confirm the influence of the reflected wave on the direct wave, as in the first embodiment, the distance between the ultrasonic vibrators 10 and 11 is L, the effective radiation surface of the ultrasonic vibrators 10 and 11 is square, and the width is W1 (constant). The height (H1) is set such that the propagation phase difference between the propagation paths 19 and 20 is 0.05π to 0.7π, and the results of experiments performed using air are shown in FIGS. The frequency of the ultrasonic transducers 10 and 11 is 270 kHz.

 図10、図11の横軸は(式5)を用い求めた直接波の伝搬経路19と反射波の伝搬経路20の伝搬位相差である。なおλは、超音波振動子10、11の流れの無い室温での波長とする。図10の縦軸は超音波振動子10、11を開空間に配置して測定した受信電圧に対する流路6に配置して測定した受信電圧の相対受信電圧である。ただし流れは無しとする。また図11の縦軸は流れが無しでの受信電圧に対する6000リットル/時間程度流して得られた受信電圧の変化率である。 、 The horizontal axes in FIGS. 10 and 11 represent the propagation phase difference between the propagation path 19 of the direct wave and the propagation path 20 of the reflected wave obtained using (Equation 5). Note that λ is a wavelength at room temperature where there is no flow of the ultrasonic transducers 10 and 11. The vertical axis in FIG. 10 is a relative reception voltage of the reception voltage measured by arranging the ultrasonic transducers 10 and 11 in the flow path 6 with respect to the reception voltage measured by arranging the ultrasonic transducers 10 and 11 in the open space. However, there is no flow. The vertical axis in FIG. 11 represents the rate of change of the reception voltage obtained by flowing the same at about 6000 liters / hour with respect to the reception voltage when there is no flow.

 図10では伝搬位相差が小さくなるど受信電圧は小さくなっている。これは超音波振動子10、11の有効放射面を一定としたため、高さ(H1)を低くすることにより、下板部14、上板部15で超音波振動子10、11の一部分が遮られたためと考えられる。 で は In FIG. 10, the smaller the propagation phase difference, the smaller the received voltage. This is because the effective radiating surfaces of the ultrasonic transducers 10 and 11 are fixed, so that the height (H1) is reduced, so that the lower and upper plate parts 15 and 15 partially block the ultrasonic transducers 10 and 11. It is thought that it was done.

 図11では伝搬位相差が0.2π以上では超音波振動子10で送信、超音波振動子11で受信での組合せと超音波振動子11で送信、超音波振動子10で受信での組合せの変化率に差が見られる。これに対し伝搬位相差が0:2π以下では、超音波振動子10で送信、超音波振動子11で受信での組合せと超音波振動子11で送信、超音波振動子10で受信での組合せの変化率がほぼ等しくなっている。このように変化率が等しくなったのは、流れにより超音波の伝搬速度が早くなる方向でも遅くなる方向でも、直接波に対する反射波の重なり合わせに位相的な影響がないこと意味し、直接波に対する反射波の影響が低減できたと考えられる。 In FIG. 11, when the propagation phase difference is 0.2π or more, the combination of transmission by the ultrasonic transducer 10 and reception by the ultrasonic transducer 11 and the combination of transmission by the ultrasonic transducer 11 and reception by the ultrasonic transducer 10 are shown. There is a difference in the rate of change. On the other hand, when the propagation phase difference is 0: 2π or less, a combination of transmission by the ultrasonic transducer 10 and reception by the ultrasonic transducer 11 and a combination of transmission by the ultrasonic transducer 11 and reception by the ultrasonic transducer 10 Are almost equal. The fact that the rate of change became equal in this way means that there is no phase effect on the superposition of the reflected wave on the direct wave in the direction in which the propagation speed of the ultrasonic wave increases or decreases due to the flow. It is considered that the influence of the reflected wave on the light was reduced.

 以上の結果より、伝搬経路19と伝搬経路20の伝搬位相差をおよそ0.2π以下となるように超音波振動子10、11の周波数、超音波振動子10、11の距離(L)、高さ(H1)の組合せを設定すれば反射波の影響を低減でき広い測定範囲での高精度な流量計測が可能となる。また距離(L)、高さ(H1)を一定とすれば、超音波振動子10、11の周波数を低く設定するほうが伝搬位相差を小さくできるので、さらに高精度な流量計測が可能となる。 From the above results, the frequencies of the ultrasonic vibrators 10 and 11, the distance (L) between the ultrasonic vibrators 10, 11 and the height of the ultrasonic vibrators 10 and 11 are set so that the propagation phase difference between the propagation paths 19 and 20 becomes approximately 0.2π or less. If the combination of the height (H1) is set, the influence of the reflected wave can be reduced and the flow rate can be measured with high accuracy in a wide measurement range. Further, if the distance (L) and the height (H1) are constant, the propagation phase difference can be reduced by setting the frequency of the ultrasonic transducers 10 and 11 to be low, so that the flow rate measurement can be performed with higher accuracy.

 なお、実施例2では伝搬経路19、20の伝搬位相差が0.05π〜0.7πとなる高さ(H1)を選択したが、伝搬経路19、20の伝搬位相差が0.05π以下となる高さ(H1)を選択しても構わないし、超音波振動子10、11の距離(L)や周波数を選択しても構わない。 In the second embodiment, the height (H1) at which the propagation phase difference between the propagation paths 19 and 20 is 0.05π to 0.7π is selected, but the propagation phase difference between the propagation paths 19 and 20 is 0.05π or less. The height (H1) may be selected, or the distance (L) and frequency of the ultrasonic transducers 10 and 11 may be selected.

 (実施例3)
 以下、本発明の実施例3について、図面を参照しながら説明する。
(Example 3)
Hereinafter, a third embodiment of the present invention will be described with reference to the drawings.

 図12は本発明の実施例3における超音波流量計の流路6のa−a’線を横から見た断面図である。図12において8、9、14、15は流路6の側壁部、下板部、上板部で、以上は図2の構成と同様なものである。図2の構成と異なるのは、流量測定部の断面が分割板21a、21bで3分割され、分割流量測定部22a〜22cとなっている点である。 FIG. 12 is a cross-sectional view of the flow path 6 of the ultrasonic flow meter according to the third embodiment of the present invention, taken along line a-a 'of FIG. In FIG. 12, reference numerals 8, 9, 14, and 15 denote side walls, a lower plate, and an upper plate of the flow path 6, which are the same as those in FIG. The difference from the configuration of FIG. 2 is that the cross section of the flow rate measuring unit is divided into three by the dividing plates 21a and 21b, and divided into flow rate measuring units 22a to 22c.

 流量測定部7の断面積と被測定流体を供給する配管の内径と同程度としながら高さ(H2)と幅(W2)のアスペクト比(W2/H2)を大きくすると、流路6を小型化しにくい場合がある。そこで、流量計測部7の断面を複数に分割し、それぞれの分割流量測定部の高さと幅のアスペクト比を大きくする手段を考える。 If the height (H2) and the aspect ratio (W2 / H2) of the width (W2) are increased while keeping the cross-sectional area of the flow rate measuring section 7 and the inner diameter of the pipe for supplying the fluid to be measured, the flow path 6 can be reduced in size. It may be difficult. Therefore, a means for dividing the cross section of the flow rate measuring section 7 into a plurality of sections and increasing the aspect ratio of the height and width of each divided flow rate measuring section will be considered.

 まず超音波流量計の流路6の作製方法の一例について簡単に説明する。例えば高さ(H2)と幅(W2)とのアスペクト比(W2/H2)が5である流量測定部7に対し、厚み0.2mmのSUS製の分割板21a、21bを下板部14の内壁面に平行となるよう側壁部8、9に接着剤にて固定する。分割板21a、21bを側壁部8、9に固定した後、上板部15を側壁部8、9の端面にシール材を介してネジどめ固定する。なお分割流量測定部(22a、22c)のアスペクト比は約20、分割流量測定部(22b)のアスペクト比は約17となるように高さ(H2a、H2b、H2c)を設定する。 First, an example of a method of manufacturing the flow path 6 of the ultrasonic flowmeter will be briefly described. For example, for the flow rate measurement unit 7 in which the aspect ratio (W2 / H2) between the height (H2) and the width (W2) is 5, the SUS split plates 21a and 21b having a thickness of 0.2 mm are attached to the lower plate unit 14. It is fixed to the side walls 8 and 9 with an adhesive so as to be parallel to the inner wall surface. After fixing the divided plates 21a and 21b to the side walls 8 and 9, the upper plate 15 is screwed and fixed to the end surfaces of the side walls 8 and 9 via a sealing material. The heights (H2a, H2b, H2c) are set so that the aspect ratio of the divided flow rate measuring sections (22a, 22c) is about 20, and the aspect ratio of the divided flow rate measuring section (22b) is about 17.

 また分割流量測定部(22b)には伝搬経路23と伝搬経路24に約0.04πの伝搬位相差が生じ、分割流量測定部(22a)には伝搬経路25と伝搬経路26に約0.1πの伝搬位相差が生じるよう、超音波振動子10、11の距離(L)を選択する。なお超音波振動子10、11の有効放射面は正方形、周波数は270kHzとする。以上のように構成された超音波流量計への超音波振動子の取り付け方法、動作原理は実施例1と同様になるため省略する。 In the divided flow rate measuring section (22b), a propagation phase difference of about 0.04π occurs between the propagation paths 23 and 24. In the divided flow rate measuring section (22a), the propagation path 25 and the propagation path 26 have a propagation phase difference of about 0.1π. The distance (L) between the ultrasonic transducers 10 and 11 is selected so that the propagation phase difference of (1) is generated. The effective radiation surfaces of the ultrasonic transducers 10 and 11 are square and the frequency is 270 kHz. The method of attaching the ultrasonic vibrator to the ultrasonic flowmeter configured as described above and the principle of operation are the same as those in the first embodiment, and will not be described.

 次に分割流量測定部22内での超音波の伝搬について、図13に示すような伝搬経路23〜26を用いて説明する。なお伝搬経路23〜26は代表的な伝搬経路であり、実施例1と同様に図示されていない伝搬経路が存在する。図13は流路6のb−b’線を横から見た断面図である。 Next, the propagation of ultrasonic waves in the divided flow rate measuring unit 22 will be described using propagation paths 23 to 26 as shown in FIG. The propagation paths 23 to 26 are representative propagation paths, and there are propagation paths (not shown) as in the first embodiment. FIG. 13 is a cross-sectional view of the flow path 6 taken along the line b-b ′.

 分割流量測定部22bにおいて、直接波は伝搬経路23のように伝搬し、反射波は伝搬経路24のように分割板21bで反射されながら伝搬する。また分割流量測定部22aでは、直接波は伝搬経路25のように伝搬し、反射波は伝搬経路26のように上板部15で反射されながら伝搬する。分割流量測定部22cの高さ(H2c)は分割流量測定部22aの高さ(H2a)と等しく設定してあるので、直接波と反射波の関係は分割流量測定部22aと同様になる。 In the divided flow rate measuring unit 22b, the direct wave propagates along the propagation path 23, and the reflected wave propagates while being reflected by the dividing plate 21b as the propagation path 24. Further, in the divided flow rate measuring unit 22a, the direct wave propagates along the propagation path 25, and the reflected wave propagates while being reflected by the upper plate 15 as the propagation path 26. Since the height (H2c) of the divided flow rate measuring unit 22c is set equal to the height (H2a) of the divided flow rate measuring unit 22a, the relationship between the direct wave and the reflected wave is the same as that of the divided flow rate measuring unit 22a.

 超音波振動子11では分割流路(H2a、H2b、H2c)内を伝搬する全ての直接波と反射波の合成波を受信波として観測する。実施例2で示したように、直接波と反射波の伝搬位相差が0.2π以下となるように分割流量測定部(22a〜22c)の高さを設定したため、各分割流量測定部22a〜22c内での直接波と反射波の重なり合わせの位相的な関係は、流れにより影響を受けない。この結果、直接波に対する反射波の影響が低減できる。 で は The ultrasonic transducer 11 observes, as a reception wave, a combined wave of all direct waves and reflected waves propagating in the divided flow paths (H2a, H2b, H2c). As described in the second embodiment, since the heights of the divided flow rate measuring units (22a to 22c) are set so that the propagation phase difference between the direct wave and the reflected wave is equal to or less than 0.2π, each of the divided flow rate measuring units 22a to 22c is set. The topological relationship between the superposition of the direct wave and the reflected wave in 22c is not affected by the flow. As a result, the influence of the reflected wave on the direct wave can be reduced.

 上記構成のように流量測定部を3分割し、被測定流体である空気を約6000リットル/時間流して行った実験結果では、超音波振動子10で送信、超音波振動子11で受信での組合せの変化率と超音波振動子11で送信、超音波振動子10で受信での組合せの変化率がほぼ等しくなることを確認した。 As a result of an experiment in which the flow rate measuring unit was divided into three parts as described above and air as a fluid to be measured was flowed at about 6000 liters / hour, the ultrasonic vibrator 10 transmitted and the ultrasonic vibrator 11 received. It was confirmed that the change rate of the combination was almost equal to the change rate of the combination in transmission by the ultrasonic transducer 11 and in reception by the ultrasonic transducer 10.

 以上のように、本発明よれば分割板により流量測定部を複数に分割することにより、反射波の影響を低減でき、さらに流れの安定化も図ることができ、被測定流体の流量を短時間に高精度で測定することができる。 As described above, according to the present invention, by dividing the flow measurement unit into a plurality of parts by the dividing plate, the influence of the reflected wave can be reduced, the flow can be stabilized, and the flow rate of the fluid to be measured can be reduced for a short time. Can be measured with high accuracy.

 なお実施例3では、流量測定部を3分割したが、直接波に対する反射波の位相差が小さくできるなら2分割でも4分割以上でも構わないし、高さ(H2a〜H2c)の高さは適宜変更して設定しても構わない。また全ての分割流量測定部に超音波が伝搬するとしたが、流量計測の精度が満足可能ならば全ての分割流量測定部に超音波を伝搬させる必要はない。 In the third embodiment, the flow rate measuring unit is divided into three, but if the phase difference of the reflected wave with respect to the direct wave can be reduced, it may be divided into two or more than four, and the height (H2a to H2c) may be changed as appropriate. You can set it. Also, it is assumed that the ultrasonic wave propagates to all the divided flow rate measuring units, but it is not necessary to propagate the ultrasonic wave to all the divided flow rate measuring units if the accuracy of the flow rate measurement can be satisfied.

 (実施例4)
 以下、本発明の実施例4について、図面を参照しながら説明する。
(Example 4)
Hereinafter, a fourth embodiment of the present invention will be described with reference to the drawings.

 図14は本発明の実施例4における超音波流量計の流路6のb−b’線を横から見た断面図である。図14において8、9、14、15は流路6の側壁部、下板部、上板部で、以上は図3の構成と同様なものである。図3の構成と異なるのは、超音波振動子10、11の中心を結ぶ線27と高さ(H3)の中心線29が平行でかつ同一線上とならないように、超音波振動子10、11を側壁部8、9に配置している点である。 FIG. 14 is a cross-sectional view of the flow path 6 of the ultrasonic flowmeter according to the fourth embodiment of the present invention, taken along line b-b 'of FIG. In FIG. 14, reference numerals 8, 9, 14, and 15 denote side walls, a lower plate portion, and an upper plate portion of the flow channel 6, which are the same as those in FIG. The difference from the configuration of FIG. 3 is that the ultrasonic transducers 10, 11 are arranged so that the line 27 connecting the centers of the ultrasonic transducers 10, 11 and the center line 29 of the height (H3) are parallel and not co-linear. Are disposed on the side wall portions 8 and 9.

 高精度な流量計を得るには反射波の影響を低減することが必要で、下板部14の内壁面からの反射波と上板部15から反射波に伝搬位相差を設けることを考える。その方法の1つとして、下板部14の内壁面からの反射波と上板部15から反射波が異なる位相で超音波振動子に到達するように、流量測定部28の高さ(H3)の中心線29に対し、一対の超音波振動子の中心を結ぶ線27を平行にシフトさせて配置する方法を選択した。 に は In order to obtain a high-precision flowmeter, it is necessary to reduce the influence of the reflected wave, and consider providing a propagation phase difference between the reflected wave from the inner wall surface of the lower plate 14 and the reflected wave from the upper plate 15. As one of the methods, the height (H3) of the flow measurement unit 28 is set so that the reflected wave from the inner wall surface of the lower plate 14 and the reflected wave from the upper plate 15 reach the ultrasonic vibrator with different phases. A method was selected in which a line 27 connecting the centers of a pair of ultrasonic transducers was shifted in parallel to the center line 29 of FIG.

 上記のように構成された超音波流量計の流路の作成方法の一例について説明する。例えば直接波の伝搬経路27と下板部14での反射波の伝搬経路30との伝搬位相差が0.7π、伝搬経路27と上板部15での反射波の伝搬経路31との伝搬位相差が2.2πとなるように、超音波振動子10、11を側壁部8、9にシール材を介してネジどめ固定する。また上板部15を側壁部8、9の端面にシール材を介してネジどめ固定する。なお超音波振動子10、11の距離、有効放射面形状、周波数、被測定流体は実施例1と同様とする。以上のように構成された超音波流量計の動作原理は実施例1と同様になるため省略する。 の 一 An example of a method for creating a flow path of the ultrasonic flowmeter configured as described above will be described. For example, the propagation phase difference between the propagation path 27 of the direct wave and the propagation path 30 of the reflected wave at the lower plate part 14 is 0.7π, and the propagation position between the propagation path 27 and the propagation path 31 of the reflected wave at the upper plate part 15. The ultrasonic vibrators 10 and 11 are screwed and fixed to the side walls 8 and 9 via a sealing material so that the phase difference becomes 2.2π. Further, the upper plate 15 is screwed and fixed to the end surfaces of the side walls 8 and 9 via a sealing material. Note that the distances between the ultrasonic transducers 10 and 11, the effective radiation surface shape, the frequency, and the fluid to be measured are the same as those in the first embodiment. The principle of operation of the ultrasonic flowmeter configured as described above is the same as that of the first embodiment, and will not be described.

 次に流量測定部28での超音波の伝搬について、伝搬経路の一例を用いて説明する。直接波は中心を結ぶ線27に沿って伝搬し、反射波は下板部14の内壁面で反射される伝搬経路30と上板部15の内壁面で反射される伝搬経路31があり、超音波振動子11の中心付近で受信される。なお図示された直接波と反射波の伝搬経路は代表的な伝搬経路であり、図示されていない伝搬経路も実施例1と同様に存在する。中心を結ぶ線27と中心線29が一致している場合は、伝搬経路30と伝搬経路31の伝搬距離が等しいため伝搬位相差は生じない。しかし、中心を結ぶ線27と中心線29を一致させないと、伝搬経路30と伝搬経路31の伝搬距離が異なるため伝搬位相差が生じる。このため反射波同士が干渉の影響を受け、直接波に対する影響を低減させることが可能となる。 Next, the propagation of the ultrasonic wave in the flow measuring unit 28 will be described using an example of a propagation path. The direct wave propagates along a line 27 connecting the centers, and the reflected wave has a propagation path 30 reflected on the inner wall surface of the lower plate part 14 and a propagation path 31 reflected on the inner wall surface of the upper plate part 15. It is received near the center of the acoustic transducer 11. Note that the illustrated propagation paths of the direct wave and the reflected wave are representative propagation paths, and a propagation path that is not illustrated also exists as in the first embodiment. When the line 27 connecting the centers coincides with the center line 29, the propagation path 30 and the propagation path 31 have the same propagation distance, so that there is no propagation phase difference. However, if the line 27 connecting the centers and the center line 29 do not match, a propagation phase difference occurs because the propagation distance between the propagation path 30 and the propagation path 31 is different. Therefore, the reflected waves are affected by the interference, and the influence on the direct wave can be reduced.

 上記構成で空気を約6000リットル/時間流して行った実験では、図8の伝搬位相差が2.2πの結果とほぼ同様の結果になることを確認した。 実 験 In an experiment in which air was flowed at about 6000 liters / hour with the above-described configuration, it was confirmed that the propagation phase difference in FIG. 8 was almost the same as the result of 2.2π.

 以上のように、本発明によれば流量測定部の高さ(H3)の中心線に対し超音波振動子の中心を結ぶ線を平行にシフトさせて配置することにより、下板部と上板部で反射される反射波の伝搬位相差を変えることができ、直接波に対する反射波の影響を低減でき被測定流体の流量を短時間に高精度で測定することができる。 As described above, according to the present invention, the line connecting the center of the ultrasonic vibrator is shifted in parallel with the center line of the height (H3) of the flow measurement unit, so that the lower plate unit and the upper plate are arranged. The propagation phase difference of the reflected wave reflected by the section can be changed, the influence of the reflected wave on the direct wave can be reduced, and the flow rate of the fluid to be measured can be measured in a short time with high accuracy.

 なお実施例4では直接波の伝搬経路27と下板部14での反射波の伝搬経路30との伝搬位相差が0.7π、伝搬経路27と上板部15での反射波の伝搬経路31との伝搬位相差が2.2πとなるように、超音波振動子の中心を結ぶ線27と流量計測部の高さ(H7)の中心線29を平行にシフトして配置するとしたが、上記条件に限定されるわけではなく、適宜変えて構成することができる。 In the fourth embodiment, the propagation phase difference between the propagation path 27 of the direct wave and the propagation path 30 of the reflected wave at the lower plate 14 is 0.7π, and the propagation path 31 of the reflected wave at the propagation path 27 and the upper plate 15. The line 27 connecting the centers of the ultrasonic transducers and the center line 29 of the height (H7) of the flow rate measurement unit are shifted and arranged in parallel so that the propagation phase difference between the two becomes 2.2π. The configuration is not limited to the conditions, and may be changed as appropriate.

 (実施例5)
 以下、本発明の実施例5について、図面を参照しながら説明する。
(Example 5)
Hereinafter, a fifth embodiment of the present invention will be described with reference to the drawings.

 図15は本発明の実施例5における超音波流量計の流路6のb−b’線を横から見た断面図である。図15において8、9、14、15は流路6の側壁部、下板部、上板部で、以上は図3の構成と同様なものである。図3の構成と異なるのは、超音波振動子10、11の中心を結ぶ線32と流量測定部36の高さ(H4)の中心線33とが所定の角度(θ4)となるように、超音波振動子10、11を側壁部8、9に斜めに配置している点である。 FIG. 15 is a cross-sectional view of the ultrasonic flow meter according to the fifth embodiment of the present invention, taken along line b-b 'of the flow path 6. In FIG. 15, reference numerals 8, 9, 14, and 15 denote side walls, a lower plate, and an upper plate of the flow path 6, which are the same as those in FIG. 3 is different from the configuration of FIG. 3 in that the line 32 connecting the centers of the ultrasonic transducers 10 and 11 and the center line 33 of the height (H4) of the flow rate measurement unit 36 have a predetermined angle (θ4). The ultrasonic transducers 10 and 11 are arranged obliquely on the side walls 8 and 9.

 実施例4と同様に、高精度な流量計を得るには反射波の影響を低減することが必要で、下板部14の内壁面からの反射波と上板部15から反射波に伝搬位相差を設けることを考える。その方法の1つとして、一対の超音波振動子の中心を結ぶ線32と高さ(H4)の中心線33とが所定の角度(θ4)を有すよう超音波振動子10、11を配置する方法を選択した。 As in the case of the fourth embodiment, it is necessary to reduce the influence of the reflected wave in order to obtain a high-accuracy flowmeter, and the propagation position of the reflected wave from the inner wall surface of the lower plate portion 14 and the reflected wave from the upper plate portion 15 is reduced. Consider providing a phase difference. As one of the methods, the ultrasonic transducers 10 and 11 are arranged so that a line 32 connecting the centers of a pair of ultrasonic transducers and a center line 33 of a height (H4) have a predetermined angle (θ4). I chose how to do it.

 そこで上記のように構成された超音波流量計の流路の作成方法の一例について説明する。例えば高さ(H4)の中心線33に対し、超音波振動子10、11の中心を結ぶ線32が約2.5度だけ傾くように側壁部8、9に超音波振動子10、11をシール材を介してネジどめ固定する。また上板部15を側壁部8、9の端面にシール材を介してネジどめ固定する。なお超音波振動子10、11の距離、有効放射面形状、周波数、被測定流体は実施例1と同様とする。以上のように構成された超音波流量計の動作原理は実施例1と同様になるため省略する。 (4) An example of a method of creating a flow path of the ultrasonic flowmeter configured as described above will be described. For example, the ultrasonic vibrators 10 and 11 are attached to the side walls 8 and 9 such that the line 32 connecting the centers of the ultrasonic vibrators 10 and 11 is inclined by about 2.5 degrees with respect to the center line 33 of the height (H4). Screw it in and fix it via the sealing material. Further, the upper plate 15 is screwed and fixed to the end surfaces of the side walls 8 and 9 via a sealing material. Note that the distances between the ultrasonic transducers 10 and 11, the effective radiation surface shape, the frequency, and the fluid to be measured are the same as those in the first embodiment. The principle of operation of the ultrasonic flowmeter configured as described above is the same as that of the first embodiment, and will not be described.

 次に流量測定部36での超音波の伝搬について、伝搬経路の一例を用いて説明する。例えば直接波は中心を結ぶ線32に沿って伝搬する。超音波振動子10の中心付近から下板部14と上板部15のそれぞれの方向に同じ角度で放射される伝搬経路34と伝搬経路35を反射波の代表例の1つとして考える。なお図示された直接波と反射波の伝搬経路は代表的な伝搬経路であり、図示されていない伝搬経路も実施例1と同様に存在する。伝搬経路34に沿って伝搬する超音波は下板部14で反射され、伝搬経路35に沿って伝搬する超音波は上板部15で反射される。伝搬経路34と伝搬経路35を伝搬する反射波は、伝搬距離が異なるため伝搬位相差が生じる。 Next, the propagation of the ultrasonic wave in the flow measurement unit 36 will be described using an example of a propagation path. For example, a direct wave propagates along a line 32 connecting the centers. A propagation path 34 and a propagation path 35 radiated from the vicinity of the center of the ultrasonic transducer 10 in the respective directions of the lower plate portion 14 and the upper plate portion 15 at the same angle are considered as one representative example of the reflected wave. Note that the illustrated propagation paths of the direct wave and the reflected wave are representative propagation paths, and a propagation path that is not illustrated also exists as in the first embodiment. The ultrasonic waves propagating along the propagation path 34 are reflected by the lower plate portion 14, and the ultrasonic waves propagating along the propagation path 35 are reflected by the upper plate portion 15. The reflected waves propagating through the propagation path 34 and the propagation path 35 have different propagation distances, so that a propagation phase difference occurs.

 中心を結ぶ線32と中心線33が一致している場合は、伝搬経路34と伝搬経路35の伝搬距離が等しいため伝搬位相差は生じず、超音波振動子11の同じ位置で受信していた。しかし、中心を結ぶ線32と中心線33が2.5度傾いているため、伝搬経路34と伝搬経路35の伝搬距離が異なり伝搬位相差が生じる。 When the line 32 connecting the centers coincides with the center line 33, the propagation distance between the propagation path 34 and the propagation path 35 is equal, so that no propagation phase difference occurs, and the signal is received at the same position of the ultrasonic transducer 11. . However, since the line 32 connecting the centers and the center line 33 are inclined by 2.5 degrees, the propagation distance between the propagation path 34 and the propagation path 35 is different and a propagation phase difference occurs.

 さらに超音波振動子11の異なる位置で受信される。このため反射波同士が干渉の影響を受け、直接波に対する影響を低減させることが可能となる。 Further, it is received at a different position of the ultrasonic transducer 11. Therefore, the reflected waves are affected by the interference, and the influence on the direct wave can be reduced.

 なお実施例5では、高さ(H4)の中心線33に対し超音波振動子10、11の中心を結ぶ線32を約2.5度傾けるとしたが、上記条件に限定されるわけでなく、2.5度よりも大きくしても小さくしても構わない。 In the fifth embodiment, the line 32 connecting the centers of the ultrasonic transducers 10 and 11 is inclined by about 2.5 degrees with respect to the center line 33 of the height (H4). However, the present invention is not limited to the above condition. , May be larger or smaller than 2.5 degrees.

 (実施例6)
 以下、本発明の実施例6について、図面を参照しながら説明する。
(Example 6)
Hereinafter, a sixth embodiment of the present invention will be described with reference to the drawings.

 図16は本発明の実施例6における超音波流量計の流路の上面図である。また図17は図16の流路のc−c’線を横から見た断面図である。また図18は図16の流路のd−d’線を横から見た断面図である。各図において、37は流路で、38は流路37の上板部で、39は上板部38に設けられた超音波振動子10の取付部aである。40は流路37の下板部で、41は下板部40に設けられた超音波振動子11の取付部bで、42、43は流路37の側壁部で、44は流量測定部である。 FIG. 16 is a top view of the flow path of the ultrasonic flow meter according to the sixth embodiment of the present invention. FIG. 17 is a cross-sectional view of the flow channel in FIG. 16 taken along the line c-c '. FIG. 18 is a cross-sectional view of the flow path of FIG. 16 taken along line d-d '. In each of the drawings, reference numeral 37 denotes a flow channel, 38 denotes an upper plate portion of the flow channel 37, and 39 denotes a mounting portion a of the ultrasonic vibrator 10 provided on the upper plate portion 38. Reference numeral 40 denotes a lower plate portion of the flow channel 37, 41 denotes a mounting portion b of the ultrasonic vibrator 11 provided in the lower plate portion 40, 42 and 43 denote side walls of the flow channel 37, and 44 denotes a flow rate measuring portion. is there.

 高精度な流量計を得るには反射波の影響を低減することが必要で、反射波の中でも特に1回反射の反射波の影響を低減することが重要となる。また流速分布の観点から、高さ(H5)と幅(W5)のアスペクト比(W5/H5)を大きくしたい場合もある。そこで流量測定部44の形状にかかわらず、流量測定部44内で1回反射が生じない位置に一対の超音波振動子を配置する方法について考える。
上記のように構成された超音波流量計の流路の作成方法の一例について説明する。流路37を構成する上板部38、下板部40、取付部39、41、側壁部42、43に用いる材料は被測定流体に対して化学変化を生じない材質を用いる。
In order to obtain a high-precision flowmeter, it is necessary to reduce the influence of the reflected wave, and it is important to reduce the influence of the once-reflected reflected wave among the reflected waves. Further, from the viewpoint of the flow velocity distribution, there is a case where it is desired to increase the aspect ratio (W5 / H5) of the height (H5) and the width (W5). Therefore, regardless of the shape of the flow measurement unit 44, a method of arranging a pair of ultrasonic transducers at a position where no single reflection occurs in the flow measurement unit 44 will be considered.
An example of a method for creating a flow path of the ultrasonic flowmeter configured as described above will be described. The material used for the upper plate portion 38, the lower plate portion 40, the mounting portions 39 and 41, and the side wall portions 42 and 43 constituting the flow path 37 is a material that does not cause a chemical change to the fluid to be measured.

 本実施例では被測定流体を例えば空気としたため、材質にはABS樹脂を選択した。まず上板部38の長軸方向と超音波振動子10の取付方向d−d’の角度(θ5)が例えば30度となるように取付部39を上板部38に接着固定する。下板部40の長軸方向と超音波振動子11の取付方向d−d’の角度(θ5)も30度となるように取付部41を上板部40に接着固定する。この上板部38を側壁部42、43の端面にシール剤を介してネジ止めし、断面形状が矩形の流量測定部44を構成する。次に超音波振動子10、11の中心を結ぶ線47とd−d’断面の高さ(H5)の中心線となす角(θ6)が30度となるように、取付部39、41に超音波振動子10、11をシール材45、46を介して固定する。 In this example, since the fluid to be measured was air, for example, ABS resin was selected as the material. First, the mounting portion 39 is bonded and fixed to the upper plate portion 38 such that the angle (θ5) between the major axis direction of the upper plate portion 38 and the mounting direction d-d ′ of the ultrasonic transducer 10 is, for example, 30 degrees. The mounting portion 41 is bonded and fixed to the upper plate portion 40 such that the angle (θ5) between the major axis direction of the lower plate portion 40 and the mounting direction d-d ′ of the ultrasonic transducer 11 is also 30 degrees. The upper plate 38 is screwed to the end surfaces of the side walls 42 and 43 via a sealant to form a flow measuring unit 44 having a rectangular cross section. Next, the mounting portions 39 and 41 are attached to the mounting portions 39 and 41 such that the angle (θ6) formed between the line 47 connecting the centers of the ultrasonic transducers 10 and 11 and the center line of the height (H5) of the dd ′ cross section is 30 degrees. The ultrasonic vibrators 10 and 11 are fixed via sealing materials 45 and 46.

 なお超音波振動子10、11の距離、有効放射面形状、周波数は実施例1と同様とする。以上のように構成された超音波流量計の動作原理は実施例1と同様になるため説明を省略する。 The distance, effective radiation surface shape, and frequency of the ultrasonic transducers 10 and 11 are the same as those in the first embodiment. The operation principle of the ultrasonic flowmeter configured as described above is the same as that of the first embodiment, and the description is omitted.

 次に流量測定部44内での超音波の伝搬について図18に示すような伝搬経路47〜49を用いて説明する。なお伝搬経路47〜49は代表的な伝搬経路であり、図示されていない伝搬経路も存在する。超音波振動子10から送信された直接波は伝搬経路47に沿って超音波振動子11に伝搬する。超音波振動子10から送信される超音波は一般的に広がりながら伝搬するため、伝搬経路48、49に沿って伝搬する超音波も存在する。しかし伝搬経路48に沿って伝搬した超音波は、下板部40で反射されたのち、流量測定部44の壁面でもう1回反射され超音波振動子11に到達することはできない。また伝搬経路49に沿って伝搬した超音波も側壁部42で反射されたのち、流量測定部44の壁面でもう1回反射され超音波振動子11に到達することはできない。このような位置関係に配置された超音波振動子10、11においては、流量測定部44で1回だけ反射されて受信される反射波は存在しない。この結果、直接波に影響を与える反射波は2回反射以上であり、2回反射以上の反射波が直接波に与える影響は1回反射の反射波に比べるとかなり小さいため、反射波の影響が低減できる。 Next, the propagation of the ultrasonic wave in the flow rate measuring unit 44 will be described using propagation paths 47 to 49 as shown in FIG. The propagation paths 47 to 49 are representative propagation paths, and there are also propagation paths not shown. The direct wave transmitted from the ultrasonic transducer 10 propagates along the propagation path 47 to the ultrasonic transducer 11. Since ultrasonic waves transmitted from the ultrasonic transducer 10 generally propagate while spreading, there are also ultrasonic waves that propagate along the propagation paths 48 and 49. However, the ultrasonic wave that has propagated along the propagation path 48 is reflected by the lower plate portion 40 and then reflected again by the wall surface of the flow rate measuring portion 44 and cannot reach the ultrasonic vibrator 11. Also, the ultrasonic wave propagated along the propagation path 49 is reflected by the side wall portion 42 and then reflected again by the wall surface of the flow measuring section 44 and cannot reach the ultrasonic vibrator 11. In the ultrasonic transducers 10 and 11 arranged in such a positional relationship, there is no reflected wave that is reflected once and received by the flow rate measuring unit 44. As a result, the reflected wave that affects the direct wave is more than twice reflected, and the effect of the reflected wave that is more than twice reflected on the direct wave is considerably smaller than that of the once reflected wave. Can be reduced.

 上記のように構成した流量測定部44を用い、被測定流体である空気を約6000リットル/時間流して行った実験結果では、実施例1の伝搬位相差が2.2πと同等の結果になることを確認した。この結果より、流路37の長軸方向と流量測定部44の高さ(H5)方向のそれぞれに角度(θ5、θ6)を有し、1回反射の反射波が生じない位置に1対の超音波振動子10、11を配置すれば、流量測定部44の断面寸法に依存せずに被測定流体の流量を広範囲に高精度で測定することができる。 In the experimental results obtained by using the flow rate measuring unit 44 configured as described above and flowing air as the fluid to be measured at about 6000 liters / hour, the propagation phase difference of the first embodiment is equivalent to 2.2π. It was confirmed. According to this result, the angle (θ5, θ6) is set in each of the long axis direction of the flow path 37 and the height (H5) direction of the flow rate measuring unit 44, and a pair of reflected waves is generated at a position where a single reflection does not occur. If the ultrasonic transducers 10 and 11 are arranged, the flow rate of the fluid to be measured can be measured over a wide range with high accuracy without depending on the cross-sectional dimension of the flow rate measurement unit 44.

 なお実施例6では、流路37の長軸方向と超音波振動子の取付方向d−d’の角度(θ5)が30度、一対の超音波振動子の中心を結ぶ線47と高さ(H5)の中心線とのなす角(θ6)が30度傾けるとしたが、上記条件に限定されるわけでなく、適当な角度に変えて構成することができる。 In the sixth embodiment, the angle (θ5) between the long axis direction of the flow path 37 and the mounting direction dd ′ of the ultrasonic vibrator is 30 degrees, and the line 47 connecting the centers of the pair of ultrasonic vibrators and the height ( Although the angle (θ6) between the center line of H5) and the center line is inclined by 30 degrees, the present invention is not limited to the above conditions, and the angle may be changed to an appropriate angle.

 (実施例7)
 以下、本発明の実施例7について、図面を参照しながら説明する。
(Example 7)
Hereinafter, a seventh embodiment of the present invention will be described with reference to the drawings.

 図19は本発明の実施例7における超音波流量計の流路6のa−a’線を横から見た断面図である。図19において8、9、14、15は流路6の側壁部、下板部、上板部で、以上は図2の構成と同様なものである。図2の構成と異なるのは、流量測定部52を層状に分割しない寸法を有す構造体50、51が側壁部8、9に配置されている点である。 FIG. 19 is a cross-sectional view of the flow path 6 of the ultrasonic flowmeter according to the seventh embodiment of the present invention, taken along line a-a 'of FIG. In FIG. 19, 8, 9, 14, and 15 are a side wall, a lower plate, and an upper plate of the flow path 6, and the above is the same as the configuration of FIG. The difference from the configuration of FIG. 2 is that structures 50 and 51 having dimensions that do not divide the flow measurement unit 52 into layers are arranged on the side walls 8 and 9.

 反射波の影響を低減するため、反射波と直接波の伝搬位相差を所望の大きさに設定するよう流量測定部52に反射板を設ける方法について考える。 方法 In order to reduce the influence of the reflected wave, consider a method of providing a reflector in the flow rate measuring unit 52 so as to set the propagation phase difference between the reflected wave and the direct wave to a desired magnitude.

 上記のように構成された超音波流量計の流路の作成方法の一例について説明する。例えば流量測定部52に対し、厚み0.2mm、長さ(L6)が7mmのSUS製の2枚の構造体50a、50bを下板部14の内壁面に平行となるよう超音波振動子10が配置されている側壁部8に接着剤にて固定する。同様に超音波振動子11が配置されている側壁部9にも構造体51a、51bを接着剤にて固定する。構造体50および構造体51を側壁部8、9に固定した後、上板部15を側壁部8、9の端面にシール材を介してネジどめ固定する。なお超音波振動子10、11の距離、有効放射面形状、周波数、被測定流体は実施例1と同様とする。以上のように構成された超音波流量計への超音波振動子の取り付け方法、動作原理は実施例1と同様になるため省略する。 の 一 An example of a method for creating a flow path of the ultrasonic flowmeter configured as described above will be described. For example, with respect to the flow rate measuring unit 52, the ultrasonic vibrator 10 is configured such that two SUS structures 50a and 50b each having a thickness of 0.2 mm and a length (L6) of 7 mm are parallel to the inner wall surface of the lower plate portion 14. Is fixed with an adhesive to the side wall portion 8 where is disposed. Similarly, the structures 51a and 51b are fixed to the side wall 9 on which the ultrasonic vibrator 11 is arranged by an adhesive. After the structures 50 and 51 are fixed to the side walls 8 and 9, the upper plate 15 is screwed and fixed to the end surfaces of the side walls 8 and 9 via a sealing material. Note that the distances between the ultrasonic transducers 10 and 11, the effective radiation surface shape, the frequency, and the fluid to be measured are the same as those in the first embodiment. The method of attaching the ultrasonic vibrator to the ultrasonic flowmeter configured as described above and the principle of operation are the same as those in the first embodiment, and will not be described.

 次に流量測定部52内での超音波の伝搬について、図20に示すような伝搬経路53、54を用いて説明する。なお伝搬経路53、54は代表的な伝搬経路であり、実施例1と同様に図示されていない伝搬経路も存在する。図20は流路6のb−b’線を横から見た断面図である。直接波は伝搬経路53に沿って伝搬する。また反射波は伝搬経路54のように構造体50a、下板部14で反射を繰り返しながら伝搬する。伝搬経路54で伝搬する反射波は、上板部15で一回のみ反射する伝搬経路より伝搬距離が延びる。また構造体51により受信を阻害される図示されていない反射波の伝搬経路も存在する。このため直接波に対する反射波の影響を低減することが可能となる。 Next, the propagation of ultrasonic waves in the flow rate measuring section 52 will be described using propagation paths 53 and 54 as shown in FIG. The propagation paths 53 and 54 are representative propagation paths, and there are also propagation paths (not shown) as in the first embodiment. FIG. 20 is a cross-sectional view of the flow path 6 taken along the line b-b ′. The direct wave propagates along the propagation path 53. The reflected wave propagates while repeating reflection at the structure 50a and the lower plate portion 14 as in the propagation path 54. The reflected wave propagating in the propagation path 54 has a longer propagation distance than the propagation path reflected only once by the upper plate 15. In addition, there is a propagation path of a reflected wave (not shown) that is inhibited from being received by the structure 51. For this reason, the influence of the reflected wave on the direct wave can be reduced.

 以上のように、本発明よれば構造体により直接波と反射波の伝搬位相差を所望の大きさにすることができるため、反射波の影響を低減でき被測定流体の流量を短時間に高精度で測定することができる。 As described above, according to the present invention, the propagation phase difference between the direct wave and the reflected wave can be set to a desired magnitude by the structure, so that the influence of the reflected wave can be reduced and the flow rate of the fluid to be measured can be increased in a short time. It can be measured with accuracy.

 なお実施例7では構造体の厚みを0.2mm、長さ(L6)を7mm、SUS製としたが、上記条件に限定されるわけではなく、寸法、材質を適宜変えて構成することができる。また構造体50、51を側壁部8、9に接着固定するとしたが、側壁部8、9以外の場所に配置してもよい。また構造体の枚数を全部で4枚としたが、1枚以上ならば何枚でも構わない。 In the seventh embodiment, the thickness of the structure is 0.2 mm, the length (L6) is 7 mm, and it is made of SUS. However, the structure is not limited to the above conditions, and the structure and the material can be appropriately changed. . In addition, although the structures 50 and 51 are bonded and fixed to the side walls 8 and 9, they may be arranged in places other than the side walls 8 and 9. In addition, the number of structures is four in total, but any number of one or more may be used.

 (実施例8)
 以下、本発明の実施例8について、図面を参照しながら説明する。
(Example 8)
Hereinafter, an eighth embodiment of the present invention will be described with reference to the drawings.

 図21は本発明の実施例8における超音波流量計の流路6のa−a’線を横から見た断面図である。図21において8、9、14、15は流路6の側壁部、下板部、上板部で、以上は図2の構成と同様なものである。図2の構成と異なるのは、流量測定部56を層状に分割しない構造体55a、55bが下板部14、上板部15に配置されている点である。 FIG. 21 is a cross-sectional view of the flow path 6 of the ultrasonic flowmeter according to the eighth embodiment of the present invention, taken along line a-a 'of FIG. 21, reference numerals 8, 9, 14, and 15 denote side walls, a lower plate, and an upper plate of the flow path 6, which have the same configuration as that of FIG. The difference from the configuration of FIG. 2 is that the structures 55 a and 55 b that do not divide the flow rate measuring unit 56 into layers are arranged on the lower plate 14 and the upper plate 15.

 高精度な流量計を得るには反射波の影響を低減することが必要で、反射波が受信されにくいよう流量測定部56に反射板を設ける方法について考える。 に は In order to obtain a high-precision flow meter, it is necessary to reduce the influence of the reflected wave, and a method of providing a reflector in the flow measuring unit 56 so that the reflected wave is hardly received will be considered.

 上記のように構成された超音波流量計の流路の作成方法の一例について説明する。例えば流量測定部56に対し、厚み0.2mm、長さ(L7)が1mmのSUS製の構造体55a、55bを下板部14、上板部15の内壁面に垂直で、幅(W7)の中央部あたりとなるよう接着剤にて固定する。構造体55を固定した後、上板部15を側壁部8、9の端面にシール材を介してネジどめ固定する。なお超音波振動子10、11の距離、有効放射面形状、周波数、被測定流体は実施例1と同様とする。以上のように構成された超音波流量計への超音波振動子の取り付け方法、動作原理は実施例1と同様になるため省略する。 の 一 An example of a method for creating a flow path of the ultrasonic flowmeter configured as described above will be described. For example, with respect to the flow rate measuring unit 56, SUS structures 55a and 55b having a thickness of 0.2 mm and a length (L7) of 1 mm are perpendicular to the inner wall surfaces of the lower plate 14 and the upper plate 15 and have a width (W7). Is fixed with an adhesive so as to be in the vicinity of the center. After the structure 55 is fixed, the upper plate 15 is screwed and fixed to the end surfaces of the side walls 8 and 9 via a sealing material. Note that the distances between the ultrasonic transducers 10 and 11, the effective radiation surface shape, the frequency, and the fluid to be measured are the same as those in the first embodiment. The method of attaching the ultrasonic vibrator to the ultrasonic flowmeter configured as described above and the principle of operation are the same as those in the first embodiment, and will not be described.

 次に流量測定部56での超音波の伝搬について、図22に示すような伝搬経路57、58を用いて説明する。なお伝搬経路57、58は代表的な伝搬経路であり、実施例1と同様に図示されていない伝搬経路も存在する。図22は流路6のb−b’線を横から見た断面図である。超音波振動子10から送信された超音波は広がりながら伝搬し、例えば直接波は伝搬経路57に沿って伝搬する。また広がった超音波は上板部15や下板部14で反射され、超音波振動子11で反射波として受信される。しかし構造体55aを上板部15に設けることにより、例えば伝搬経路58の反射波は構造体55aにより伝搬を阻害される。このため、伝搬経路58での反射波は超音波振動子11では受信されない。反射波の伝搬経路は伝搬経路58以外にも存在するが、構造体55a、55bによって反射波の一部の伝搬が阻害できるため、直接波に対する反射波の影響を低減することが可能となる。 Next, the propagation of the ultrasonic wave in the flow measuring unit 56 will be described using propagation paths 57 and 58 as shown in FIG. The propagation paths 57 and 58 are representative propagation paths, and there are also propagation paths (not shown) as in the first embodiment. FIG. 22 is a cross-sectional view of the flow path 6 taken along the line b-b ′. The ultrasonic wave transmitted from the ultrasonic transducer 10 propagates while spreading, and, for example, a direct wave propagates along the propagation path 57. The spread ultrasonic wave is reflected by the upper plate portion 15 and the lower plate portion 14 and received by the ultrasonic vibrator 11 as a reflected wave. However, by providing the structure 55a on the upper plate 15, for example, the reflected wave of the propagation path 58 is inhibited from propagating by the structure 55a. Therefore, the reflected wave on the propagation path 58 is not received by the ultrasonic transducer 11. Although the propagation path of the reflected wave exists in addition to the propagation path 58, the propagation of a part of the reflected wave can be inhibited by the structures 55a and 55b, so that the influence of the reflected wave on the direct wave can be reduced.

 以上のように、本発明よれば構造体により反射波の一部の伝搬を阻害できるため、構造体を配置する位置および枚数を適切に選択することにより反射波の影響を低減でき被測定流体の流量を短時間に高精度で測定することができる。 As described above, according to the present invention, since the propagation of a part of the reflected wave can be inhibited by the structure, the influence of the reflected wave can be reduced by appropriately selecting the position and the number of the structures to be arranged, so that the influence of the fluid to be measured can be reduced. The flow rate can be measured in a short time with high accuracy.

 なお実施例8では構造体55a、55bの厚みを0.2mm、長さ(L7)を1mm、SUS製で、幅(W7)の中央あたりに位置するとしたが、上記条件に限定されるわけではなく、寸法、位置、材質を適宜変えて構成することができる。また構造体55a、55bを下板部10、上板部15上に接着固定するとしたが、下板部14、上板部15以外の場所に配置しても構わない。また構造体を2枚配置したが、1枚以上ならば何枚でも構わない。 In the eighth embodiment, the structures 55a and 55b are made of SUS and have a thickness of 0.2 mm, a length (L7) of 1 mm, and are located near the center of the width (W7), but are not limited to the above conditions. Instead, it can be configured by appropriately changing the size, position, and material. Although the structures 55a and 55b are bonded and fixed on the lower plate 10 and the upper plate 15, the structures 55a and 55b may be arranged in places other than the lower plate 14 and the upper plate 15. Although two structures are arranged, any number of one or more may be used.

 (実施例9)
 以下、本発明の実施例9について、図面を参照しながら説明する。
図23は本発明の実施例9における超音波流量計の流路6のa−a’線を横から見た断面図である。図23において8、9、14、15は流路6の側壁部、下板部、上板部で、以上は図2の構成と同様なものである。図2の構成と異なるのは、下板部14に凹部59と、凹部59の上方にメッシュ構造体60を設けた点である。
(Example 9)
Hereinafter, a ninth embodiment of the present invention will be described with reference to the drawings.
FIG. 23 is a cross-sectional view of the ultrasonic flow meter according to the ninth embodiment of the present invention, taken along line aa ′ of the flow path 6. In FIG. 23, reference numerals 8, 9, 14, and 15 denote side walls, a lower plate, and an upper plate of the flow channel 6, which have the same configuration as that of FIG. 2 in that a concave portion 59 is provided in the lower plate portion 14 and a mesh structure 60 is provided above the concave portion 59.

 流量測定部61の高さ(H8)と幅(W8)のアスペクト比(W8/H8)を大きくしながら反射波の影響を低減するため、流量測定部61に凹部を設け、さらにその凹部に流れを乱さないようメッシュ構造体を設ける方法について考える。 In order to reduce the influence of the reflected wave while increasing the height ratio (H8) and the width (W8) aspect ratio (W8 / H8) of the flow measurement unit 61, a concave portion is provided in the flow measurement unit 61, and the flow is further flowed into the concave portion. Consider a method of providing a mesh structure so as not to disturb.

 上記のように構成された超音波流量計の流路の作成方法の一例について説明する。例えばアスペクト比(W8/H8)が5である流量測定部61の下板部14の中央付近に、伝搬経路62と伝搬経路63の伝搬位相差が2.2πとなるよう凹部59をフライス盤を用い構成する。凹部59には被測定流体である空気の流れが生じないように、凹部59を覆うようにメッシュ構造体を上方に固定する。 の 一 An example of a method for creating a flow path of the ultrasonic flowmeter configured as described above will be described. For example, a concave portion 59 is formed using a milling machine near the center of the lower plate portion 14 of the flow rate measuring section 61 having an aspect ratio (W8 / H8) of 5 so that the propagation phase difference between the propagation paths 62 and 63 becomes 2.2π. Constitute. The mesh structure is fixed upward so as to cover the recess 59 so that the flow of the air to be measured is not generated in the recess 59.

 メッシュ構造体は超音波が透過するように、例えばメッシュサイズは100番程度とする。また伝搬経路62と伝搬経路64の伝搬位相差が1.2πとなるように、上板部15を、側壁部8、9の端面にシール材を介してネジどめ固定する。 (4) The mesh structure has a mesh size of about 100, for example, so that ultrasonic waves can be transmitted. In addition, the upper plate portion 15 is screwed and fixed to the end surfaces of the side wall portions 8 and 9 via sealing materials so that the propagation phase difference between the propagation path 62 and the propagation path 64 becomes 1.2π.

 なお超音波振動子10、11の距離、有効放射面形状、周波数、被測定流体は実施例1と同様とする。以上のように構成された超音波流量計への超音波振動子の取り付け方法、動作原理は実施例1と同様になるため省略する。 The distance between the ultrasonic transducers 10 and 11, the effective radiation surface shape, the frequency, and the fluid to be measured are the same as those in the first embodiment. The method of attaching the ultrasonic vibrator to the ultrasonic flowmeter configured as described above and the principle of operation are the same as those in the first embodiment, and will not be described.

 次に流量測定部61での超音波の伝搬について、図24に示すような伝搬経路の一例を用いて説明する。図24は流路6のb−b’線を横から見た断面図である。直接波は伝搬経路62に沿って伝搬する。一方下板部14での反射波は伝搬経路63のように凹部59の底部で反射され伝搬する。また上板部15での反射波は伝搬経路64のように反射され伝搬する。なお伝搬経路62〜64は代表的な伝搬経路であり、実施例1と同様に図示されていない伝搬経路も存在する。またメッシュ構造体60を透過せず、メッシュ構造体60の表面で反射される反射波も存在する。 Next, the propagation of the ultrasonic wave in the flow measurement unit 61 will be described using an example of a propagation path as shown in FIG. FIG. 24 is a cross-sectional view of the flow path 6 taken along the line b-b '. The direct wave propagates along the propagation path 62. On the other hand, the reflected wave from the lower plate portion 14 is reflected at the bottom of the concave portion 59 and propagates like the propagation path 63. The reflected wave from the upper plate 15 is reflected and propagates along a propagation path 64. The propagation paths 62 to 64 are representative propagation paths, and there are also propagation paths (not shown) as in the first embodiment. There are also reflected waves that do not pass through the mesh structure 60 and are reflected on the surface of the mesh structure 60.

 伝搬経路62と伝搬経路63の伝搬位相差が2.2π、伝搬経路62と伝搬経路64の伝搬位相差が1.2πとしたため、それぞれの反射波の伝搬経路分布が異なり、下板部14と上板部15からの反射波同士が干渉の影響を受ける。このように下板部14の構成と上板部15の構成を非対称にすることにより、直接波に対する影響が低減できる。また凹部59にはメッシュ構造体60が設けてあるため、空気は凹部59を除く流量測定部61を流れ、流れに対し乱れを生じない。また超音波は凹部59を含む流量測定部61を伝搬させることができる。 Since the propagation phase difference between the propagation path 62 and the propagation path 63 was 2.2π, and the propagation phase difference between the propagation path 62 and the propagation path 64 was 1.2π, the propagation path distributions of the respective reflected waves were different, and the lower plate portion 14 The reflected waves from the upper plate 15 are affected by interference. Thus, by making the configuration of the lower plate portion 14 and the configuration of the upper plate portion 15 asymmetric, the influence on the direct wave can be reduced. Further, since the mesh structure 60 is provided in the concave portion 59, the air flows through the flow rate measuring section 61 except the concave portion 59, so that the flow does not disturb. Further, the ultrasonic waves can be transmitted through the flow rate measuring section 61 including the concave portion 59.

 以上のように、本発明よれば構造体により直接波と反射波の伝搬位相差を所望の大きさにすることができるうえ、測定流量範囲において安定した流速分布を実現できるため、反射波の影響を低減でき被測定流体の流量を短時間に高精度で測定することができる。 As described above, according to the present invention, the structure can make the propagation phase difference between the direct wave and the reflected wave a desired value, and can realize a stable flow velocity distribution in the measurement flow rate range. And the flow rate of the fluid to be measured can be measured in a short time with high accuracy.

 なお第9の実施例では伝搬経路62と伝搬経路63の伝搬位相差が2.2πとなるよう凹部59を設けたが、上記条件に限定されるわけではなく、適宜変えて構成することができる。また凹部59の上方に100番程のメッシュ構造体60を設けるとしたが、その他のメッシュ構造体でも構わないし、凹部59が流れに対し測定上問題になる影響を与えないなら設ける必要はない。また凹部59を下板部14の中央付近に設けるとしたが、反射波の影響を低減するため必要な場所に必要な数だけ設ければよく、上板部15にも設けてもいいし、凹部59だけでなく凸部を設けても構わない。 In the ninth embodiment, the recess 59 is provided so that the propagation phase difference between the propagation path 62 and the propagation path 63 is 2.2π. However, the present invention is not limited to the above conditions, and can be appropriately changed. . Although the mesh structure 60 of about 100 is provided above the concave portion 59, another mesh structure may be used, and it is not necessary to provide the mesh structure 60 if the concave portion 59 does not affect the flow on the measurement. In addition, the concave portions 59 are provided near the center of the lower plate portion 14. However, the concave portions 59 may be provided in a required number in necessary places to reduce the influence of the reflected wave, and may be provided in the upper plate portion 15, Not only the concave portion 59 but also a convex portion may be provided.

 (実施例10)
 以下、本発明の実施例10について、図面を参照しながら説明する。
図25は本発明の実施例10における超音波流量計の流路6を上から見た断面図である。図25において6は流路、8、9は流路6の側壁部で、以上は図1の構成と同様なものである。図1の構成と異なるのは、超音波振動子10、11の中心を結ぶ線65に対し超音波振動子10の中心方向66を上流側にθ10(約5度)、超音波振動子11の中心方向67を下流側にθ11(約5度)だけずらして配置した点である。流路の作成方法、超音波振動子の取り付け方法、動作原理は実施例1と同様なため省略する。また超音波振動子10、11の距離、放射面形状、周波数被測定流体は実施例1と同様とする。
(Example 10)
Hereinafter, a tenth embodiment of the present invention will be described with reference to the drawings.
FIG. 25 is a cross-sectional view of a flow path 6 of an ultrasonic flowmeter according to Embodiment 10 of the present invention as viewed from above. In FIG. 25, reference numeral 6 denotes a flow path, and reference numerals 8 and 9 denote side wall portions of the flow path 6, which are the same as those in FIG. The difference from the configuration of FIG. 1 is that the center direction 66 of the ultrasonic vibrator 10 is θ10 (about 5 degrees) upstream with respect to a line 65 connecting the centers of the ultrasonic vibrators 10 and 11, The point is that the center direction 67 is shifted to the downstream side by θ11 (about 5 degrees). The method for forming the flow path, the method for attaching the ultrasonic vibrator, and the operation principle are the same as those in the first embodiment, and thus will not be described. The distance between the ultrasonic transducers 10 and 11, the radiation surface shape, and the fluid to be measured are the same as those in the first embodiment.

 一般的に超音波振動子の指向性は超音波振動子の中心方向に強い傾向がある。 Generally, the directivity of an ultrasonic transducer tends to be strong toward the center of the ultrasonic transducer.

 このため開空間では超音波振動子10、11の指向性を一致させて対向した場合、受信電圧は最も大きくできる。ところが流路6のような閉空間で超音波の送受信を行う場合、受信される反射波も比較的強い指向性の部分であるため大きな受信電圧となり、直接波に対する影響が大きくなってしまう。そこで、中心を結ぶ線65に対し中心方向66、67をθ10、θ11だけずらして超音波振動子10、11を配置する。このような配置では直接波の受信電圧は下がるが、反射波は比較的弱い指向性の部分となるので反射波の受信電圧も小さくなり反射波の影響を小さくすることが可能となる。 For this reason, in the open space, when the ultrasonic transducers 10 and 11 face each other with the directivity thereof being matched, the received voltage can be maximized. However, when transmitting and receiving ultrasonic waves in a closed space such as the flow path 6, the received reflected wave also has a relatively strong directivity and therefore has a large reception voltage, and the influence on the direct wave increases. Therefore, the ultrasonic transducers 10 and 11 are arranged with the center directions 66 and 67 shifted from the line 65 connecting the centers by θ10 and θ11. In such an arrangement, the received voltage of the direct wave is reduced, but the reflected wave is a relatively weak directional part, so that the received voltage of the reflected wave is also reduced and the influence of the reflected wave can be reduced.

 超音波振動子10の中心方向66を下流側に、超音波振動子11の中心方向67を上流側に約5度ずらした構成で実施例1と同様に空気を約6000リットル/時間流して行った実験では図7の伝搬位相差が2π程度と同程度の結果が得られた。 In a configuration in which the center direction 66 of the ultrasonic vibrator 10 is shifted to the downstream side and the center direction 67 of the ultrasonic vibrator 11 is shifted to the upstream side by about 5 degrees, air is flowed at about 6000 liter / hour as in the first embodiment. In the experiment, the result that the propagation phase difference of FIG. 7 was about 2π was obtained.

 以上のように、本発明によれば超音波振動子の中心を結ぶ線と超音波振動子の中心線をずらして配置することにより、直接波に対する反射波の影響を低減でき被測定流体の流量を短時間に高精度で測定することができる。 As described above, according to the present invention, by displacing the line connecting the center of the ultrasonic oscillator and the center line of the ultrasonic oscillator, the influence of the reflected wave on the direct wave can be reduced, and the flow rate of the fluid to be measured can be reduced. Can be measured in a short time with high accuracy.

 なお実施例10では65超音波振動子の中心を結ぶ線に対し超音波振動子の中心方向66、67を5度ずらすとしたが、上記条件に限定されるわけではなく、角度を適宜変えて構成することができる。また超音波振動子10、11の中心線をずらす方向を流れの上流側、下流側としたが、下板部方向、上板部方向でも、どの方向の組み合わせでも構わない。 In the tenth embodiment, the center directions 66 and 67 of the ultrasonic vibrator are shifted by 5 degrees with respect to a line connecting the centers of the 65 ultrasonic vibrators. However, the present invention is not limited to the above conditions, and the angles are appropriately changed. Can be configured. Also, the directions in which the center lines of the ultrasonic transducers 10 and 11 are shifted are the upstream and downstream sides of the flow, but may be any combination of the lower plate portion and the upper plate portion, or any combination of the directions.

 (実施例11)
 以下、本発明の実施例11について、図面を参照しながら説明する。
図26は本発明の実施例11における超音波流量計の配管への取り付け状態を示す局所断面図である。図26において10a、11aは取り付け口で、14、15は流路6の下板部、上板部で、68は整流手段で、69は流量測定部で、70、71は配管である。図示していない流量測定部69の構成は、実施例1から実施例10のいずれかの構成と同様とする。実施例1から実施例10と異なるのは、流量測定部69に整流手段68を設けた点である。例えば整流手段68はアルミ製のハニカム構造体からなり、空気の流れにより移動しないよう下板部14、上板部15と図示していない側壁部に接着剤により接着固定する。超音波流量計の流路の組み立て方法、超音波振動子の取り付け方法、動作原理は実施例1と同様になるため省略する。
(Example 11)
Hereinafter, an eleventh embodiment of the present invention will be described with reference to the drawings.
FIG. 26 is a local cross-sectional view showing a state where an ultrasonic flowmeter is attached to a pipe according to Embodiment 11 of the present invention. 26, reference numerals 10a and 11a denote attachment ports, 14 and 15 denote lower and upper plate portions of the flow path 6, 68 denotes a rectifying means, 69 denotes a flow rate measuring unit, and 70 and 71 denote pipes. The configuration of the flow rate measuring unit 69 (not shown) is the same as the configuration of any of the first to tenth embodiments. The difference from the first embodiment to the tenth embodiment is that a rectifying unit 68 is provided in the flow rate measuring unit 69. For example, the rectifying means 68 is made of an aluminum honeycomb structure, and is bonded and fixed to the lower plate portion 14, the upper plate portion 15, and a side wall portion (not shown) with an adhesive so as not to move due to the flow of air. The method of assembling the flow path of the ultrasonic flowmeter, the method of attaching the ultrasonic vibrator, and the operation principle are the same as those in the first embodiment, and thus will not be described.

 次に整流手段の動作について説明する。一般的に流量測定では流速分布や流れの方向を安定化するため、流量計測部の上流側に直径に対し十分長い(10倍程度)直管部を設ける。しかし超音波流量計を小型化や設置場所の制限により流量計測部69の上流側に直径に対し十分長い直管部を設けることは困難で、さらに配管70を流路6に垂直に取り付ける場合もある。このような構成では、空気は流れの方向が乱れた状態で流量測定部69を流れ、測定精度に影響を与えてしまう。 Next, the operation of the rectifier will be described. Generally, in flow measurement, in order to stabilize the flow velocity distribution and the flow direction, a straight pipe portion sufficiently long (about 10 times) in diameter is provided upstream of the flow measurement portion. However, it is difficult to provide a sufficiently long straight pipe portion with respect to the diameter on the upstream side of the flow rate measuring section 69 due to the miniaturization of the ultrasonic flow meter and the limitation of the installation place. is there. In such a configuration, the air flows through the flow measurement unit 69 in a state where the flow direction is disturbed, and affects the measurement accuracy.

 そこで、配管70から流量測定部69に流入する空気の流れを安定化するためハニカム構造を有す整流手段68を設ける。整流手段68を通過した空気は流れの方向が均一化され、下板部14や上板部15に対しほぼ平行となる。 Therefore, rectifying means 68 having a honeycomb structure is provided in order to stabilize the flow of the air flowing from the pipe 70 into the flow measuring unit 69. The air flowing through the rectifying means 68 has a uniform flow direction, and is substantially parallel to the lower plate portion 14 and the upper plate portion 15.

 以上のように、本発明によれば整流手段68を流量測定部69の上流側に設けることにより流れの方向を安定化することができ、実施例1から実施例10の反射波の影響を低減する手段と組みあわせることにより、測定流体の流量を短時間に高精度で測定することができる。 As described above, according to the present invention, the flow direction can be stabilized by providing the rectifying means 68 on the upstream side of the flow rate measuring unit 69, and the influence of the reflected waves in the first to tenth embodiments is reduced. In combination with the means for performing the measurement, the flow rate of the measurement fluid can be measured in a short time with high accuracy.

 なお第11の実施例では整流手段68をアルミ製のハニカム構造体としたが、整流効果が得られるならばパイプ、網目構造体、平板でも構わないし、SUSのような金属や樹脂、複合体でも構わない。配管70、71を上板部15に垂直に取り付けるとしたが、上板部15以外の部位に取り付けても構わないし、また水平に取り付けても構わない。整流手段68を上流側に設けるとしたが、上流側と下流側の両方に設けても構わない。 In the eleventh embodiment, the rectifying means 68 is made of an aluminum honeycomb structure. However, if a rectifying effect can be obtained, a pipe, a mesh structure, a flat plate, a metal such as SUS, a resin, or a composite may be used. I do not care. Although the pipes 70 and 71 are vertically attached to the upper plate 15, they may be attached to a portion other than the upper plate 15, or may be horizontally attached. Although the rectifying means 68 is provided on the upstream side, it may be provided on both the upstream side and the downstream side.

 また実施例1〜3、7では高さ(H0、H1、H2、H6)と超音波振動子10、11の高さが等しくなるよう図示しているが、高さ(H0、H1、H2、H6)より超音波振動子10、11の高さを低くしても高くしても構わない。 In the first to third and seventh embodiments, the heights (H0, H1, H2, H6) and the heights of the ultrasonic transducers 10, 11 are shown to be equal, but the heights (H0, H1, H2, The height of the ultrasonic transducers 10 and 11 may be lower or higher than H6).

 また実施例1〜5、7〜11では超音波振動子10、11を側壁部8、9に流れに対し斜めに設けるとしたが、流れが計測可能ならば側壁部8、9以外の場所に配置して構わないし、流れに対し平行となる位置に配置しても構わない。また流量測定部の断面形状を矩形としたが、超音波振動子10、11を流れに対し平行となる位置に配置するなら、円形や楕円形でも構わない。 In the first to fifth and seventh to eleventh embodiments, the ultrasonic transducers 10 and 11 are provided obliquely to the side walls 8 and 9 with respect to the flow. It may be arranged, or may be arranged at a position parallel to the flow. Further, although the cross-sectional shape of the flow rate measuring section is rectangular, it may be circular or elliptical as long as the ultrasonic transducers 10 and 11 are arranged at positions parallel to the flow.

 また実施例1〜11では超音波振動子10、11の有効放射面は正方形としたが、上記条件に限定されるわけではなく、円形、楕円形、他の多角形でも構わない。また超音波振動子10、11の周波数は270kHzとしたが、上記条件に限定されるわけではなく、270kHz以上でも以下でも構わない。また流量測定部の断面形状を矩形としたが、上記形状に限定されるわけでなく、矩形の一部を変形した形状、矩形以外の多角形でも構わない。また被測定流体を空気としたが、空気以外の例えばLPガスや都市ガスのような気体や水のような液体でも構わない。また流路6の材質をABS樹脂としたが、被測定流体によって化学的変化を受けない材質ならばなんでもよく、被測定流体がLPガス、都市ガス等であればSUSやアルミダイカストのような金属でも構わない。圧力損失を少なくするため一般的に流量測定部の断面積は、被測定流体を供給する配管の内径と同程度とするとしたが、必要に応じて断面積を大きくしても小さくしても構わない。 In the first to eleventh embodiments, the effective radiating surfaces of the ultrasonic transducers 10 and 11 are square. However, the present invention is not limited to the above conditions, and may be a circle, an ellipse, or another polygon. Further, the frequency of the ultrasonic transducers 10 and 11 is set to 270 kHz, but is not limited to the above condition, and may be equal to or higher than 270 kHz. Further, although the cross-sectional shape of the flow rate measuring unit is rectangular, the shape is not limited to the above shape, and a shape obtained by partially deforming the rectangle or a polygon other than the rectangle may be used. Although the fluid to be measured is air, a gas other than air, for example, a gas such as LP gas or city gas, or a liquid such as water may be used. Although the material of the flow path 6 is made of ABS resin, any material may be used as long as the material is not chemically changed by the fluid to be measured. If the fluid to be measured is LP gas, city gas, or the like, a metal such as SUS or aluminum die casting is used. But it doesn't matter. In general, the cross-sectional area of the flow rate measuring section is set to be approximately the same as the inner diameter of the pipe for supplying the fluid to be measured in order to reduce the pressure loss. However, the cross-sectional area may be increased or decreased as necessary. Absent.

 また本発明の超音波流量計を家庭用ガスメータを想定した超音波式ガスメータや被測定流体の流速を測定する流速計に用いても構わない。また複数の実施例の構成を組みあわせてよいことは言うまでもない。 The ultrasonic flow meter of the present invention may be used for an ultrasonic gas meter assuming a home gas meter or a flow meter for measuring the flow velocity of a fluid to be measured. It goes without saying that the configurations of a plurality of embodiments may be combined.

 以上のように本発明の第1の超音波流量計は、一対の超音波振動子と、前記一対の超音波振動子間を超音波が伝搬する時間を計測する計測部と、前記計測部の出力に基づいて、流量測定部を流れる流体の量を計算する計算部とを備え、前記流量測定部の壁面によって反射される反射波が前記測定結果に与える影響が低減されるように、前記流量測定部と前記一対の超音波振動子とが構成されているため、流量測定部内での反射波の影響を低減でき、高精度な超音波流量計を得ることができる。 As described above, the first ultrasonic flowmeter of the present invention includes a pair of ultrasonic transducers, a measuring unit that measures the time that ultrasonic waves propagate between the pair of ultrasonic transducers, A calculation unit for calculating the amount of fluid flowing through the flow measurement unit based on the output, so that the effect of the reflected wave reflected by the wall surface of the flow measurement unit on the measurement result is reduced. Since the measurement unit and the pair of ultrasonic transducers are configured, the influence of the reflected wave in the flow measurement unit can be reduced, and a high-accuracy ultrasonic flowmeter can be obtained.

 また第2の超音波流量計は、超音波を用いて流体の流量を測定する超音波流量計において、一対の超音波振動子と、前記一対の超音波振動子間を超音波が伝搬する時間を計測する計測部と、前記計測部の出力に基づいて流量測定部を流れる流体の量を計算する計算部とを備え、前記流量測定部は当該流量測定部の壁面に反射することなく前記流量測定部を流れる流体中を伝搬する直接波と前記流量測定部の壁面によって反射される反射波との間の位相差が測定結果に影響を与える構成で、前記直接波と前記反射波との位相差が前記測定結果に与える影響が低減されるように、前記流量測定部と前記一対の超音波振動子とが構成されているため、流量測定部内での反射波の影響を低減でき、高精度な超音波流量計を得ることができる。 The second ultrasonic flowmeter is an ultrasonic flowmeter that measures the flow rate of a fluid using ultrasonic waves. In the ultrasonic flowmeter, a time period during which ultrasonic waves propagate between the pair of ultrasonic vibrators and the pair of ultrasonic vibrators is used. And a calculating unit for calculating the amount of fluid flowing through the flow measuring unit based on the output of the measuring unit, wherein the flow measuring unit reflects the flow rate without reflecting on the wall surface of the flow measuring unit. In a configuration in which the phase difference between the direct wave propagating in the fluid flowing through the measuring unit and the reflected wave reflected by the wall surface of the flow measuring unit affects the measurement result, the position of the direct wave and the reflected wave is Since the flow rate measuring unit and the pair of ultrasonic transducers are configured so that the influence of the phase difference on the measurement result is reduced, the influence of the reflected wave in the flow measuring unit can be reduced, and high accuracy can be achieved. A simple ultrasonic flowmeter can be obtained.

 また第3の超音波流量計は、超音波を用いて流体の流量を測定する超音波流量計において、一対の超音波振動子と、前記一対の超音波振動子間を超音波が伝搬する時間を計測する計測部と、前記計測部の出力に基づいて流量測定部を流れる流体の量を計算する計算部とを備え、前記流量測定部は当該流量測定部の壁面に反射することなく前記流量測定部を流れる流体中を伝搬する直接波と前記流量測定部の壁面によって反射される反射波との間の位相差が測定結果に影響を与える構成で、前記直接波と前記反射波との位相差が前記測定結果に与える影響が低減されるように、前記一対の超音波振動子の周波数と、前記一対の超音波振動子間の距離と、前記流量測定部の断面形状に関連するパラメータとの組合せによって特徴づけられるため、簡易な構成で流量測定部内での反射波の影響を低減でき、高精度な超音波流量計を得ることができる。 A third ultrasonic flowmeter is an ultrasonic flowmeter that measures the flow rate of a fluid using ultrasonic waves. In the ultrasonic flowmeter, a time period during which ultrasonic waves propagate between the pair of ultrasonic vibrators and the pair of ultrasonic vibrators is used. And a calculating unit for calculating the amount of fluid flowing through the flow measuring unit based on the output of the measuring unit, wherein the flow measuring unit reflects the flow rate without reflecting on the wall surface of the flow measuring unit. In a configuration in which the phase difference between the direct wave propagating in the fluid flowing through the measuring unit and the reflected wave reflected by the wall surface of the flow measuring unit affects the measurement result, the position of the direct wave and the reflected wave is As the effect of the phase difference on the measurement result is reduced, the frequency of the pair of ultrasonic transducers, the distance between the pair of ultrasonic transducers, and parameters related to the cross-sectional shape of the flow rate measurement unit. To be characterized by a combination of Can reduce the influence of the reflected wave in the flow measurement portion with a simple configuration, it is possible to obtain a high-precision ultrasonic flowmeter.

 また第4の超音波流量計は、第3の超音波流量計において、前記直接波は、前記一対の超音波振動子の中心を結ぶ直線に沿って伝搬する波であり、前記反射波は、前記一対の超音波振動子の中心と前記流量測定部の壁面上の点とを結ぶことによって形成される二等辺三角形の二等辺に沿って伝搬する波であり、前記直接波の伝搬距離と前記反射波の伝搬距離との差から生じる伝搬位相差が3π/2以上であるため、簡易な構成で流量測定部内での反射波の影響を低減でき、高精度な超音波流量計を得ることができる。 In a fourth ultrasonic flowmeter, in the third ultrasonic flowmeter, the direct wave is a wave that propagates along a straight line connecting the centers of the pair of ultrasonic transducers, and the reflected wave is A wave that propagates along the isosceles of an isosceles triangle formed by connecting the center of the pair of ultrasonic transducers and a point on the wall surface of the flow measurement unit, and the propagation distance of the direct wave and the Since the propagation phase difference resulting from the difference from the propagation distance of the reflected wave is 3π / 2 or more, the influence of the reflected wave in the flow measurement unit can be reduced with a simple configuration, and a highly accurate ultrasonic flowmeter can be obtained. it can.

 また第5の超音波流量計は、第3の超音波流量計において、前記直接波は、前記一対の超音波振動子の中心を結ぶ直線に沿って伝搬する波であり、前記反射波は、前記流量測定部の壁面によって1回だけ反射される波であり、前記直接波の伝搬時間に比べ前記反射波の最短伝搬時間が長くなるよう前記一対の超音波振動子の有効放射面の1つの辺あるい直径を前記流量測定部の高さより短くしたため、簡易な構成で流量測定部内での反射波の影響を低減でき、高精度な超音波流量計を得ることができる。 In a fifth ultrasonic flowmeter, in the third ultrasonic flowmeter, the direct wave is a wave that propagates along a straight line connecting the centers of the pair of ultrasonic transducers, and the reflected wave is One of the effective radiating surfaces of the pair of ultrasonic transducers is a wave that is reflected only once by the wall surface of the flow measurement unit, and the shortest propagation time of the reflected wave is longer than the propagation time of the direct wave. Since the side or diameter is shorter than the height of the flow measurement unit, the influence of the reflected wave in the flow measurement unit can be reduced with a simple configuration, and a high-accuracy ultrasonic flow meter can be obtained.

 また第6の超音波流量計は、第4または第5の超音波流量計において、前記一対の超音波振動子の周波数は所定値以上に設定されているため、流量測定部内での反射波の影響を低減でき、時間分解能も向上できるので、さらに高精度な超音波流量計を得ることができる。 In the sixth ultrasonic flowmeter, in the fourth or fifth ultrasonic flowmeter, since the frequency of the pair of ultrasonic transducers is set to a predetermined value or more, the reflected wave in the flow measurement unit is Since the influence can be reduced and the time resolution can be improved, a more accurate ultrasonic flowmeter can be obtained.

 また第7の形態の超音波流量計は、第3の超音波流量計において、前記直接波は、前記一対の超音波振動子の中心を結ぶ直線に沿って伝搬する波であり、前記反射波は、前記一対の超音波振動子の中心と前記流量測定部の壁面上の点とを結ぶことによって形成される二等辺三角形の二等辺に沿って伝搬する波であり、前記直接波の伝搬距離と前記反射波の伝搬距離との差から生じる伝搬位相差が0.2π以下であるため、簡易な構成で流量測定部内での反射波の影響を低減でき、高精度な超音波流量計を得ることができる。 An ultrasonic flowmeter according to a seventh aspect is the ultrasonic flowmeter according to the third aspect, wherein the direct wave is a wave that propagates along a straight line connecting the centers of the pair of ultrasonic vibrators, and the reflected wave Is a wave propagating along the isosceles of an isosceles triangle formed by connecting the center of the pair of ultrasonic transducers and a point on the wall surface of the flow measurement unit, and the propagation distance of the direct wave And the propagation phase difference resulting from the difference between the propagation distance of the reflected wave and the propagation distance of the reflected wave is 0.2π or less. Therefore, the influence of the reflected wave in the flow measuring unit can be reduced with a simple configuration, and a high-accuracy ultrasonic flowmeter is obtained. be able to.

 また第8の超音波流量計は、第7の超音波流量計において、前記超音波流量計は、前記流量測定部を複数の部分に分割する少なくとも1つ以上の分割板をさらに備えているため、流量測定部内での反射波の影響を低減でき、高精度な超音波流量計を得ることができる。 The eighth ultrasonic flowmeter is the seventh ultrasonic flowmeter, since the ultrasonic flowmeter further includes at least one or more dividing plates that divide the flow measuring unit into a plurality of parts. In addition, the influence of the reflected wave in the flow measuring unit can be reduced, and a high-accuracy ultrasonic flow meter can be obtained.

 また第9の超音波流量計は、第8の超音波流量計において、前記一対の超音波振動子の周波数は所定値以下に設定されているため、流量測定部内での反射波の影響を低減でき、高精度な超音波流量計を得ることができる。 In the ninth ultrasonic flow meter, the frequency of the pair of ultrasonic vibrators is set to a predetermined value or less in the eighth ultrasonic flow meter, so that the influence of the reflected wave in the flow measuring unit is reduced. It is possible to obtain a high-accuracy ultrasonic flowmeter.

 また第10の超音波流量計は、第1〜5、7のいづれかの超音波流量計において、前記流量測定部の断面形状は矩形であり、前記流量測定部の断面形状に関連するパラメータは前記矩形の高さであるため、簡易な構成で流量測定部内での反射波の影響を低減でき、高精度な超音波流量計を得ることができる。 In a tenth ultrasonic flowmeter according to any one of the first to fifth and seventh ultrasonic flowmeters, a cross-sectional shape of the flow measuring unit is rectangular, and a parameter related to a cross-sectional shape of the flow measuring unit is Since it has a rectangular height, the influence of the reflected wave in the flow measuring unit can be reduced with a simple configuration, and a highly accurate ultrasonic flow meter can be obtained.

 また第11の超音波流量計は、第1〜5、7のいづれかの超音波流量計において、前記流量測定部の断面形状は円であり、前記流量測定部の断面形状に関連するパラメータは前記円の直径であるため、簡易な構成で流量測定部内での反射波の影響を低減でき、高精度な超音波流量計を得ることができる。 An eleventh ultrasonic flow meter is the ultrasonic flow meter according to any one of the first to fifth and seventh aspects, wherein a cross-sectional shape of the flow measuring unit is a circle, and a parameter related to a cross-sectional shape of the flow measuring unit is Because of the diameter of the circle, the influence of the reflected wave in the flow measuring unit can be reduced with a simple configuration, and a high-accuracy ultrasonic flow meter can be obtained.

 また第12の形態の超音波流量計は、第1〜5、7のいづれかの超音波流量計において、前記一対の超音波振動子は、前記一対の超音波振動子の中心を結ぶ線が前記流量測定部の断面の所定方向の中心線に対してシフトするように配置されるため、流量測定部内での反射波の影響を低減でき、高精度な超音波流量計を得ることができる。 An ultrasonic flowmeter according to a twelfth aspect is the ultrasonic flowmeter according to any one of the first to fifth and seventh aspects, wherein the pair of ultrasonic transducers has a line connecting the centers of the pair of ultrasonic transducers. Since it is arranged so as to be shifted with respect to the center line in a predetermined direction of the cross section of the flow measurement unit, the influence of the reflected wave in the flow measurement unit can be reduced, and a high-accuracy ultrasonic flow meter can be obtained.

 また第13の超音波流量計は、第12の超音波流量計において、前記一対の超音波振動子の中心を結ぶ線と前記流量測定部の断面の所定方向の中心線とは互いに平行であるため、流量測定部内での反射波の影響を低減でき、高精度な超音波流量計を得ることができる。 In a thirteenth ultrasonic flow meter, in the twelfth ultrasonic flow meter, a line connecting the centers of the pair of ultrasonic transducers and a center line in a predetermined direction of a cross section of the flow measuring unit are parallel to each other. Therefore, the influence of the reflected wave in the flow measuring unit can be reduced, and a high-accuracy ultrasonic flow meter can be obtained.

 また第14の超音波流量計は、第12の超音波流量計において、前記一対の超音波振動子の中心を結ぶ線と前記流量測定部の断面の所定方向の中心線とは所定の角度をなしているため、流量測定部内での反射波の影響を低減でき、高精度な超音波流量計を得ることができる。 In a fourteenth ultrasonic flowmeter, in the twelfth ultrasonic flowmeter, a line connecting the centers of the pair of ultrasonic transducers and a center line in a predetermined direction of a cross section of the flow measuring unit have a predetermined angle. Because of this, it is possible to reduce the influence of the reflected wave in the flow measuring unit, and to obtain a high-accuracy ultrasonic flow meter.

 また第15の超音波流量計は、第1または第2の超音波流量計において、前記超音波流量計は、前記流量測定部の壁面によって1回だけ反射される反射波の発生を阻止する構成をさらに備えているため、流量測定部内での反射波の影響を低減でき、高精度な超音波流量計を得ることができる。 A fifteenth ultrasonic flowmeter is the first or second ultrasonic flowmeter, wherein the ultrasonic flowmeter prevents generation of a reflected wave that is reflected only once by a wall surface of the flow measurement unit. Is further provided, the influence of the reflected wave in the flow measurement unit can be reduced, and a highly accurate ultrasonic flowmeter can be obtained.

 また第16の超音波流量計は、第15の超音波流量計において、前記一対の超音波振動子の中心を結ぶ線と前記流量測定部の断面の所定方向の中心線とは所定の角度をなしているため、流量測定部内での反射波の影響を低減でき、高精度な超音波流量計を得ることができる。 In a sixteenth ultrasonic flowmeter, in the fifteenth ultrasonic flowmeter, a line connecting a center of the pair of ultrasonic transducers and a center line in a predetermined direction of a cross section of the flow rate measurement unit have a predetermined angle. Because of this, it is possible to reduce the influence of the reflected wave in the flow measuring unit, and to obtain a high-accuracy ultrasonic flow meter.

 また第17の超音波流量計は、第1または第2の超音波流量計において、前記超音波流量計は、前記流量測定部に設けられた少なくとも1つの構造体をさらに備えているため、流量測定部内での反射波の影響を低減でき、高精度な超音波流量計を得ることができる。 A seventeenth ultrasonic flowmeter is the first or second ultrasonic flowmeter, wherein the ultrasonic flowmeter further includes at least one structure provided in the flow measurement unit. The influence of the reflected wave in the measuring section can be reduced, and a highly accurate ultrasonic flowmeter can be obtained.

 また第18の超音波流量計は、第17の超音波流量計において、前記少なくとも1つの構造体は、前記一対の超音波振動子の近傍に配置されているため、流量測定部内での反射波の影響を低減でき、高精度な超音波流量計を得ることができる。 An eighteenth ultrasonic flowmeter is the seventeenth ultrasonic flowmeter, wherein the at least one structure is disposed near the pair of ultrasonic vibrators, so that the reflected wave in the flow measurement unit is provided. Can be reduced, and a highly accurate ultrasonic flowmeter can be obtained.

 また第19の超音波流量計は、第17の超音波流量計において、前記少なくとも1つの構造体は、前記流量測定部の壁面に配置されているため、流量測定部内での反射波の影響を低減でき、高精度な超音波流量計を得ることができる。 A nineteenth ultrasonic flowmeter is the seventeenth ultrasonic flowmeter, wherein the at least one structure is disposed on a wall surface of the flow measurement unit, so that an influence of a reflected wave in the flow measurement unit is reduced. A high-accuracy ultrasonic flowmeter can be obtained.

 本発明の第20の形態の超音波流量計は、第1または第2の形態の超音波流量計において、前記流量測定部の壁面には、少なくとも1つ以上の凹部または凸部が設けられているため、流量測定部内での反射波の影響を低減でき、高精度な超音波流量計を得ることができる。 An ultrasonic flowmeter according to a twentieth aspect of the present invention is the ultrasonic flowmeter according to the first or second aspect, wherein at least one concave or convex part is provided on a wall surface of the flow rate measuring unit. Therefore, the influence of the reflected wave in the flow measuring unit can be reduced, and a high-accuracy ultrasonic flow meter can be obtained.

 また第21の超音波流量計は、第20の超音波流量計において、前記超音波流量計は、前記凹部を覆うメッシュ構造体をさらに備えているため、流量測定部内での反射波の影響を低減でき、高精度な超音波流量計を得ることができる。 A twenty-first ultrasonic flowmeter is the twentieth ultrasonic flowmeter, wherein the ultrasonic flowmeter further includes a mesh structure that covers the concave portion, so that an influence of a reflected wave in the flow measurement unit is reduced. A high-accuracy ultrasonic flowmeter can be obtained.

 また第22の超音波流量計は、第1〜5、7のいづれかの超音波流量計において、前記一対の超音波振動子は、前記一対の超音波振動子の中心を結ぶ線と前記一対の超音波振動子の少なくとも一方の指向性を示す方向とが所定の角度をなすように配置されているため、流量測定部内での反射波の影響を低減でき、高精度な超音波流量計を得ることができる。 A twenty-second ultrasonic flow meter is the ultrasonic flow meter according to any one of the first to fifth and seventh aspects, wherein the pair of ultrasonic vibrators is a line connecting a center of the pair of ultrasonic vibrators and the pair of ultrasonic vibrators. Since at least one of the directivities of the ultrasonic transducers is arranged so as to form a predetermined angle with the direction indicating the directivity, it is possible to reduce the influence of the reflected wave in the flow measuring unit, and obtain a high-accuracy ultrasonic flow meter. be able to.

 また第23の超音波流量計は、第1から第22の超音波流量計において、少なくとも前記流量測定部の上流側に流れの方向を整える整流手段を有しており、流量測定部内の流れの方向を均一化でき、さらに高精度な超音波流量計を得ることができる。 The twenty-third ultrasonic flow meter has a rectifier for adjusting a flow direction at least upstream of the flow measurement part in the first to twenty-second ultrasonic flow meters, and has a flow rectifier inside the flow measurement part. The direction can be made uniform, and a more accurate ultrasonic flowmeter can be obtained.

本発明の実施例1における超音波流量計の構成図である。FIG. 2 is a configuration diagram of an ultrasonic flowmeter according to the first embodiment of the present invention. 同流量計におけるa−a’線を横から見た断面図である。It is sectional drawing which looked at the a-a 'line in the same flow meter from the side. 同流量計におけるb−b’線を横から見た断面図である。It is sectional drawing which looked at the b-b 'line in the same flow meter from the side. 流量測定部内での超音波の伝搬経路分布計算結果を示す図である。It is a figure showing a propagation path distribution calculation result of an ultrasonic wave in a flow measurement part. 流量測定部内での超音波の伝搬経路分布計算結果を示す図である。It is a figure showing a propagation path distribution calculation result of an ultrasonic wave in a flow measurement part. 超音波の受信波の計算結果を示す図である。It is a figure showing a calculation result of a reception wave of an ultrasonic wave. 超音波の受信波の計算結果を示す図である。It is a figure showing a calculation result of a reception wave of an ultrasonic wave. 同流量計における相対受信電圧を示す特性図である。It is a characteristic view which shows the relative reception voltage in the same flowmeter. 同流量計における受信電圧の変化率を示す特性図である。It is a characteristic view which shows the rate of change of the reception voltage in the same flowmeter. 本発明の実施例2における超音波流量計のa−a’線を横から見た断面図である。It is sectional drawing which looked at the a-a 'line of the ultrasonic flowmeter in Example 2 of this invention from the side. 同流量計におけるb−b’線を横から見た断面図である。It is sectional drawing which looked at the b-b 'line in the same flow meter from the side. 同流量計における相対受信電圧を示す特性図である。It is a characteristic view which shows the relative reception voltage in the same flowmeter. 同流量計における受信電圧の変化率を示す特性図である。It is a characteristic view which shows the rate of change of the reception voltage in the same flowmeter. 本発明の実施例3における超音波流量計のa−a’線を横から見た断面図である。It is sectional drawing which looked at the a-a 'line of the ultrasonic flowmeter in Example 3 of this invention from the side. 同流量計におけるb−b’線を横から見た断面図である。It is sectional drawing which looked at the b-b 'line in the same flow meter from the side. 本発明の実施例4における超音波流量計のb−b’線を横から見た断面図である。It is sectional drawing which looked at the b-b 'line of the ultrasonic flowmeter in Example 4 of this invention from the side. 本発明の実施例5における超音波流量計のb−b’線を横から見た断面図である。It is sectional drawing which looked at the b-b 'line of the ultrasonic flowmeter in Example 5 of this invention from the side. 本発明の実施例6における超音波流量計の上面図である。It is a top view of the ultrasonic flowmeter in Example 6 of this invention. 同流量計におけるc−c’線を横から見た断面図である。It is sectional drawing which looked at the c-c 'line in the same flow meter from the side. 同流量計におけるd−d’線を横から見た断面図である。It is sectional drawing which looked at the d-d 'line in the same flow meter from the side. 本発明の実施例7における超音波流量計のa−a’線を横から見た断面図である。It is sectional drawing which looked at the a-a 'line of the ultrasonic flowmeter in Example 7 of this invention from the side. 同流量計におけるb−b’線を横から見た断面図である。It is sectional drawing which looked at the b-b 'line in the same flow meter from the side. 本発明の実施例8における超音波流量計のa−a’線を横から見た断面図である。It is sectional drawing which looked at the a-a 'line of the ultrasonic flowmeter in Example 8 of this invention from the side. 同流量計におけるb−b’線を横から見た断面図である。It is sectional drawing which looked at the b-b 'line in the same flow meter from the side. 本発明の実施例9における超音波流量計のa−a’線を横から見た断面図である。It is sectional drawing which looked at the a-a 'line of the ultrasonic flowmeter in Example 9 of this invention from the side. 同流量計におけるb−b’線を横から見た断面図である。It is sectional drawing which looked at the b-b 'line in the same flow meter from the side. 本発明の実施例10における超音波流量計を上から見た断面図である。It is sectional drawing which looked at the ultrasonic flowmeter in Example 10 of this invention from the top. 本発明の実施例11における超音波流量計の配管への取り付け状態を示す局所断面図である。It is a local sectional view showing the attachment state to the piping of the ultrasonic flowmeter in Example 11 of the present invention. 従来の超音波流量計の構成図である。It is a block diagram of the conventional ultrasonic flowmeter. 従来の超音波流量計の構成図である。It is a block diagram of the conventional ultrasonic flowmeter.

Claims (9)

 超音波を用いて流体の流量を測定する超音波流量計において、断面形状が矩形であり、かつ流体が流れる流量測定部と、前記流体中を伝搬する超音波を送受信する一対の超音波振動子と、前記一対の超音波振動子間を超音波が伝搬する時間を計測する計測部と、前記計測部の出力に基づいて前記流量測定部を流れる流体の量を計算する計算部とを備え、前記流量測定部の壁面に反射することなく流体中を伝搬する直接波の伝搬距離と前記流量測定部の壁面によって反射され流体中を伝搬する反射波の伝搬距離との差から生じる前記測定結果に与える影響が低減されるように、前記流量測定部および前記一対の超音波振動子は、前記一対の超音波振動子の周波数と、前記一対の超音波振動子間の距離と、前記流量測定部の断面形状に関連するパラメータとの組合せを選択して構成され、前記反射波は、前記流量測定部の壁面に1回だけ反射して伝搬する波であり、前記伝搬位相差が3π/2以上である、超音波流量計。 In an ultrasonic flowmeter that measures the flow rate of a fluid using ultrasonic waves, a cross-sectional shape is rectangular, and a flow rate measurement unit through which the fluid flows, and a pair of ultrasonic transducers that transmit and receive ultrasonic waves propagating in the fluid And, a measuring unit that measures the time that ultrasonic waves propagate between the pair of ultrasonic transducers, and a calculating unit that calculates the amount of fluid flowing through the flow rate measuring unit based on the output of the measuring unit, The measurement result resulting from the difference between the propagation distance of the direct wave propagating in the fluid without being reflected on the wall surface of the flow measurement unit and the propagation distance of the reflected wave propagating in the fluid reflected by the wall surface of the flow measurement unit The flow rate measuring unit and the pair of ultrasonic transducers are arranged so that the influence thereof is reduced, the frequency of the pair of ultrasonic transducers, the distance between the pair of ultrasonic transducers, and the flow rate measuring unit. Related to the cross-sectional shape of The reflected wave is a wave that is reflected and propagated only once on the wall surface of the flow rate measuring unit, and the propagation phase difference is 3π / 2 or more. Total.  超音波を用いて流体の流量を測定する超音波流量計において、断面形状が矩形であり、かつ流体が流れる流量測定部と、流路の側壁部に設けられ前記流体中を伝搬する超音波を送受信する一対の超音波振動子と、前記一対の超音波振動子間を超音波が伝搬する時間を計測する計測部と、前記計測部の出力に基づいて前記流量測定部を流れる流体の量を計算する計算部とを備え、前記流量測定部の壁面に反射することなく流体中を伝搬する直接波の伝搬距離と前記流量測定部の壁面によって反射され流体中を伝搬する反射波の伝搬距離との差から生じる伝搬位相差を大きくするように、前記流量測定部と前記一対の超音波振動子は、超音波を送受信する方向に垂直でかつ前記側壁部の壁面に略平行な方向の前記流量測定部の断面高さを設定するとともに、前記一対の超音波振動子の周波数は所定値以上に設定する超音波流量計。 In an ultrasonic flowmeter that measures the flow rate of a fluid using ultrasonic waves, a cross-sectional shape is rectangular, and a flow rate measurement unit in which the fluid flows, and an ultrasonic wave that is provided on a side wall of the flow path and propagates in the fluid. A pair of ultrasonic transducers to transmit and receive, a measuring unit that measures the time that ultrasonic waves propagate between the pair of ultrasonic transducers, and the amount of fluid flowing through the flow rate measuring unit based on the output of the measuring unit. And a calculating unit for calculating, the propagation distance of the direct wave propagating in the fluid without being reflected on the wall surface of the flow measurement unit and the propagation distance of the reflected wave propagating in the fluid reflected by the wall surface of the flow measurement unit. So as to increase the propagation phase difference resulting from the difference between the flow rate measurement unit and the pair of ultrasonic transducers, the flow rate in a direction perpendicular to the direction of transmitting and receiving ultrasonic waves and substantially parallel to the wall surface of the side wall part. Set the section height of the measuring section With, ultrasonic flow meter the pair of the frequency of the ultrasonic vibrator is set to a predetermined value or more.  前記反射波は、前記流量測定部の壁面に1回だけ反射して伝搬する波であり、前記伝搬位相差が3π/2以上である請求項2に記載の超音波流量計。 3. The ultrasonic flowmeter according to claim 2, wherein the reflected wave is a wave that is reflected only once on the wall surface of the flow measurement unit and propagates, and the propagation phase difference is 3π / 2 or more. 4.  前記流量測定部は、前記伝搬位相差を所望の大きさに設定する少なくとも1つの構造体を備えている請求項2に記載の超音波流量計。 The ultrasonic flowmeter according to claim 2, wherein the flow measurement unit includes at least one structure that sets the propagation phase difference to a desired magnitude.  前記構造体は、前記一対の超音波振動子の近傍に配置されている請求項4に記載の超音波流量計。 The ultrasonic flowmeter according to claim 4, wherein the structure is disposed near the pair of ultrasonic transducers.  前記構造体は、前記流量測定部の壁面に配置されている請求項4に記載の超音波流量計。 The ultrasonic flowmeter according to claim 4, wherein the structure is disposed on a wall surface of the flow measurement unit.  前記流量側面部の壁面には、少なくとも1つ以上の凹部または凸部が設けられている請求項2に記載の超音波流量計。 The ultrasonic flowmeter according to claim 2, wherein at least one concave portion or convex portion is provided on a wall surface of the flow rate side portion.  前記凹部を覆うメッシュ構造体をさらに備えている請求項7記載の超音波流量計。 The ultrasonic flowmeter according to claim 7, further comprising a mesh structure that covers the recess.  少なくとも流量測定部の上流側に流れの方向を整える整流手段を備えた請求項2に記載の超音波流量計。 3. The ultrasonic flowmeter according to claim 2, further comprising a rectification means for adjusting a flow direction at least on an upstream side of the flow measurement unit.
JP2004039069A 1997-04-18 2004-02-16 Ultrasonic flow meter Expired - Fee Related JP3916162B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004039069A JP3916162B2 (en) 1997-04-18 2004-02-16 Ultrasonic flow meter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10142397 1997-04-18
JP2004039069A JP3916162B2 (en) 1997-04-18 2004-02-16 Ultrasonic flow meter

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP54545198A Division JP3556232B2 (en) 1997-04-18 1998-04-16 Ultrasonic flow meter

Publications (2)

Publication Number Publication Date
JP2004138628A true JP2004138628A (en) 2004-05-13
JP3916162B2 JP3916162B2 (en) 2007-05-16

Family

ID=32472287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004039069A Expired - Fee Related JP3916162B2 (en) 1997-04-18 2004-02-16 Ultrasonic flow meter

Country Status (1)

Country Link
JP (1) JP3916162B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007121071A (en) * 2005-10-27 2007-05-17 Aichi Tokei Denki Co Ltd Ultrasonic flowmeter
JP2009210525A (en) * 2008-03-06 2009-09-17 Panasonic Corp Method of manufacturing multilayer channel member of ultrasonic fluid measuring device
JP2009210524A (en) * 2008-03-06 2009-09-17 Panasonic Corp Multilayer channel member of ultrasonic fluid measuring device
WO2012086156A1 (en) * 2010-12-22 2012-06-28 パナソニック株式会社 Ultrasonic flowmeter
JP2013228388A (en) * 2012-04-25 2013-11-07 General Electric Co <Ge> Ultrasonic flow measurement system
JP2014066695A (en) * 2012-09-07 2014-04-17 Yazaki Energy System Corp Flow rate measurement apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007121071A (en) * 2005-10-27 2007-05-17 Aichi Tokei Denki Co Ltd Ultrasonic flowmeter
JP2009210525A (en) * 2008-03-06 2009-09-17 Panasonic Corp Method of manufacturing multilayer channel member of ultrasonic fluid measuring device
JP2009210524A (en) * 2008-03-06 2009-09-17 Panasonic Corp Multilayer channel member of ultrasonic fluid measuring device
WO2012086156A1 (en) * 2010-12-22 2012-06-28 パナソニック株式会社 Ultrasonic flowmeter
JP2013228388A (en) * 2012-04-25 2013-11-07 General Electric Co <Ge> Ultrasonic flow measurement system
JP2014066695A (en) * 2012-09-07 2014-04-17 Yazaki Energy System Corp Flow rate measurement apparatus

Also Published As

Publication number Publication date
JP3916162B2 (en) 2007-05-16

Similar Documents

Publication Publication Date Title
JP3556232B2 (en) Ultrasonic flow meter
US8701501B2 (en) Ultrasonic flowmeter
US7363174B2 (en) Apparatus and method for measuring a fluid flow rate profile using acoustic doppler effect
EP2639560B1 (en) Ultrasonic flow rate measurement device
JP2895704B2 (en) Ultrasonic flow meter
JP3916162B2 (en) Ultrasonic flow meter
JP3907613B2 (en) Ultrasonic flow meter
JP5070620B2 (en) Ultrasonic flow meter and flow measurement method
JP6982737B2 (en) Ultrasonic flow meter
JP2974770B2 (en) Gas or liquid ultrasonic flow meter
JP2009103460A (en) Ultrasonic flowmeter
JP2000065613A (en) Ultrasonic flowmeter
JP2007178244A (en) Ultrasonic flowmeter and wedge therefor
JP5070624B2 (en) Ultrasonic flow meter and flow measurement method
JPH1144561A (en) Ultrasonic flow rate and flow velocity meter
JP2007121071A (en) Ultrasonic flowmeter
JP3217021B2 (en) Ultrasonic flow meter
JP4007861B2 (en) Ultrasonic flow meter
JP2000304583A (en) Measurement part of ultrasonic flowmeter
JP2001208585A (en) Flowmeter
JP2004028664A (en) Ultrasonic wave type flow rate measuring apparatus
JP2008256383A (en) Ultrasonic flowmeter
JP2008268090A (en) Ultrasonic flowmeter
JP2004069520A (en) Flow rate measuring apparatus
JP2004069527A (en) Ultrasonic flow rate measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140216

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees