JP2007121071A - Ultrasonic flowmeter - Google Patents

Ultrasonic flowmeter Download PDF

Info

Publication number
JP2007121071A
JP2007121071A JP2005312574A JP2005312574A JP2007121071A JP 2007121071 A JP2007121071 A JP 2007121071A JP 2005312574 A JP2005312574 A JP 2005312574A JP 2005312574 A JP2005312574 A JP 2005312574A JP 2007121071 A JP2007121071 A JP 2007121071A
Authority
JP
Japan
Prior art keywords
flow
flow path
cross
width
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005312574A
Other languages
Japanese (ja)
Other versions
JP4804872B2 (en
Inventor
Yutaka Tanaka
豊 田中
Masato Ito
真人 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Tokei Denki Co Ltd
Original Assignee
Aichi Tokei Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Tokei Denki Co Ltd filed Critical Aichi Tokei Denki Co Ltd
Priority to JP2005312574A priority Critical patent/JP4804872B2/en
Publication of JP2007121071A publication Critical patent/JP2007121071A/en
Application granted granted Critical
Publication of JP4804872B2 publication Critical patent/JP4804872B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance accuracy of flow measurement while reducing the size of a flowmeter. <P>SOLUTION: In a sound wave flowmeter, a fluid flows in the horizontal direction in flow paths 1a, 1b, and 1c of a measuring tube 30 as shown in Fig. (b). An ultrasonic wave is caused to propagate through the fluid along a straight line 6 inclined at an angle θ from an axis line Xa - Xa of the flow path 1a to calculate a flow speed based on forward propagation time in the same direction as a flow and reverse propagation time in the reverse direction, thereby operating a flow volume. As to the flow paths, the three flow paths 1a, 1b, and 1c are provided around the straight line 6 so as to be shifted from each other by 120° as shown in Figs. (c) and (d). Each flow path is equipped with a rectangular cross-section of height H and width W. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、矩形よう断面の流路を有する超音波流量計の改良に関する。   The present invention relates to an improvement in an ultrasonic flowmeter having a rectangular channel.

矩形断面の流路を流れる流体の流速を超音波の伝搬時間に基づいて計測し、流量を算出する超音波流量計が公知である(例えば、特許文献1参照)。   2. Description of the Related Art An ultrasonic flowmeter that measures the flow rate of a fluid flowing through a rectangular cross-section flow path based on the propagation time of ultrasonic waves and calculates the flow rate is known (for example, see Patent Document 1).

図1は、この従来技術における流路形状と、流路と超音波振動子の配置関係を説明する略図で、同図(a)は縦断面図、(b)は横断面図である。   1A and 1B are schematic diagrams for explaining the flow channel shape and the positional relationship between the flow channel and the ultrasonic transducer in the prior art. FIG. 1A is a longitudinal sectional view, and FIG. 1B is a transverse sectional view.

この従来技術では、図1(a)に示すように、流路1の流れに平行な断面の矩形2の軸線X−Xと矩形2の対角線との角Aの間の角度θをなす直線6上に超音波振動子4、5を配設している。つまり、振動子4と5を結ぶ直線6に対して、流路1を角度θだけ相対的に傾けて配設している。Lは流路1の長さ、Hは流れに直角な矩形断面の高さ、Wは同矩形断面の幅である(図1(b)参照)。   In this prior art, as shown in FIG. 1A, a straight line 6 forming an angle θ between an angle A between an axis XX of a rectangle 2 and a diagonal line of the rectangle 2 in a cross section parallel to the flow of the flow path 1. The ultrasonic transducers 4 and 5 are disposed on the top. That is, the flow path 1 is disposed so as to be relatively inclined by the angle θ with respect to the straight line 6 connecting the vibrators 4 and 5. L is the length of the flow path 1, H is the height of the rectangular cross section perpendicular to the flow, and W is the width of the rectangular cross section (see FIG. 1B).

図2は、流量計の構造を示す縦断面図である。矩形流路部3は流路1の軸線X−Xが、振動子4と5を結ぶ直線6に対し、角度θをなすように傾斜して取付けられている。   FIG. 2 is a longitudinal sectional view showing the structure of the flow meter. The rectangular flow path portion 3 is attached so that the axis XX of the flow path 1 is inclined with respect to the straight line 6 connecting the vibrators 4 and 5 so as to form an angle θ.

被計測流体は流入部9から計量室10に入り、矩形流路部3の流路1に左から入る。流路1を図示右方に軸線X−Xに沿って流れ、流路1の右方から出て、更に流出部11から流量計の外へ流出する。12は流入部側と流出部側を仕切る仕切り壁で、矩形流路部3がこの仕切り壁12を貫通して固定されている。計量室10の相対する壁面13と14には夫々超音波振動子4と5が対向配置されている。
特開2001−201379号公報
The fluid to be measured enters the measurement chamber 10 from the inflow part 9 and enters the flow path 1 of the rectangular flow path part 3 from the left. It flows along the axis XX on the right side of the flow path 1 in the drawing, exits from the right side of the flow path 1, and further flows out of the flow meter from the outflow portion 11. Reference numeral 12 denotes a partition wall that partitions the inflow portion side and the outflow portion side, and the rectangular flow path portion 3 is fixed through the partition wall 12. Ultrasonic transducers 4 and 5 are arranged opposite to the opposing wall surfaces 13 and 14 of the measuring chamber 10, respectively.
JP 2001-201379 A

流量計では、圧力損失を所定値以下に抑えるために、計測する最大流量に応じた流路断面積が要求される。この流路断面積Sは前記従来技術では、流路の矩形断面の高さHと幅Wとの積で表わされ、S=H・Wである。   In the flow meter, in order to suppress the pressure loss to a predetermined value or less, a flow path cross-sectional area corresponding to the maximum flow rate to be measured is required. In the prior art, the channel cross-sectional area S is represented by the product of the height H and the width W of the rectangular cross-section of the channel, and S = H · W.

幅Wを小さくする程、幅W内での流速の変化は小さくなり、流れは、流路1の長さ方向と高さ方向を含む2次元平面、即ち図1(a)と図2における紙面を含む2次元平面内での2次元流として取り扱うことができる。換言すれば、幅Wを小さくして矩形断面のアスペクト比H:Wを大きくする程2次元流の形成に有利となる。   The smaller the width W, the smaller the change in the flow velocity within the width W, and the flow is a two-dimensional plane including the length direction and height direction of the flow path 1, that is, the paper surface in FIG. 1 (a) and FIG. Can be handled as a two-dimensional flow in a two-dimensional plane including In other words, the smaller the width W and the larger the aspect ratio H: W of the rectangular cross section, the more advantageous the formation of a two-dimensional flow.

ところが、流路断面積Sは計測する最大流量が同じなら変わらない。従って、アスペクト比を大きくする程高さHが大きくなり、流路断面の最大寸法が大きくなるため、結果的に流量計の外形寸法が大きくなるという問題点がある。   However, the channel cross-sectional area S does not change if the maximum flow rate to be measured is the same. Therefore, as the aspect ratio is increased, the height H is increased and the maximum dimension of the flow path cross section is increased. As a result, there is a problem that the outer dimension of the flow meter is increased.

そこで、本発明は、2次元流の形成に有利で、しかも流量計の外形寸法を小さくできる超音波流量計を提供することを目的とする。   Accordingly, an object of the present invention is to provide an ultrasonic flowmeter that is advantageous for forming a two-dimensional flow and that can reduce the external dimensions of the flowmeter.

本発明は、流路断面がほぼ矩形の流路を複数具備したことを最も主要な特徴とする。
そこで、前記目的を達成するために、請求項1の発明は、1対の超音波振動子間を結ぶ直線に対して、流路断面がほぼ矩形の流路の軸線を相対的に傾けて配設した超音波流量計において、
流路を複数具備したことを特徴とする超音波流量計である。
The most important feature of the present invention is that a plurality of channels each having a substantially rectangular channel cross section are provided.
Therefore, in order to achieve the above object, the invention according to claim 1 is arranged such that the axis of the flow path having a substantially rectangular cross section is relatively inclined with respect to a straight line connecting the pair of ultrasonic transducers. In the installed ultrasonic flow meter,
An ultrasonic flowmeter comprising a plurality of flow paths.

請求項2の発明は、請求項1の超音波流量計において、超音波振動子間を結ぶ直線の回りに複数の流路を均等に角度をずらして配設したことを特徴とするものである。   According to a second aspect of the present invention, in the ultrasonic flowmeter according to the first aspect, a plurality of flow paths are arranged at equal angles around a straight line connecting the ultrasonic transducers. .

請求項3の発明は、請求項2の超音波流量計において、超音波振動子間を結ぶ直線に対して、流路の軸線が交差する傾きの角度が、いずれの流路とも同じ角度であることを特徴とするものである。   According to a third aspect of the present invention, in the ultrasonic flowmeter according to the second aspect, the angle of inclination at which the axis of the flow path intersects the straight line connecting the ultrasonic transducers is the same angle in any flow path. It is characterized by this.

請求項4の発明は、請求項1、2又は3の超音波流量計において、流路断面を形成する矩形ようの形状が、超音波振動子間を結ぶ直線から大きく離れている側の幅(W)を、他側の幅(W)より大きく定めることにより、流路断面を台形にしたことを特徴とするものである。 The invention according to claim 4 is the ultrasonic flowmeter according to claim 1, 2, or 3, wherein the rectangular shape forming the cross section of the flow path is a width on the side far from the straight line connecting the ultrasonic transducers ( By defining W 1 ) to be larger than the width (W 2 ) on the other side, the channel cross section is trapezoidal.

請求項5の発明は、請求項3又は4の超音波流量計において、流路の数が3個で、各流路の断面寸法を同じに定めたことを特徴とするものである。   The invention according to claim 5 is the ultrasonic flowmeter according to claim 3 or 4, characterized in that the number of flow paths is three and the cross-sectional dimensions of the respective flow paths are determined to be the same.

本発明は、上述のように構成されているので、各流路のアスペクト比である矩形の高さ/幅を大きくして、かつ、矩形の高さを小さくできる。そのため、2次元流の形成に有利で、しかも外形寸法の小さい超音波流量計が実現できる。   Since the present invention is configured as described above, the height / width of the rectangle, which is the aspect ratio of each flow path, can be increased, and the height of the rectangle can be decreased. Therefore, an ultrasonic flowmeter which is advantageous for forming a two-dimensional flow and has a small outer dimension can be realized.

請求項4の発明では、一方の側の幅(W)を他方の側の幅(W)と同じに定めた場合に比較して、W>Wに定めたことで、幅が大きい方の側における流速が大きくなり、流量計側の精度がより向上する。 In the invention of claim 4, the width is defined as W 1 > W 2 as compared with the case where the width (W 1 ) on one side is set to be equal to the width (W 2 ) on the other side. The flow velocity on the larger side is increased, and the accuracy on the flow meter side is further improved.

次に本発明を実施するための最良の形態を図の実施例に基づいて説明する。   Next, the best mode for carrying out the present invention will be described based on the embodiments shown in the drawings.

図3は、本発明の流量計の1実施例の断面図であって、4、5、6、9、10、11、13、14は図2と同様である。この実施例では流れに直角な流路断面が高さH、幅Wの矩形状で、流路の長さはLである。この流路を符号1aで示す。3aは流路1aを備えた流路部である。そして、この実施例では、図4(a)(b)(c)(d)に示すように、超音波の伝搬する直線6に対して、流路1aの軸線Xa−Xaは角度θだけ傾斜して配設される。また、流路1aの他に、流路1aと同じ形状の高さH×幅Wの矩形断面の流路1bと1cが、同図(c)(d)に示すように直線6の周りに円周を3等分して、120°間隔で配設されている。流路1bと1cは、前記流路1aと同様に超音波が伝搬する直線6に対して角度θだけ傾斜している。   FIG. 3 is a cross-sectional view of one embodiment of the flowmeter of the present invention, and 4, 5, 6, 9, 10, 11, 13, and 14 are the same as those in FIG. In this embodiment, the channel cross section perpendicular to the flow is a rectangular shape having a height H and a width W, and the length of the channel is L. This flow path is denoted by reference numeral 1a. 3a is a flow path part provided with the flow path 1a. In this embodiment, as shown in FIGS. 4A, 4B, 4C, and 4D, the axis Xa-Xa of the flow path 1a is inclined by an angle θ with respect to the straight line 6 through which the ultrasonic waves propagate. Arranged. In addition to the flow path 1a, the flow paths 1b and 1c having the same shape as the flow path 1a and having a height H × width W having a rectangular cross section are arranged around the straight line 6 as shown in FIGS. The circumference is divided into three equal parts and arranged at intervals of 120 °. The channels 1b and 1c are inclined by an angle θ with respect to the straight line 6 through which the ultrasonic wave propagates in the same manner as the channel 1a.

流路1a、1b、1cをそれぞれ備えた流路部3a、3b、3cは、流路の長手方向であるL方向に突条のかたちに延在し、一体になって計測管30を構成する。換言すれば、計測管30に流路部3a、3b、3cが形成され、各流路部3a、3b、3cにそれぞれ矩形断面の流路1a、1b、1cが設けられている。そして、これら3つの流路1a、1b、1cの各軸線Xa−Xa等に対して、図3に示す超音波振動子4、5間を結ぶ1つの直線(即ち超音波の伝搬経路)6が角度θで交差している。なお、図5で15は3つの流路1a、1b、1cが互いに重なり合う部分に直径Aの仮想線(2点鎖線)で示す仮想的な中心穴である。   The flow path portions 3a, 3b, and 3c provided with the flow paths 1a, 1b, and 1c, respectively, extend in the shape of ridges in the L direction, which is the longitudinal direction of the flow path, and constitute the measurement tube 30 integrally. . In other words, the flow path portions 3a, 3b, and 3c are formed in the measurement tube 30, and the flow path portions 3a, 3b, and 3c are provided with flow paths 1a, 1b, and 1c having rectangular cross sections, respectively. A single straight line (that is, an ultrasonic propagation path) 6 connecting the ultrasonic transducers 4 and 5 shown in FIG. 3 is formed with respect to the axis lines Xa-Xa of these three flow paths 1a, 1b, and 1c. Cross at an angle θ. In FIG. 5, reference numeral 15 denotes a virtual center hole indicated by a virtual line having a diameter A (two-dot chain line) at a portion where the three flow paths 1a, 1b, and 1c overlap each other.

超音波は直線6に沿って、流路1aや1b、1cを斜めに横切るため、流路の断面平均流速に応じた伝搬時間を測定し、その伝搬時間に基づいて、流速を演算する。   Since the ultrasonic wave obliquely crosses the flow paths 1a, 1b, and 1c along the straight line 6, the propagation time corresponding to the cross-sectional average flow velocity of the flow path is measured, and the flow velocity is calculated based on the propagation time.

1つの流路1a、1b、1cの各流路断面積は、ほぼH×Wであるが、流量計としての流路断面積Sは前記中心穴の断面積をSとすると、
=(H・W−S)×3+S
となる。従って、流量計の計測容量は
最大流速×S
で表わされる。各流路1a、1b、1cの高さHと幅Wは、例えば、高さH=20mm、幅W=5mmとすることで、アスペクト比は20:5とすることができる。
One channel 1a, 1b, each flow path cross-sectional area of 1c, is substantially H × W, the flow path cross-sectional area S T as a flow rate meter cross-sectional area of the central bore and S 0,
S T = (H · W−S 0 ) × 3 + S 0
It becomes. Therefore, the measurement capacity of the flow meter is the maximum flow velocity x ST
It is represented by The aspect ratio can be set to 20: 5 by setting the height H and the width W of each of the flow paths 1a, 1b, and 1c to, for example, the height H = 20 mm and the width W = 5 mm.

図4で、計測管30の中央部には計測管30を図3の仕切り壁12に取り付けるためのフランジ30Aが形成されている。   In FIG. 4, a flange 30 </ b> A for attaching the measurement tube 30 to the partition wall 12 of FIG. 3 is formed at the center of the measurement tube 30.

流路1a、1b、1cは上述のように高さH、幅Wの矩形断面に形成する代りに、流れに直角な断面を台形にしてもよい。図4(c)(d)と図5に示すように、流路1aの矩形ようの断面の幅を、WとWとし、W>Wにして、台形断面としてもよい。このように、超音波の伝搬経路6からの距離が大きい側の幅Wを、伝搬経路6からの距離が小さい側の幅Wより大きくすることで、矩形よう断面の端辺側Wの壁面に沿って流れる流体の流速が粘性で低下することによる流速の低下を減らし、流量計測の誤差を低減できる。この台形断面の流路1aは、図4(c)では、流路1aの図示上端部の幅がWで、下端部の幅がWである。そして、図4(d)では流路1aの図示下端部の幅がWで、上端部の幅がWである。このように、流路1aの幅は、同図(b)の左右方向つまり長手方向Lの位置によって次第に変化するように定めてある。同図(b)で、流路1aの図示上縁の紙面に直角な方向の幅Wは、図示左端ではW、右端ではWである。そして、同図(b)で、流路1aの図示下縁の紙面に直角な方向の幅Wは、図示左端ではW、図示右端ではWである。そして、これらの幅は同図(b)で、図の左方から右方にいく程、連続的に、1次関数的に変化するように定めてある。従って、長さLの中央部では、流路断面の幅は(W+W)/2となり、断面形状は高さがH、幅が(W+W)/2の矩形断面となる。つまり、流路断面の形状は、流れ方向に移動するにつれて変化する。 Instead of forming the channels 1a, 1b, and 1c in a rectangular cross section having a height H and a width W as described above, a cross section perpendicular to the flow may be trapezoidal. As shown in FIGS. 4C and 4D and FIG. 5, the width of the rectangular cross section of the flow path 1a may be W 1 and W 2, and W 1 > W 2 so as to have a trapezoidal cross section. Thus, by making the width W 1 on the side where the distance from the propagation path 6 of the ultrasonic wave is larger than the width W 2 on the side where the distance from the propagation path 6 is smaller, the end side W 1 of the cross section is rectangular. It is possible to reduce a decrease in flow velocity due to a decrease in the flow velocity of the fluid flowing along the wall surface due to viscosity, and to reduce errors in flow measurement. Flow path 1a of the trapezoidal cross-section, in FIG. 4 (c), the width of the illustrated upper portion of the flow path 1a is in W 1, the width of the lower end portion is W 2. Then, the width of the bottom end portion shown in FIG. 4 (d) in the flow path 1a is W 1, the width of the upper portion is W 2. As described above, the width of the flow path 1a is determined so as to gradually change depending on the position in the left-right direction, that is, the longitudinal direction L in FIG. In FIG. 2B, the width W of the flow path 1a in the direction perpendicular to the drawing surface of the upper edge is W 1 at the left end and W 2 at the right end. In FIG. 2B, the width W in the direction perpendicular to the drawing of the lower edge of the flow path 1a is W 2 at the left end in the figure and W 1 at the right end in the figure. These widths are determined so as to continuously change in a linear function from the left to the right in FIG. Therefore, in the central portion of the length L, the width of the channel cross section is (W 1 + W 2 ) / 2, and the cross-sectional shape is a rectangular cross section having a height of H and a width of (W 1 + W 2 ) / 2. That is, the shape of the cross section of the flow path changes as it moves in the flow direction.

なお、流路断面の形状は、上述のように、矩形、台形に限定することはなく、ほぼ矩形ようであれば、他の形であってもよい。   The shape of the cross section of the flow path is not limited to a rectangle and a trapezoid as described above, and may be other shapes as long as it is substantially rectangular.

また、流路の数は前記実施例の3つに限定することはない。
超音波振動子4、5間で、超音波パルスを流れ方向の順方向とその逆方向とに交互に送受信を繰り返し、順方向と逆方向の伝搬時間に基づいて流速を求め、流量を演算する。
Further, the number of flow paths is not limited to three in the above embodiment.
The ultrasonic pulse is repeatedly transmitted and received between the ultrasonic transducers 4 and 5 alternately in the forward direction and the reverse direction, and the flow rate is calculated based on the propagation time in the forward direction and the reverse direction to calculate the flow rate. .

上述の実施例では、流路の数を3つにしたので、従来技術のように1つの流路にした場合に比較して、同じアスペクト比の流路断面形状とすれば、計測できる容量が同じであれば、高さHを従来技術の1/3と小型化できる。また、従来と同じ高さHを許容すれば、その分アスペクト比を約3倍にでき、2次元流の形成に有利となる。   In the above embodiment, since the number of flow paths is three, the capacity that can be measured can be obtained if the flow path cross-sectional shape has the same aspect ratio as compared with the case of using one flow path as in the prior art. If it is the same, the height H can be reduced to 1/3 of the prior art. Further, if the same height H as in the prior art is allowed, the aspect ratio can be increased by about 3 times, which is advantageous for forming a two-dimensional flow.

本発明の超音波流量計は、気体や液体の流量測定に適用可能である。   The ultrasonic flowmeter of the present invention can be applied to gas or liquid flow measurement.

従来技術の流路形状と、流路と超音波振動子の配置関係を説明する略図で、(a)は縦断面図、(b)は横断面図である。It is the schematic explaining the flow path shape of a prior art, and the arrangement | positioning relationship between a flow path and an ultrasonic transducer | vibrator, (a) is a longitudinal cross-sectional view, (b) is a cross-sectional view. 従来技術の超音波流量計の縦断面図である。It is a longitudinal cross-sectional view of the ultrasonic flowmeter of a prior art. 本発明の実施例の縦断面図である。It is a longitudinal cross-sectional view of the Example of this invention. 本発明における計測管の図面で、(a)は平面図、(b)は縦断面図、(c)は左側面図、(d)は右側面図である。In the drawing of the measuring tube in the present invention, (a) is a plan view, (b) is a longitudinal sectional view, (c) is a left side view, and (d) is a right side view. 図4(d)に対応する拡大図である。FIG. 5 is an enlarged view corresponding to FIG.

符号の説明Explanation of symbols

1a、1b、1c 流路
3a、3b、3c 流路部
4、5 超音波振動子
6 超音波振動子間を結ぶ直線(超音波の伝搬経路)
W、W、W
H 高さ
Xa−Xa 軸線
θ 角度
30 計測管

1a, 1b, 1c flow path 3a, 3b, 3c flow path section 4, 5 ultrasonic transducer 6 straight line connecting ultrasonic transducers (ultrasonic propagation path)
W, W 1 , W 2 width H height Xa-Xa axis θ angle 30 measuring tube

Claims (5)

1対の超音波振動子間を結ぶ直線に対して、流路断面がほぼ矩形の流路の軸線を相対的に傾けて配設した超音波流量計において、
流路を複数具備したことを特徴とする超音波流量計。
In an ultrasonic flowmeter in which a channel cross section having a substantially rectangular cross section is inclined relative to a straight line connecting a pair of ultrasonic transducers,
An ultrasonic flowmeter comprising a plurality of flow paths.
超音波振動子間を結ぶ直線の回りに複数の流路を均等に角度をずらして配設したことを特徴とする請求項1記載の超音波流量計。   The ultrasonic flowmeter according to claim 1, wherein a plurality of flow paths are arranged at equal angles around a straight line connecting the ultrasonic transducers. 超音波振動子間を結ぶ直線に対して、流路の軸線が交差する傾きの角度が、いずれの流路とも同じ角度であることを特徴とする請求項2記載の超音波流量計。   The ultrasonic flowmeter according to claim 2, wherein an angle of inclination at which the axis of the flow path intersects with a straight line connecting the ultrasonic transducers is the same angle in any flow path. 流路断面を形成する矩形ようの形状が、超音波振動子間を結ぶ直線から大きく離れている側の幅(W)を、他側の幅(W)より大きく定めることにより、流路断面を台形にしたことを特徴とする請求項1、2又は3記載の超音波流量計。 By defining the width (W 1 ) on the side far away from the straight line connecting the ultrasonic transducers so that the rectangular shape forming the cross section of the flow path is larger than the width (W 2 ) on the other side, 4. The ultrasonic flowmeter according to claim 1, 2 or 3, wherein the cross section is trapezoidal. 流路の数が3個で、各流路の断面寸法を同じに定めたことを特徴とする請求項3又は4記載の超音波流量計。
The ultrasonic flowmeter according to claim 3 or 4, wherein the number of flow paths is three and the cross-sectional dimensions of the respective flow paths are determined to be the same.
JP2005312574A 2005-10-27 2005-10-27 Ultrasonic flow meter Expired - Fee Related JP4804872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005312574A JP4804872B2 (en) 2005-10-27 2005-10-27 Ultrasonic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005312574A JP4804872B2 (en) 2005-10-27 2005-10-27 Ultrasonic flow meter

Publications (2)

Publication Number Publication Date
JP2007121071A true JP2007121071A (en) 2007-05-17
JP4804872B2 JP4804872B2 (en) 2011-11-02

Family

ID=38145082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005312574A Expired - Fee Related JP4804872B2 (en) 2005-10-27 2005-10-27 Ultrasonic flow meter

Country Status (1)

Country Link
JP (1) JP4804872B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010076151A1 (en) * 2008-12-29 2010-07-08 Endress+Hauser Flowtec Ag Measuring system for determining and/or monitoring the flow rate of a measured medium through the measuring tube using ultrasound
CN103196504A (en) * 2013-03-21 2013-07-10 浙江大学 Method and device for measuring multi-channel ultrasonic flow

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0943015A (en) * 1995-08-03 1997-02-14 Matsushita Electric Ind Co Ltd Ultrasonic flowmeter
JPH10274551A (en) * 1997-03-31 1998-10-13 Aichi Tokei Denki Co Ltd Ultrasonic flow meter
JP2000065613A (en) * 1998-08-20 2000-03-03 Kaijo Corp Ultrasonic flowmeter
JP2001201379A (en) * 2000-01-21 2001-07-27 Aichi Tokei Denki Co Ltd Ultrasonic flowmeter
JP2003344129A (en) * 2002-05-23 2003-12-03 Aichi Tokei Denki Co Ltd Ultrasonic flowmeter
JP2004138628A (en) * 1997-04-18 2004-05-13 Matsushita Electric Ind Co Ltd Ultrasonic wave flowmeter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0943015A (en) * 1995-08-03 1997-02-14 Matsushita Electric Ind Co Ltd Ultrasonic flowmeter
JPH10274551A (en) * 1997-03-31 1998-10-13 Aichi Tokei Denki Co Ltd Ultrasonic flow meter
JP2004138628A (en) * 1997-04-18 2004-05-13 Matsushita Electric Ind Co Ltd Ultrasonic wave flowmeter
JP2000065613A (en) * 1998-08-20 2000-03-03 Kaijo Corp Ultrasonic flowmeter
JP2001201379A (en) * 2000-01-21 2001-07-27 Aichi Tokei Denki Co Ltd Ultrasonic flowmeter
JP2003344129A (en) * 2002-05-23 2003-12-03 Aichi Tokei Denki Co Ltd Ultrasonic flowmeter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010076151A1 (en) * 2008-12-29 2010-07-08 Endress+Hauser Flowtec Ag Measuring system for determining and/or monitoring the flow rate of a measured medium through the measuring tube using ultrasound
US8875587B2 (en) 2008-12-29 2014-11-04 Endress + Hauser Flowtec Ag Ultrasonic flow measuring system and method for monitoring fluid flow having measuring tube inlet and outlet axis forming and angle not equal to 90° with the measuring tube axis
CN103196504A (en) * 2013-03-21 2013-07-10 浙江大学 Method and device for measuring multi-channel ultrasonic flow

Also Published As

Publication number Publication date
JP4804872B2 (en) 2011-11-02

Similar Documents

Publication Publication Date Title
US8701501B2 (en) Ultrasonic flowmeter
KR20050100004A (en) Ultrasonic type fluid measuring device
JP2004264064A (en) Ultrasonic flow rate measuring apparatus
JP2010117201A (en) Flowmeter
JP4804872B2 (en) Ultrasonic flow meter
JP4936856B2 (en) Flowmeter
JP2004170384A (en) Apparatus for measuring flow of fluid
JP3916162B2 (en) Ultrasonic flow meter
JP6229144B2 (en) Flow measuring device
JP3907613B2 (en) Ultrasonic flow meter
JP4007853B2 (en) Ultrasonic flow meter
JP2008107287A (en) Ultrasonic flowmeter
JP4424936B2 (en) Uniform flow rate structure and flow rate measuring device in flow path
JP4346458B2 (en) Ultrasonic flow meter
JP2010112738A (en) Flow meter
JP4007861B2 (en) Ultrasonic flow meter
JP2020041870A (en) Ultrasonic flowmeter
JP2002267513A (en) Ultrasonic flowmeter
JP2001208585A (en) Flowmeter
JP7023105B2 (en) Flow measuring tube
JP2001201379A (en) Ultrasonic flowmeter
JP2006126019A (en) Ultrasonic flowmeter
JP2008196924A (en) Ultrasonic flowmeter
JPH09318411A (en) Ultrasonic flowmeter
JP2005257363A (en) Flow measuring apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110810

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees