JPH10274551A - Ultrasonic flow meter - Google Patents

Ultrasonic flow meter

Info

Publication number
JPH10274551A
JPH10274551A JP9080442A JP8044297A JPH10274551A JP H10274551 A JPH10274551 A JP H10274551A JP 9080442 A JP9080442 A JP 9080442A JP 8044297 A JP8044297 A JP 8044297A JP H10274551 A JPH10274551 A JP H10274551A
Authority
JP
Japan
Prior art keywords
flow path
straight
straight flow
flow
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9080442A
Other languages
Japanese (ja)
Inventor
Yutaka Tanaka
豊 田中
Toshihiko Miyamoto
俊彦 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Tokei Denki Co Ltd
Original Assignee
Aichi Tokei Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Tokei Denki Co Ltd filed Critical Aichi Tokei Denki Co Ltd
Priority to JP9080442A priority Critical patent/JPH10274551A/en
Publication of JPH10274551A publication Critical patent/JPH10274551A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To diffuse ultrasonic wave coming in contact with the pipe wall surface, by a protruding face so as to reduce a flow rate measuring error by forming sectional shape orthogonal to the axis of a passage in the pipe wall surface forming a linear passage, of a face with a protruding face. SOLUTION: A fluid flowing in from an inflow port 5 flows into a buffer chamber 3 and is stabilized in flow, and then flows into a linear passage 8 from a horn-shaped opening part 8a on the inlet side of the linear passage 8. At the time of flowing in, the fluid is guided by the outer surface of a conical cover 11 and the horn-shaped inner peripheral surface 8c of the opening part 8a so as to flow into the linear passage without flow becoming turbulent. At the time of flowing into an outlet side buffer chamber 4 from an outflow port 8b, the fluid is guided by the outer surface of a conical cover 12 and the horn- shaped inner peripheral surface 8d of an opening part 8b so as to flow out without flow becoming turbulent. The fluid flowing into the buffer chamber 4 is fed to a specified feed part from an outflow port 6. An echo sounder transducer 9, 10 measure propagation time in a forward direction and a reverse direction to the flow of the fluid and computes the flow rate from the difference of arrival time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は超音波流量計に関す
る。
[0001] The present invention relates to an ultrasonic flowmeter.

【0002】[0002]

【従来の技術】従来、流体の流れに対して順方向と逆方
向の超音波の伝播時間を測定し、この伝播時間から流速
を算出して流量を求めたり、さらに積算流量を求めたり
する超音波流量計が周知である。
2. Description of the Related Art Conventionally, the propagation time of ultrasonic waves in the forward and reverse directions with respect to the flow of a fluid is measured, and the flow rate is calculated from the propagation time to determine the flow rate, and further, the integrated flow rate is determined. Sonic flow meters are well known.

【0003】このような超音波流量計において、従来、
図11及び図12に示すように、本体100内に直線流
路101を設け、流入口102から流入した被測定流体
をバッファー室103を通じて上記流路101内を流通
させ、他方のバッファー室104を通じて流出口105
から流出させるようにし、また、上記流路101の入口
側部と出口側部には超音波の送受波器106,107を
相対配置したものがある。
In such an ultrasonic flowmeter, conventionally,
As shown in FIGS. 11 and 12, a straight flow path 101 is provided in the main body 100, and the fluid to be measured flowing from the inflow port 102 flows through the flow path 101 through the buffer chamber 103, and flows through the other buffer chamber 104. Outlet 105
Some of the flow paths 101 have ultrasonic transducers 106 and 107 disposed relative to each other on the inlet side and the outlet side.

【0004】そして、その流路101を形成する管壁面
108の横断面形状は図12に示すような真円断面形状
に形成され、更に流路101の出入口に対向する送受波
器106,107の取付面109,110は、直線流路
101の軸心に対して直交する面で形成されている。
[0004] The cross-sectional shape of the tube wall 108 forming the flow path 101 is formed in a perfect circular cross-sectional shape as shown in FIG. The mounting surfaces 109 and 110 are formed as surfaces orthogonal to the axis of the straight flow path 101.

【0005】[0005]

【発明が解決しようとする課題】ところで、上記のよう
な超音波流量計の測定原理は、上記両送受波器106,
107により発受信する超音波の流速に応じた到達時間
差から流量を算出するものである。そのため、送受波器
間を直線的に到達した超音波を真の音波として測定する
が、送受波器から送信される音波は、図11に示すよう
に、直線的な超音波Aの他に、直線流路101を形成す
る管壁面に反射する超音波Bが存在する。
By the way, the measuring principle of the ultrasonic flowmeter as described above is based on the two transducers 106,
In step 107, the flow rate is calculated from the arrival time difference corresponding to the flow rate of the ultrasonic wave transmitted and received. Therefore, the ultrasonic wave that linearly arrives between the transducers is measured as a true acoustic wave, but the acoustic wave transmitted from the transducer is, as shown in FIG. There is an ultrasonic wave B reflected on the tube wall forming the straight flow path 101.

【0006】このような反射する超音波Bは、上記従来
のように、直線流路101を全長に渡って同一真円断面
に形成したものにおいては、管壁面108に当たって入
射方向と同一方向へ反射し、直進する超音波Aに干渉し
て受信され、大きな測定誤差が発生することがある。
[0006] Such a reflected ultrasonic wave B hits the tube wall 108 and reflects in the same direction as the incident direction in the case where the straight flow path 101 is formed in the same perfect circular cross section over the entire length as in the conventional case. However, there is a case where a large measurement error occurs due to being received by interfering with the ultrasonic wave A traveling straight.

【0007】すなわち、直線的に到達する超音波に対し
て反射波はその反射経路に応じた遅れを生じて到達する
と考えられ、その複数の超音波の位相が合致すれば大き
な波になり、半波長ずれれば打ち消し合うことになる。
That is, it is considered that a reflected wave arrives with a delay corresponding to its reflection path with respect to an ultrasonic wave that arrives linearly, and becomes large when the phases of the plurality of ultrasonic waves match, and becomes a large wave. If the wavelength shifts, they will cancel each other.

【0008】この反射波の影響を実験により測定した結
果、図14の実線Cに示すような受信波形を示し、解放
空間での受信波形D(破線)に比べて反射波による干渉
増幅分Eが表れた。
As a result of experimentally measuring the effect of the reflected wave, a reception waveform as shown by a solid line C in FIG. 14 is shown. Compared with the reception waveform D (broken line) in the open space, the interference amplification component E due to the reflected wave is smaller. Appeared.

【0009】このような状態は、流体の流れのない状態
から流速変化によって複雑に干渉具合が変動し、正確な
受信が困難になるとともに大きな誤差発生要因となる。
また、上記従来のように、直線流路101の出入口に対
向する面109,110が、直線流路101の軸心に対
して直交する面に形成されているものにおいては、流路
の中心部を直進して一方の送受波器に受信される超音波
以外の超音波が対向する他方の送受波器へ反射する。そ
のため一方の送受波器より発信された超音波が1往復半
して、他方の送受波器に受信されることがある。したが
って、連続的或いは任意の間隔で測定することができ
ず、測定回数が少なくなり、その結果、測定分解能が悪
くなって測定精度が低くなり、測定誤差が大きくなる問
題がある。
In such a state, the degree of interference fluctuates in a complicated manner due to a change in flow velocity from a state in which there is no flow of fluid, making accurate reception difficult and causing a large error.
Further, as in the above-described conventional case, when the surfaces 109 and 110 facing the entrance and exit of the straight flow passage 101 are formed on a surface orthogonal to the axis of the straight flow passage 101, the central portion of the flow passage is used. , And ultrasonic waves other than the ultrasonic waves received by one of the transducers are reflected by the other transducer. Therefore, the ultrasonic wave transmitted from one of the transducers may be reciprocated one and a half times and received by the other transducer. Therefore, measurement cannot be performed continuously or at arbitrary intervals, and the number of measurements is reduced. As a result, there is a problem that the measurement resolution is deteriorated, the measurement accuracy is reduced, and the measurement error is increased.

【0010】そこで本発明は上記の問題を解決し、流量
測定誤差を減少できる超音波流量計を提供することを目
的とするものである。
Accordingly, an object of the present invention is to solve the above-mentioned problems and to provide an ultrasonic flowmeter capable of reducing a flow measurement error.

【0011】[0011]

【課題を解決するための手段】上記の課題を解決するた
めに、請求項1記載の発明は、一対の送受波器を直線流
路の流入側と流出側に相対して設けたものにおいて、直
線流路を形成する管壁面におけるその流路の軸心と直交
する方向の断面形状が凸面を有する面で形成されている
ことを特徴とするものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the invention according to claim 1 includes a pair of transducers provided on an inflow side and an outflow side of a straight flow path. The cross-sectional shape of the pipe wall surface forming the straight flow path in a direction orthogonal to the axis of the flow path is formed by a surface having a convex surface.

【0012】本発明においては、一方の送受波器から発
信された超音波のうち直線流路の軸心部を直線的に通る
超音波は他方の送受波器に受信される。また、流路を形
成する凸面に当たった超音波は拡散し、再び集音するこ
とがなく、この拡散した超音波が上記直線的に通る超音
波と干渉することが防止され、流量の測定誤差が減少さ
れる。
In the present invention, of the ultrasonic waves transmitted from one of the transducers, the ultrasonic waves that pass straight through the axis of the straight flow path are received by the other transducer. Further, the ultrasonic waves hitting the convex surface forming the flow path are diffused and do not collect sound again, so that the diffused ultrasonic waves are prevented from interfering with the linearly transmitted ultrasonic waves, and the flow rate measurement error is prevented. Is reduced.

【0013】請求項2記載の発明は、上記凸面を曲面に
形成したものである。本発明においても、直線流路を形
成する曲面に当たった超音波が拡散され、上記と同様の
作用、効果を奏する。
According to a second aspect of the present invention, the convex surface is formed as a curved surface. Also in the present invention, the ultrasonic waves hitting the curved surface forming the straight flow path are diffused, and the same operation and effect as described above are achieved.

【0014】請求項3記載の発明は、一対の送受波器を
直線流路の流入側と流出側に相対して設けたものにおい
て、送受波器部に、直線流路を直進して送受波器に受信
される以外の超音波を外側方へ拡散する拡散用の面を設
けたことを特徴とするものである。
According to a third aspect of the present invention, a pair of transducers are provided on an inflow side and an outflow side of a straight flow path. A diffusing surface for diffusing an ultrasonic wave other than that received by the vessel outward.

【0015】本発明においては、一方の送受波器から発
信された超音波のうち直線流路の軸心部を直線的に通る
超音波は他方の送受波器に受信され、また、この直線的
に通る超音波以外の超音波は拡散用の面に当たって外側
へ拡散される。したがって、一方の送受波器から受信さ
れた超音波が、1往復半して他方の送受波器に受信され
ることが防止される。そのため、超音波の送受信を連続
的或いは任意の間隔で行って分解能を高め、流量測定誤
差を低減できる。
In the present invention, of the ultrasonic waves transmitted from one of the transducers, the ultrasonic waves that pass straight through the axial center of the straight flow path are received by the other transducer, and The ultrasonic waves other than the ultrasonic waves that pass through the surface strike the surface for diffusion and are diffused outward. Therefore, it is possible to prevent the ultrasonic wave received from one of the transducers from being reciprocated one and a half times and received by the other transducer. Therefore, the transmission and reception of ultrasonic waves are performed continuously or at arbitrary intervals to increase the resolution and reduce the flow rate measurement error.

【0016】請求項4記載の発明は、上記請求項3記載
の発明における拡散用の面を、送受波器の前側に、中心
部に送受波用穴を形成するとともに外周面に超音波を外
側へ拡散する面を設けたカバーで形成したものである。
According to a fourth aspect of the present invention, in the third aspect of the present invention, the diffusing surface is provided with a transmitting / receiving hole in the center at the front side of the transmitter / receiver and an ultrasonic wave on the outer peripheral surface. It is formed by a cover provided with a surface that diffuses to the surface.

【0017】本発明においても上記請求項3記載の発明
と同様の作用を奏する。そして、請求項5記載の発明
は、一対の送受波器を直線流路の流入側と流出側に相対
して設けたものにおいて、直線流路を形成する管壁面に
おけるその流路の軸心と直交する方向の断面形状が凸面
を有する面で形成され、更に、送受波器部に、直線流路
を直進して送受波器に受信される以外の超音波を外側方
へ拡散する拡散用の面を設けたことを特徴とするもので
ある。
According to the present invention, the same operation as that of the third aspect of the invention is provided. In a fifth aspect of the present invention, a pair of transducers are provided on the inflow side and the outflow side of the straight flow path, and the axial center of the flow path on the pipe wall surface forming the straight flow path. The cross-sectional shape in the orthogonal direction is formed by a surface having a convex surface, and further, to the transducer section, for diffusing outwardly the ultrasonic waves other than received by the transducer by going straight through the straight flow path. A surface is provided.

【0018】本発明においては、上記請求項1記載の発
明の作用と請求項3記載の発明の作用を奏する。
In the present invention, the operation of the first aspect and the operation of the third aspect are exhibited.

【0019】[0019]

【発明の実施の形態】図1乃至図10に示す実施例に基
づいて本発明の実施の形態について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described based on an embodiment shown in FIGS.

【0020】図1乃至図4はバッファー室を設けた超音
波流量計に本発明を適用した実施例を示す。超音波流量
計を構成する本体1内には区画壁2により一方に入口側
バッファー室3が形成され、他方に出口側バッファー室
4が形成され、入口側バッファー室3には流体の流入口
5が形成され、出口側バッファー室4には流体の流出口
6が形成されている。
FIGS. 1 to 4 show an embodiment in which the present invention is applied to an ultrasonic flowmeter provided with a buffer chamber. In the main body 1 constituting the ultrasonic flow meter, an inlet buffer chamber 3 is formed on one side by the partition wall 2, and an outlet buffer chamber 4 is formed on the other side. Is formed in the outlet-side buffer chamber 4.

【0021】更に本体1内には上記区画壁2を貫通して
両バッファー室3,4に開口する流路管7が設けられて
おり、該流路管7内には直線流路8が形成されている。
該直線流路8における両開口部8a,8bの内周面8
c,8dは、その外側に向かって拡開するラッパ状に形
成されているとともに、その開口端面は、本体1の両側
壁1a,1bの内面に、これらの間を流体が流通できる
間隙を有して近接配置されている。
Further, a flow pipe 7 is provided in the main body 1 and penetrates through the partition wall 2 and opens to both buffer chambers 3 and 4. In the flow pipe 7, a straight flow path 8 is formed. Have been.
Inner peripheral surface 8 of both openings 8a, 8b in the straight channel 8
Each of c and 8d is formed in a trumpet shape expanding toward the outside, and has an open end surface on the inner surface of both side walls 1a and 1b of the main body 1 with a gap through which a fluid can flow therebetween. And are arranged in close proximity.

【0022】上記本体1の一方側壁1aには、上記直線
流路8の軸心上に位置して一方の送受波器9が直線流路
8に指向して配置され、他方の側壁1bには直線流路8
の軸心上に位置して他方の送受波器10が直線流路8に
指向して配置されている。したがって、両送受波器9,
10は図示のように直線流路8を挟んで同一軸心上に対
向配置されている。また、上記両送受波器9,10は、
周知のように振動子と受信波検知部等を有し、更に、図
示しない駆動部により送受波駆動されるようになってい
る。
On one side wall 1a of the main body 1, one transducer 9 is located on the axis of the straight flow path 8 and is disposed so as to be directed to the straight flow path 8. On the other side wall 1b, Straight channel 8
The other transducer 10 is positioned on the axis of the straight line so as to face the straight flow path 8. Therefore, the two transducers 9,
As shown in the drawing, 10 is disposed on the same axis with the straight flow path 8 interposed therebetween. The two transducers 9 and 10 are:
As is well known, it has a vibrator, a reception wave detection unit, and the like, and is further driven to transmit and receive waves by a drive unit (not shown).

【0023】上記直線流路8を形成する管壁面は、その
軸方向と直交する切断面形状を凸面を有する面にして形
成されている。本実施例においては、図4に示すような
形状に形成されている。すなわち、仮想の正方形におけ
る各面を内側に円弧状に膨らませた凸面8eで形成され
ている。この凸面8eの半径は例えばR10とする。ま
た、これら4個の凸面8eにおける隣接部間の隅部8f
は小半径の凹面で形成され、流路8の加工を容易にして
いるが、この隅部8fは図5に示すような先尖状凹部に
してもよい。また、上記の断面形状は、上記両開口部8
a,8b間に渡る直線流路の全長に渡って形成されてい
る。
The wall surface of the pipe forming the straight flow path 8 is formed such that the cross section perpendicular to the axial direction has a convex surface. In this embodiment, it is formed in a shape as shown in FIG. That is, each surface of the virtual square is formed as a convex surface 8e which is expanded in an arc shape inward. The radius of the convex surface 8e is, for example, R10. Further, a corner 8f between adjacent portions of the four convex surfaces 8e.
Is formed with a concave surface having a small radius to facilitate the processing of the flow channel 8. However, the corner 8f may be a pointed concave portion as shown in FIG. In addition, the above-mentioned cross-sectional shape is the same as that of the opening 8
It is formed over the entire length of the straight channel extending between a and 8b.

【0024】上記両送受波器9,10の前部にはカバー
11,12が夫々設けられている。該両カバー11,1
2の外面は、上記直線流路8の軸心上を頂点とする拡散
用円錐面11a,12aに形成されているとともにその
頂部を直線流路8側に指向して設けられ、更に頂部に
は、他方の送受波器から発信された超音波のうち、直線
的に到達する超音波、すなわち直線流路8の軸心部を通
る超音波のみを受信できる送受波用穴13,14が貫通
形成されている。更に、該カバー11,12の内面も上
記外面の円錐面に略沿った円錐面に形成されている。更
に、上記カバー11,12は、送受波器9,10のケー
ス15,16と一体に成形されている。
Covers 11 and 12 are provided in front of the two transducers 9 and 10, respectively. The two covers 11, 1
2 are formed on the conical surfaces for diffusion 11a and 12a having the apex on the axis of the straight flow path 8, and the top thereof is provided so as to face the straight flow path 8 side. Of the ultrasonic waves transmitted from the other transducer, the transmitting and receiving holes 13 and 14 capable of receiving only the linearly arriving ultrasonic waves, that is, the ultrasonic waves passing through the axial center portion of the linear flow path 8 are formed through. Have been. Further, the inner surfaces of the covers 11, 12 are also formed as conical surfaces substantially along the conical surfaces of the outer surfaces. Further, the covers 11 and 12 are formed integrally with the cases 15 and 16 of the transducers 9 and 10, respectively.

【0025】以上の構成において、流入口5から流入し
た流体は、流入口側のバッファー室3内に入ってその流
体の流れが安定され、直線流路8における入口側のラッ
パ状の開口部8aから直線流路8内に流入する。この流
入時においては、その流体が円錐状のカバー11の外面
と開口部8aのラッパ状の内周面8cとに案内されて流
れが乱れることなく直線流路8内に流入する。
In the above-described configuration, the fluid flowing from the inlet 5 enters the buffer chamber 3 on the inlet side to stabilize the flow of the fluid. Flows into the straight channel 8 from At the time of this inflow, the fluid flows into the straight flow passage 8 without being disturbed by being guided by the outer surface of the conical cover 11 and the flared inner peripheral surface 8c of the opening 8a.

【0026】直線流路8内を整流状態で流通した流体
は、直線流路8の流出口8bから出口側バッファー室4
内に流出する。この流出時においては、その流体が円錐
状のカバー12の外面と開口部8bのラッパ状の内周面
8dとに案内されて流れが乱れることなく流出する。
The fluid flowing in the straight flow path 8 in a rectified state flows from the outlet 8 b of the straight flow path 8 to the outlet buffer chamber 4.
Spills into. At the time of the outflow, the fluid is guided by the outer surface of the conical cover 12 and the trumpet-shaped inner peripheral surface 8d of the opening 8b and flows out without being disturbed.

【0027】そして、出口側バッファー室4内に流出し
た流体は流出口6から流出して所定の供給部へ供給され
る。そして、上記直線流路8を通じて流体が流れている
状態或いは流れのない状態において、周知の如く両送受
波器9,10間において、超音波の発信と受信をくり返
し、流体の流れに対する順方向の伝播時間と逆方向の伝
播時間を測定して、その到達時間の差から流量を算出す
る。
The fluid flowing into the outlet buffer chamber 4 flows out of the outlet 6 and is supplied to a predetermined supply unit. In a state where the fluid is flowing through the straight flow path 8 or in a state where the fluid is not flowing, the transmission and reception of the ultrasonic wave are repeated between the two transducers 9 and 10 in a well-known manner, so that the fluid flows in the forward direction with respect to the flow of the fluid. The propagation time is measured in the opposite direction to the propagation time, and the flow rate is calculated from the difference between the arrival times.

【0028】このような流量測定時において、一方の送
受波器9又は10から発信された超音波のうち、直線流
路8の軸心部において軸心と平行して直線的に発信され
た超音波は、そのまま他方の送受波器10又は9に送受
波用穴14又は13を通じて受信される。
At the time of such flow rate measurement, of the ultrasonic waves transmitted from one of the transducers 9 or 10, the ultrasonic waves transmitted linearly in parallel with the axis at the axis of the straight flow path 8. The sound wave is directly received by the other transducer 10 or 9 through the transmission / reception hole 14 or 13.

【0029】また、一方の送受波器9又は10から発信
された超音波のうち、直線流路8を形成する管壁面の凸
面8eに当たった超音波は側方へ屈曲拡散し、再び集音
することがない。
Among the ultrasonic waves transmitted from one of the transducers 9 or 10, the ultrasonic wave that hits the convex surface 8e of the tube wall forming the straight flow path 8 bends and diffuses to the side and collects sound again. Never do.

【0030】したがって、受信される超音波信号は上記
直線的な超音波のみとなり、上記従来のように遅れた超
音波が干渉して生じる測定誤差がなくなった。上記本発
明の実施例のような凸面8eを形成して実験した結果、
図13の実線Fに示すような受信波形となり、解放空間
での受信波形Dに近似し、上記従来のような干渉増幅分
Eがなくなった。
Therefore, the received ultrasonic signal is only the above-mentioned linear ultrasonic wave, and there is no measurement error caused by interference of the delayed ultrasonic wave as in the conventional case. As a result of forming and projecting the convex surface 8e as in the embodiment of the present invention,
The reception waveform becomes as shown by the solid line F in FIG. 13, approximating the reception waveform D in the open space, and the above-described interference amplification component E as in the conventional case disappears.

【0031】更に、測定下限流速が仮に1cm/sとし
た場合、それに断面積を乗じたものが計測下限流量とな
るので、本発明によれば小断面積流路の構築が効果的に
行え、小断面積流路による微小流量計測が可能となっ
た。
Furthermore, if the lower limit flow rate of measurement is supposed to be 1 cm / s, the flow rate multiplied by the cross-sectional area becomes the lower limit flow rate of measurement. Micro flow rate measurement with a small cross-sectional area flow path became possible.

【0032】更に、従来は、直線流路の管壁面での反射
波の影響が小さいと考えられる比較的大断面積流路で
も、流速が大きくなると反射波が干渉するようになる
が、本発明によれば大きい流速(流量)まで測定可能と
なった。
Further, conventionally, even in a flow path having a relatively large sectional area, which is considered to have a small influence of the reflected wave on the pipe wall surface of the straight flow path, the reflected wave interferes as the flow velocity increases. According to this, it was possible to measure up to a large flow velocity (flow rate).

【0033】また、上記のような流量測定時において、
一方の送受波器9又は10から発信された超音波のう
ち、他方の送受波器10又は9に受信される以外の超音
波は、カバー11のテーパ状の外面で側方へ拡散反射さ
れる。したがって、上記従来のように送受波器部に反射
して他方の送受波器へ到達することを防止できる。その
ため、一方の送受波器から発信された超音波が1往復半
して他方の送受波器に受信されることを防止できる。こ
のことは、超音波の送受信が連続的或いは任意の間隔で
行うことが可能になり、測定回数に応じて測定分解能を
向上させることができ、測定精度を向上させることがで
きる。
In the above flow rate measurement,
Of the ultrasonic waves transmitted from one of the transducers 9 or 10, those other than those received by the other transducer 10 or 9 are diffusely reflected laterally on the tapered outer surface of the cover 11. . Therefore, it is possible to prevent the light from being reflected by the transducer unit and reaching the other transducer unit as in the related art. Therefore, it is possible to prevent the ultrasonic wave transmitted from one of the transducers from being reciprocated for one and a half times and received by the other transducer. This means that the transmission and reception of ultrasonic waves can be performed continuously or at arbitrary intervals, the measurement resolution can be improved according to the number of measurements, and the measurement accuracy can be improved.

【0034】図6は上記直線流路8の軸方向と直交する
方向の断面の管壁面を、仮想の正三角形における各面を
内側に円弧状に膨らませた凸面8eに形成したものであ
る。本直線流路8においても、その凸面8eによって上
記図4に示す直線流路と同様の作用、効果を発揮でき
る。
FIG. 6 is a view in which a tube wall of a cross section in a direction orthogonal to the axial direction of the straight flow path 8 is formed as a convex surface 8e in which each surface of a virtual equilateral triangle is bulged inward in an arc shape. Also in the present straight flow path 8, the same function and effect as the straight flow path shown in FIG. 4 can be exerted by the convex surface 8e.

【0035】図7は上記直線流路8の軸方向と直交する
方向の断面の管壁面を、仮想の正六角形における各面を
内側に円弧状に膨らませた凸面8eに形成したものであ
る。本直線流路8においても、その凸面8eによって上
記直線流路8と同様の作用、効果を発揮できる。
FIG. 7 is a view in which a pipe wall of a cross section in a direction orthogonal to the axial direction of the straight flow path 8 is formed as a convex surface 8e in which each surface of a virtual regular hexagon is expanded inward in an arc shape. Also in the present straight flow path 8, the same operation and effect as the above-mentioned straight flow path 8 can be exerted by the convex surface 8e.

【0036】図8は上記カバー11,12の代わりに、
送受波器9,10の外周保持壁11bの外周面を拡散用
円錐面11a,12aにしたものである。この拡散用円
錐面11a,12aによっても上記と同様の作用、効果
を発揮する。
FIG. 8 shows an alternative to the covers 11 and 12
The outer peripheral surfaces of the outer peripheral holding walls 11b of the transducers 9 and 10 are formed as diffusion conical surfaces 11a and 12a. The diffusing conical surfaces 11a and 12a exhibit the same operation and effect as described above.

【0037】図9は、バッファー室を形成しない超音波
流量計に本発明を適用した実施例を示す。本実施例は、
超音波流量計を構成する本体20の両端部に流入口5と
流出口6を設け、これらの軸心を結ぶ直線上に上記の直
線流路8を形成している。該直線流路8の軸方向と直交
する方向の断面形状は、上記図4に示す形状と同一形状
に形成されている。なお、この直線流路8の断面形状を
上記図5乃至図7に示すような形状等の曲面にしてもよ
い。
FIG. 9 shows an embodiment in which the present invention is applied to an ultrasonic flowmeter having no buffer chamber. In this embodiment,
An inflow port 5 and an outflow port 6 are provided at both ends of a main body 20 constituting the ultrasonic flowmeter, and the above-mentioned straight flow path 8 is formed on a straight line connecting these axes. The cross-sectional shape of the straight flow path 8 in a direction orthogonal to the axial direction is formed to be the same as the shape shown in FIG. The cross-sectional shape of the straight flow path 8 may be a curved surface such as the shape shown in FIGS.

【0038】上記直線流路8の両開口部8a,8bは、
上記と同様なラッパ状の内周面8c,8dで形成されて
いる。更に、上記両開口部8a,8b内に送受波器9,
10が、直線流路8の軸心上に位置し、かつその外周に
流通路が形成されるようにして配置されている。更に、
上記両送受波器9,10はケース15,16を介して板
状の固定用リブ21により本体1に固定設置されてい
る。
The two openings 8a and 8b of the straight flow path 8 are
It is formed by the same trumpet-shaped inner peripheral surfaces 8c and 8d as described above. Further, the transducers 9, 9 are provided in the openings 8 a, 8 b.
Reference numeral 10 is positioned on the axis of the straight flow path 8 and is arranged such that a flow passage is formed on the outer periphery thereof. Furthermore,
The two transducers 9 and 10 are fixedly installed on the main body 1 via plate-shaped fixing ribs 21 via cases 15 and 16.

【0039】更に、上記両送受波器9,10の前側に
は、上記図3に示すカバー11と同様の円錐状のカバー
11が固設されている。本実施例においては、流入口5
から流入した流体は、開口部8a、直線流路8、開口部
8bを通じて流出口6から供給される。また、対向した
両送受波器9,10で超音波の送受信を行い流量測定を
行う。
Further, a conical cover 11 similar to the cover 11 shown in FIG. 3 is fixed to the front side of the two transducers 9, 10. In this embodiment, the inlet 5
Is supplied from the outlet 6 through the opening 8a, the straight flow path 8, and the opening 8b. In addition, ultrasonic waves are transmitted and received by the opposed transducers 9 and 10, and the flow rate is measured.

【0040】本実施例においても直線流路8の管壁面8
e及びカバー11,12を上記のように形成したことに
より、上記図1乃至図7に示す構造のものと同様な作用
を発揮し、流量の測定誤差を減少することができる。
Also in this embodiment, the pipe wall 8 of the straight flow path 8
By forming the cover e and the covers 11 and 12 as described above, the same operation as that of the structure shown in FIGS. 1 to 7 is exerted, and the measurement error of the flow rate can be reduced.

【0041】図10は、流入口5を直線流路8の一方の
側面に設け、流出口6を直線流路8の他方の側面に設
け、直線流路8の両端部に一対の送受波器9,10を対
向して設けた超音波流量計に本発明を適用した実施例を
示す。
FIG. 10 shows that the inlet 5 is provided on one side of the straight flow path 8, the outlet 6 is provided on the other side of the straight flow path 8, and a pair of transducers is provided at both ends of the straight flow path 8. An embodiment in which the present invention is applied to an ultrasonic flowmeter provided with 9 and 10 facing each other will be described.

【0042】本実施例において、直線流路8の管壁面8
eは上記図4乃至図7に示すような断面形状に形成さ
れ、また、両送受波器9,10の前部には上記のような
円錐状のカバー11,12が設置されている。
In this embodiment, the pipe wall 8 of the straight flow path 8
"e" is formed in a sectional shape as shown in FIGS. 4 to 7, and the conical covers 11 and 12 as described above are provided at the front portions of the two transducers 9 and 10.

【0043】本実施例においても直線流路8の管壁面8
e及びカバー11,12を上記のように形成したことに
より、上記図1乃至図7に示す構造のものと同様な作用
を発揮し、流量の測定誤差を減少することができる。
Also in this embodiment, the pipe wall 8 of the straight flow path 8
By forming the cover e and the covers 11 and 12 as described above, the same operation as that of the structure shown in FIGS. 1 to 7 is exerted, and the measurement error of the flow rate can be reduced.

【0044】なお、上記各実施例における凸面は、円弧
面に限ることなく、非円弧面等の曲面であってもよい。
更に、上記各実施例における拡散用の面11a,12a
は、円錐面に限ることなく、砲弾型面等、超音波を外側
へ拡散できる面に形成すればよい。
The convex surface in each of the above embodiments is not limited to an arc surface, but may be a curved surface such as a non-arc surface.
Furthermore, the surfaces 11a and 12a for diffusion in each of the above embodiments.
Is not limited to a conical surface, but may be formed on a surface such as a shell-shaped surface that can diffuse ultrasonic waves outward.

【0045】[0045]

【発明の効果】以上であるから請求項1記載の発明によ
れば、直線流路を形成する管壁面に当たる超音波を凸面
で拡散して流量測定の誤差を減少できる。その結果、小
断面積流路により微小流量計測が可能になり、更に、反
射波の影響がなくなり、大きい流速(流量)まで測定可
能になった。
As described above, according to the first aspect of the present invention, it is possible to reduce the error in the flow rate measurement by diffusing the ultrasonic waves impinging on the pipe wall forming the straight flow path on the convex surface. As a result, a small flow rate can be measured by the small cross-sectional area flow path, and further, the influence of the reflected wave is eliminated, and it is possible to measure a large flow velocity (flow rate).

【0046】請求項2記載の発明によれば、直線流路を
形成する管壁面に当たる超音波を円弧状の凸面で拡散で
き、請求項1記載の発明と同一の効果を奏する。請求項
3記載の発明によれば、送受波器間を1往復半して受信
される超音波の発生を防止し、送受信を連続的或いは任
意の間隔で行って流量測定誤差を減少できる。
According to the second aspect of the invention, the ultrasonic waves impinging on the wall of the tube forming the straight flow path can be diffused on the arc-shaped convex surface, and the same effect as the first aspect of the invention can be obtained. According to the third aspect of the present invention, it is possible to prevent generation of ultrasonic waves received by being reciprocated one and a half times between the transmitter and the receiver, and to reduce the flow rate measurement error by performing transmission and reception continuously or at arbitrary intervals.

【0047】請求項4記載の発明によれば、円錐状のカ
バーによって上記請求項3記載の発明と同一の効果を発
揮できる。そして、請求項5記載の発明によれば、請求
項1記載の発明の効果と請求項3記載の発明の効果とが
相まってより一層の流量測定誤差の減少を図ることがで
きる。
According to the fourth aspect of the invention, the same effect as that of the third aspect of the invention can be exerted by the conical cover. According to the fifth aspect of the invention, the effect of the first aspect of the invention and the effect of the third aspect of the invention can be combined to further reduce the flow rate measurement error.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明をバッファー室を有する超音波流量計に
適用した側断面図。
FIG. 1 is a side sectional view in which the present invention is applied to an ultrasonic flowmeter having a buffer chamber.

【図2】図1の底面図。FIG. 2 is a bottom view of FIG. 1;

【図3】図1の要部拡大側断面図。FIG. 3 is an enlarged side sectional view of a main part of FIG. 1;

【図4】図3におけるX−X線断面図。FIG. 4 is a sectional view taken along line XX in FIG. 3;

【図5】直線流路の他の例を示す断面図。FIG. 5 is a sectional view showing another example of the straight flow path.

【図6】直線流路の他の例を示す断面図。FIG. 6 is a sectional view showing another example of the straight flow path.

【図7】直線流路の他の例を示す断面図。FIG. 7 is a sectional view showing another example of the straight flow path.

【図8】拡散用円錐面の他の例を示す側断面図。FIG. 8 is a side sectional view showing another example of the conical surface for diffusion.

【図9】本発明をバッファー室を有しない超音波流量計
に適用した例を示し、(a)は側断面図、(b)は
(a)のY−Y線断面図。
9A and 9B show an example in which the present invention is applied to an ultrasonic flowmeter having no buffer chamber, wherein FIG. 9A is a side sectional view, and FIG. 9B is a sectional view taken along line YY of FIG. 9A.

【図10】本発明を直線流路の両側面に相対して出入口
を設けた超音波流量計に適用した側断面図。
FIG. 10 is a side sectional view in which the present invention is applied to an ultrasonic flowmeter provided with inlets and outlets opposite to both side surfaces of a straight channel.

【図11】従来構造を示す側断面図。FIG. 11 is a side sectional view showing a conventional structure.

【図12】図12におけるZ−Z線断面図。FIG. 12 is a sectional view taken along line ZZ in FIG. 12;

【図13】本発明における信号波形と解放空間での信号
波形を示す図。
FIG. 13 is a diagram showing a signal waveform and a signal waveform in an open space according to the present invention.

【図14】従来構造における信号波形と解放空間での信
号波形を示す図。
FIG. 14 is a diagram showing a signal waveform in a conventional structure and a signal waveform in an open space.

【符号の説明】[Explanation of symbols]

8…直線流路 8e…凸面 9,10…送受波器 11,12…カバー 11a,12a…拡散用の面 13,14…送受波
用穴
8 ... Linear flow path 8e ... Convex surface 9,10 ... Transducer / receiver 11,12 ... Cover 11a, 12a ... Diffusion surface 13,14 ... Transmission / reception hole

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 一対の送受波器を直線流路の流入側と流
出側に相対して設けたものにおいて、 直線流路を形成する管壁面におけるその流路の軸心と直
交する方向の断面形状が凸面を有する面で形成されてい
ることを特徴とする超音波流量計。
1. A cross section in a direction perpendicular to the axis of a flow path on a pipe wall forming a straight flow path, wherein a pair of transducers are provided on the inflow side and the outflow side of a straight flow path. An ultrasonic flowmeter, wherein the shape is formed by a surface having a convex surface.
【請求項2】 凸面が曲面に形成されている請求項1記
載の超音波流量計。
2. The ultrasonic flowmeter according to claim 1, wherein the convex surface is formed as a curved surface.
【請求項3】 一対の送受波器を直線流路の流入側と流
出側に相対して設けたものにおいて、 送受波器部に、直線流路を直進して送受波器に受信され
る以外の超音波を外側方へ拡散する拡散用の面を設けた
ことを特徴とする超音波流量計。
3. A device in which a pair of transducers are provided on the inflow side and the outflow side of a straight flow path, except that the transducer is moved straight through the straight flow path and received by the transducer. An ultrasonic flowmeter provided with a surface for diffusing the ultrasonic waves outward.
【請求項4】 拡散用の面を、送受波器の前側に、中心
部に送受波用穴を形成するとともに外周面に超音波を外
側へ拡散する面を設けたカバーで形成した請求項3記載
の超音波流量計。
4. A diffusion surface is formed by a cover provided with a wave transmitting / receiving hole in the center and a surface on the outer peripheral surface for diffusing ultrasonic waves outward, in front of the transducer. An ultrasonic flowmeter as described.
【請求項5】 一対の送受波器を直線流路の流入側と流
出側に相対して設けたものにおいて、 直線流路を形成する管壁面におけるその流路の軸心と直
交する方向の断面形状が凸面を有する面で形成され、更
に、送受波器部に、直線流路を直進して送受波器に受信
される以外の超音波を外側方へ拡散する拡散用の面を設
けたことを特徴とする超音波流量計。
5. A cross section in a direction perpendicular to an axis of a flow path on a pipe wall forming a straight flow path, wherein a pair of transducers are provided on an inflow side and an outflow side of a straight flow path. The shape is formed by a surface having a convex surface, and further, the transducer unit is provided with a diffusing surface that diffuses ultrasonic waves other than received by the transducer by going straight through the straight flow path. An ultrasonic flowmeter characterized by the above.
JP9080442A 1997-03-31 1997-03-31 Ultrasonic flow meter Pending JPH10274551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9080442A JPH10274551A (en) 1997-03-31 1997-03-31 Ultrasonic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9080442A JPH10274551A (en) 1997-03-31 1997-03-31 Ultrasonic flow meter

Publications (1)

Publication Number Publication Date
JPH10274551A true JPH10274551A (en) 1998-10-13

Family

ID=13718386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9080442A Pending JPH10274551A (en) 1997-03-31 1997-03-31 Ultrasonic flow meter

Country Status (1)

Country Link
JP (1) JPH10274551A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006337059A (en) * 2005-05-31 2006-12-14 Aichi Tokei Denki Co Ltd Ultrasonic flowmeter
JP2007121071A (en) * 2005-10-27 2007-05-17 Aichi Tokei Denki Co Ltd Ultrasonic flowmeter
JP2007219592A (en) * 2006-02-14 2007-08-30 Aichi Tokei Denki Co Ltd Entering/leaving detection sensor and entering/leaving detection method
JP2008232942A (en) * 2007-03-22 2008-10-02 Kimmon Mfg Co Ltd Ultrasonic gas meter
JP2015064237A (en) * 2013-09-24 2015-04-09 Smc株式会社 Ultrasonic flowmeter

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006337059A (en) * 2005-05-31 2006-12-14 Aichi Tokei Denki Co Ltd Ultrasonic flowmeter
JP2007121071A (en) * 2005-10-27 2007-05-17 Aichi Tokei Denki Co Ltd Ultrasonic flowmeter
JP2007219592A (en) * 2006-02-14 2007-08-30 Aichi Tokei Denki Co Ltd Entering/leaving detection sensor and entering/leaving detection method
JP2008232942A (en) * 2007-03-22 2008-10-02 Kimmon Mfg Co Ltd Ultrasonic gas meter
JP2015064237A (en) * 2013-09-24 2015-04-09 Smc株式会社 Ultrasonic flowmeter
US9297680B2 (en) 2013-09-24 2016-03-29 Smc Corporation Ultrasonic flow meter having deterioration suppression in flow rate accuracy

Similar Documents

Publication Publication Date Title
US5650572A (en) Device for ultrasonic flow measurement
US10520342B2 (en) Ultrasonic flowmeter
WO2004074783A1 (en) Ultrasonic type fluid measuring device
US10890471B2 (en) Method and assembly for ultrasonic clamp-on flow measurement, and bodies for implementing off-center flow measurement
JP7223956B2 (en) ultrasonic flow meter
JP3890698B2 (en) Flow measuring device
US6338277B1 (en) Flowmeter for attenuating acoustic propagations
US20230243683A1 (en) Flowmeter and method for meausuring the flow of a fluid
WO2020031622A1 (en) Ultrasonic flow meter
JPH10274551A (en) Ultrasonic flow meter
JPS5819970B2 (en) vortex flow meter
US7845240B1 (en) Device and method for determining a flow characteristic of a fluid in a conduit
EP3683553B1 (en) Gas flow metering gas chamber and gas flow meter
EP2278280B1 (en) Device and method for determining a flow characteristic of a fluid in a conduit
JPH0915012A (en) Ultrasonic wave flowmeter
JP2005257611A (en) Apparatus for measuring flow of fluid
JP2000065613A (en) Ultrasonic flowmeter
JP3013596B2 (en) Transmission ultrasonic flowmeter
JPH09287990A (en) Ultrasonic flowmeter
JP4165240B2 (en) Ultrasonic flow meter
JP4561071B2 (en) Flow measuring device
Hoffmann et al. Effect of transducer port cavities in invasive ultrasonic transit-time gas flowmeters
CN218628464U (en) Ultrasonic flowmeter
JP3480711B2 (en) Ultrasonic vortex flowmeter
JP4842728B2 (en) Ultrasonic sound velocity measuring device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040311

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060808