JP3013596B2 - Transmission ultrasonic flowmeter - Google Patents

Transmission ultrasonic flowmeter

Info

Publication number
JP3013596B2
JP3013596B2 JP4119369A JP11936992A JP3013596B2 JP 3013596 B2 JP3013596 B2 JP 3013596B2 JP 4119369 A JP4119369 A JP 4119369A JP 11936992 A JP11936992 A JP 11936992A JP 3013596 B2 JP3013596 B2 JP 3013596B2
Authority
JP
Japan
Prior art keywords
ultrasonic
ultrasonic transducer
wave
wedge
transducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4119369A
Other languages
Japanese (ja)
Other versions
JPH05312611A (en
Inventor
幾雄 花宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP4119369A priority Critical patent/JP3013596B2/en
Publication of JPH05312611A publication Critical patent/JPH05312611A/en
Application granted granted Critical
Publication of JP3013596B2 publication Critical patent/JP3013596B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、配管外壁から流体中
に超音波を発射して配管外壁面で受信し、その伝搬時間
が流体の流速または流量に比例することを原理とする透
過式超音波流量計、特にその改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transmission type ultrasonic wave which emits ultrasonic waves into a fluid from an outer wall of a pipe, receives the ultrasonic waves on the outer wall of the pipe, and whose propagation time is proportional to the flow velocity or flow rate of the fluid. The present invention relates to an acoustic flow meter, and more particularly to an improvement thereof.

【0002】[0002]

【従来の技術】図9および図10は透過式超音波流量計
(単に、超音波流量計ともいう)の従来例を示す概要図
である。図9に示すものは、流体中に発射され流体中を
伝播する超音波を受信する超音波送受波器(以下、単に
送受波器ともいう)2a,2bを音響カップリング材1
0を介して、流体を導く配管1の外壁頂部の同一線上に
一定の距離をもって互いに対向配置した例である。ま
た、図10に示すものは、流体中に発射され配管内壁で
反射する超音波を受信する送受波器2a,2bを、音響
カップリング材10を介して、流体を導く配管1の外壁
頂部の異なる線上に、一定の距離を隔てて互いに対向配
置した例である。
2. Description of the Related Art FIGS. 9 and 10 are schematic diagrams showing a conventional example of a transmission type ultrasonic flowmeter (also simply referred to as an ultrasonic flowmeter). FIG. 9 shows an ultrasonic coupling / reception device 2a, 2b for receiving ultrasonic waves emitted into a fluid and propagating through the fluid.
This is an example in which fluids are arranged opposite to each other at a fixed distance on the same line at the top of the outer wall of the pipe 1 for guiding the fluid through the pipe 0. Further, the one shown in FIG. 10 is configured such that the transducers 2a and 2b which receive ultrasonic waves emitted in the fluid and reflected on the inner wall of the pipe are connected to the top of the outer wall of the pipe 1 for guiding the fluid through the acoustic coupling material 10. This is an example in which they are arranged opposite to each other on a different line at a fixed distance.

【0003】図9,図10で用いられる送受波器2a,
2bとしては例えば図11に示すように、超音波透過材
として一般的に用いられているエポキシ系樹脂などのブ
ロック(以下、単にくさびともいう)4に、PZT(P
b(Zr・Ti)03 )のような圧電素子である超音波
振動子3を接着して構成される。図11(イ)は側断面
図、同(ロ)は上面図である。このような構成におい
て、送受波器2aから発射された超音波が送受波器2b
に到達するまでの時間と、送受波器2bから発射された
超音波が送受波器2aに到達するまでの時間との時間差
が、配管1内を流れる流体20の流速または流量に比例
することから、この時間差より流速または流量を測定す
るというのが超音波流量計の測定原理である。
[0003] The transducers 2a, 2a,
As shown in FIG. 11, for example, as shown in FIG. 11, a block (hereinafter simply referred to as a wedge) 4 of an epoxy resin or the like generally used as an ultrasonic transmission material is provided with PZT (P
b (Zr · Ti) formed by bonding a ultrasonic transducer 3, which is a piezoelectric element, such as 0 3). FIG. 11A is a side sectional view, and FIG. 11B is a top view. In such a configuration, the ultrasonic waves emitted from the transducer 2a are transmitted to the transducer 2b.
, And the time difference between the time at which the ultrasonic wave emitted from the transducer 2b reaches the transducer 2a is proportional to the flow rate or flow rate of the fluid 20 flowing through the pipe 1. The measurement principle of the ultrasonic flow meter is to measure the flow velocity or the flow rate from the time difference.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
ような超音波流量計では、一方の送受波器から流体中を
伝播して他方の送受波器に受信される超音波(直接受
波)に対し、配管内外壁に沿って、あるいは配管肉厚部
で多重反射しながら伝播する超音波(いわゆる回り込み
波)がノイズとして重畳されるのが普通である。この回
り込み波の影響について、図12〜15を参照して以下
に説明する。図12,図13に示すように、超音波振動
子3で発射された超音波は直接受波Wとして伝播し、残
りは回り込み波W1,W2,W3として、図示されない
他方の送受波器に受信される。回り込み波の成分は図1
3(イ),(ロ)に示すように、管肉厚部で多重反射し
ながら伝播する波W1と、管外壁面16に沿って伝播す
る波W2および管内壁面15に沿って伝播する波W3と
の混在波である。これらの回り込み波のうち直接受波に
重畳する波として、直接受波よりも手前の時間帯で受信
された波の尾引き(波の尾引きが直接受波の時間領域ま
で延びているもの)と、配管の円周肉厚部を伝播する波
とがあるが、後者は送信の指向性を高めると減少するこ
とが分かっている。
However, in such an ultrasonic flowmeter as described above, the ultrasonic wave (direct wave reception) that propagates through the fluid from one transducer and is received by the other transducer is used. On the other hand, ultrasonic waves (so-called wraparound waves) that propagate along the inner and outer walls of the pipe or with multiple reflections at the thick part of the pipe are usually superimposed as noise. The influence of this loop wave will be described below with reference to FIGS. As shown in FIGS. 12 and 13, the ultrasonic wave emitted from the ultrasonic transducer 3 propagates directly as the received wave W, and the rest is received as the loop waves W1, W2, and W3 by the other transducer (not shown). Is done. Figure 1 shows the components of the loop wave
As shown in FIGS. 3 (a) and 3 (b), a wave W1 propagating with multiple reflections at the thick portion of the tube, a wave W2 propagating along the outer wall surface 16 and a wave W3 propagating along the inner wall surface 15 of the tube And mixed waves. Of these wraparound waves, as a wave superimposed on the direct reception, the tail of the wave received in the time zone before the direct reception (the tail of the wave extends to the time domain of the direct reception) And waves propagating in the circumferentially thick portion of the pipe. It has been found that the latter decreases when the directivity of transmission is increased.

【0005】図14に図9,図10のような超音波流量
計における直接受波Srと、直接受波の手前の時間帯で
受信された配管の回り込み波Rrとの関係を示す。同図
に示すように、配管の回り込み波Rrの尾引きが直接受
波Srと重なることから、受信波のS/Nが低下すると
いうわけである。図15は従来の送受波器における超音
波振動子より発射される超音波(以下、音線ともいう)
の伝播態様を説明するための説明図で、同図(イ)は超
音波振動子の側断面図、(ロ)はその上面図である。同
図において、θtは配管長手軸の垂直線に対する超音波
振動子3の超音波の打ち込み角度、uおよびtは配管長
手軸方向に対し或る指向角度で超音波振動子3から発射
した音線、dは超音波振動子3の外径寸法をそれぞれ示
す。
FIG. 14 shows the relationship between the direct wave reception Sr in the ultrasonic flowmeter as shown in FIGS. 9 and 10 and the roundabout wave Rr of the pipe received in the time zone before the direct wave reception. As shown in the figure, the trailing of the looping wave Rr of the pipe directly overlaps with the received wave Sr, so that the S / N of the received wave is reduced. FIG. 15 shows an ultrasonic wave (hereinafter also referred to as a sound ray) emitted from an ultrasonic transducer in a conventional transducer.
FIGS. 3A and 3B are explanatory views for explaining a propagation mode of the ultrasonic transducer. FIG. 3A is a side sectional view of the ultrasonic transducer, and FIG. In the figure, θt is the angle of incidence of the ultrasonic wave of the ultrasonic transducer 3 with respect to the vertical line of the pipe longitudinal axis, and u and t are sound rays emitted from the ultrasonic transducer 3 at a certain directional angle with respect to the pipe longitudinal axis direction. And d indicate the outer diameter of the ultrasonic transducer 3 respectively.

【0006】すなわち、矢印で示す如き各音線u1,u
2,u3,t1,t2,t3は近距離音場で、エネルギ
ーの大きな1次反射波が超音波振動子3に入射して、受
信側の送受波器2bに向かう音線u3,t3となる。と
ころで、この音線u3,t3は配管への入射角度が小さ
く超音波振動子との間で多重反射するので、送信波の尾
引きが長びく傾向にある。このように、A2で示す領域
に入射した音線の一部が受信側の送受波器2bに向かう
ことになるので、結局はA1,A2,A3で示す各領域
が、受信側の送受波器2bに向かう音線の領域というこ
とになり、送信波の尾引きを形成する音線になり易いと
いえる。このように、従来のものには回り込み波、特に
その尾引きによって受信波のS/Nが低下し、流体の流
速または流量に比例する直接受波の伝播時間の計測精度
が低下して、正確な測定ができなくなるという問題があ
る。したがって、この発明の課題は送信の指向性を高め
るとともに、送受波器内での超音波の多重反射を少なく
し、回り込み波の尾引きを減少させて計測精度を向上さ
せることにある。
That is, each sound ray u1, u as indicated by an arrow
Reference numerals 2, u3, t1, t2, and t3 are near-field sound fields. A primary reflected wave having a large energy is incident on the ultrasonic vibrator 3, and becomes sound rays u3 and t3 traveling toward the transducer 2b on the receiving side. . By the way, since the sound rays u3 and t3 have a small incident angle to the pipe and are multiple-reflected with the ultrasonic vibrator, the tailing of the transmission wave tends to be long. As described above, since a part of the sound ray incident on the area indicated by A2 is directed to the transmitter / receiver 2b on the receiving side, each area indicated by A1, A2, and A3 eventually becomes the transmitter / receiver on the receiving side. This is the area of the sound ray heading to 2b, and it can be said that the sound ray easily forms a trail of the transmission wave. As described above, in the conventional one, the S / N ratio of the received wave is reduced due to the wraparound wave, particularly the tailing thereof, and the measurement accuracy of the propagation time of the direct received wave in proportion to the flow velocity or flow rate of the fluid is reduced. Measurement cannot be performed. SUMMARY OF THE INVENTION It is therefore an object of the present invention to improve the directivity of transmission, reduce multiple reflections of ultrasonic waves in a transmitter / receiver, and reduce tailing of wraparound waves to improve measurement accuracy.

【0007】[0007]

【課題を解決するための手段】このような課題を解決す
るため、第1の発明では、超音波振動子とこれが接着さ
れるくさびとを備え超音波の送信,受信が可能な1対の
送受波器を、配管の外壁面に互いに位置をずらして対向
配置し、上流側の超音波振動子から下流側の超音波振動
子までの音波の伝播時間と、下流側の超音波振動子から
上流側の超音波振動子までの音波の伝播時間との差から
流体の流速または流量を測定する透過式超音波流量計に
おいて、前記1対の送受波器の少なくとも一方における
くさびの配管長軸方向の断面形状を、数分の1の分割円
または分割楕円状とすることを特徴としている。また、
第2の発明では、前記1対の送受波器の少なくとも一方
におけるくさびの先端部にテーパを付けたことを特徴と
している。
According to a first aspect of the present invention, there is provided a pair of transmission / reception units which include an ultrasonic vibrator and a wedge to which the ultrasonic vibrator is adhered and which can transmit and receive ultrasonic waves. The wave devices are arranged opposite to each other on the outer wall surface of the pipe with their positions shifted from each other, and the propagation time of the sound wave from the ultrasonic transducer on the upstream side to the ultrasonic transducer on the downstream side and the upstream side from the ultrasonic transducer on the downstream side. In a transmission type ultrasonic flowmeter that measures the flow velocity or flow rate of a fluid from the difference with the propagation time of a sound wave to an ultrasonic transducer on the side, a wedge in at least one of the pair of transducers is disposed in a longitudinal direction of a pipe. It is characterized in that the cross-sectional shape is a fractional circle or a divided ellipse. Also,
A second invention is characterized in that at least one of the pair of transducers is tapered at the tip of a wedge.

【0008】[0008]

【作用】発射した超音波の反射波が超音波振動子に入射
しないよう、くさびの形状に工夫を凝らすことにより、
送受波器内での超音波の多重反射を少なくし、回り込み
波の尾引きを減少させて計測精度の向上を図る。
[Function] By devising the shape of the wedge so that the reflected wave of the emitted ultrasonic wave does not enter the ultrasonic vibrator,
The multiple reflection of the ultrasonic wave in the transmitter / receiver is reduced, and the trailing of the sneak wave is reduced to improve the measurement accuracy.

【0009】[0009]

【実施例】図1はこの発明の実施例を示す構成図で、同
図(イ)は側断面図、同図(ロ)は上面図である。同図
において、1は配管、2a,2bは送受波器、3は超音
波振動子、4はくさび、5はケース、6はケーブル、7
は吸音材、10は音響カップリング材、20は流体をそ
れぞれ示している。すなわち、この実施例は図1(イ)
に符号4Aで示すように、くさび4の先端部に曲がりを
付けるとともに、その曲部4Aとケース5との間にはゴ
ム質のような詰物(吸音材ともいう)7を充填して構成
される。こうすることにより、吸音材7により曲部4A
に入射した音線のエネルギーの一部が吸音されるととも
に、くさび4の曲部4Aでの反射波が超音波振動子3に
入射することなく、くさび4内で多重反射を繰り返して
受信側の送受波器2bへの伝播方向とは逆向きの送信伝
播波となる。その結果、見掛けの伝播指向性が向上する
だけでなく、送受波器内の超音波振動子の多重反射が減
るので、配管1での回り込み波の尾引きが少なくなり、
受信波のS/Nが向上することになる。
1 is a block diagram showing an embodiment of the present invention. FIG. 1A is a side sectional view and FIG. 1B is a top view. In the figure, 1 is a pipe, 2a and 2b are transducers, 3 is an ultrasonic transducer, 4 is a wedge, 5 is a case, 6 is a cable, 7
Denotes a sound absorbing material, 10 denotes an acoustic coupling material, and 20 denotes a fluid. That is, this embodiment corresponds to FIG.
As shown by a reference numeral 4A, the wedge 4 is formed by bending a tip portion thereof and filling a gap (also referred to as a sound absorbing material) 7 such as rubber between the bent portion 4A and the case 5. You. Thus, the curved portion 4A is formed by the sound absorbing material 7.
A part of the energy of the sound ray incident on the wedge 4 is absorbed, and the reflected wave at the curved portion 4A of the wedge 4 does not enter the ultrasonic vibrator 3 but repeats multiple reflections within the wedge 4 to repeat the reflection on the receiving side. It becomes a transmission propagation wave in the direction opposite to the propagation direction to the transducer 2b. As a result, not only the apparent propagation directivity is improved, but also the multiple reflection of the ultrasonic transducer in the transmitter / receiver is reduced, so that the trailing of the loop wave in the pipe 1 is reduced,
The S / N of the received wave will be improved.

【0010】くさび4の先端部に曲がりを付ける理由に
ついて、図2を参照して説明する。図2(イ)はくさび
の側断面図、同図(ロ)はその上面図である。また、同
図(イ)のθtは配管長手軸の垂直線に対する超音波振
動子3の超音波の打ち込み角度、uおよびtは配管長手
軸方向に対し或る指向角度で超音波振動子3から発射し
た音線、dは超音波振動子3の外径寸法、Rは円の半径
または楕円の焦点距離をそれぞれ示している。くさび4
の形状は円または楕円の一部(分割円または分割楕円と
もいう)であり、その円の中心または楕円の焦点は超音
波振動子3のくさび4の取付面4Bの延長線上に位置
し、くさび4の取付面4Bに垂直で超音波振動子3の外
径位置を通る線Tが、円弧または楕円弧と交わる点Pま
での範囲にある分割円または分割楕円である。
The reason why the tip of the wedge 4 is bent will be described with reference to FIG. 2A is a side sectional view of the wedge, and FIG. 2B is a top view thereof. In the same figure, θt is the angle of incidence of the ultrasonic wave of the ultrasonic oscillator 3 with respect to the vertical line of the longitudinal axis of the pipe, and u and t are the directional angles from the ultrasonic transducer 3 at a certain directional angle with respect to the longitudinal axis of the pipe. The emitted sound ray, d indicates the outer diameter of the ultrasonic transducer 3, and R indicates the radius of a circle or the focal length of an ellipse. Wedge 4
Is a part of a circle or an ellipse (also called a divided circle or a divided ellipse), and the center of the circle or the focal point of the ellipse is located on an extension of the mounting surface 4B of the wedge 4 of the ultrasonic transducer 3, and the wedge is formed. A line T perpendicular to the mounting surface 4B and passing through the outer diameter position of the ultrasonic transducer 3 is a divided circle or divided ellipse in a range up to a point P where the line intersects a circular arc or an elliptical arc.

【0011】このようにすれば、音線u1,u2,t
1,t2は円の半径方向の中心線を法線として反射する
ので、符号A2で示す領域に入射した音線の反射波は、
超音波振動子3に戻ることなく全て受信側の送受波器2
bに向かう超音波の伝播方向(右向き)とは逆向き(左
向き)となり、符号A1で示す領域内にある超音波だけ
が受信側の送受波器2bに向かうことになる。このた
め、送信の見掛け上の伝播指向性が向上するとともに、
送受波器内部での超音波振動子の多重反射が減り、その
結果、配管の回り込み波の発生が少なくなって受信波の
S/Nが向上するというわけである。
In this way, the sound rays u1, u2, t
Since 1,1 and t2 are reflected with the center line in the radial direction of the circle as the normal, the reflected wave of the sound ray incident on the area indicated by the symbol A2 is
Transceiver 2 on the receiving side without returning to ultrasonic transducer 3
The direction of propagation of the ultrasonic wave toward b (to the right) is opposite (to the left), and only the ultrasonic wave in the area indicated by the symbol A1 is directed to the transducer 2b on the receiving side. This improves the apparent propagation directivity of the transmission,
The multiple reflection of the ultrasonic transducer inside the transmitter / receiver is reduced, and as a result, the generation of wraparound waves in the pipe is reduced and the S / N of the received wave is improved.

【0012】図3はこの発明の他の実施例を示す構成図
で、同図(イ)は側断面図、同図(ロ)はその上面図で
ある。なお、各部に付された符号は図1と同じである。
すなわち、この実施例は同図(ロ)からも明らかなよう
に、くさびの先端部にテーパを付けた点が特徴である。
このテーパ部とケース5との間には、図1の場合と同様
にゴム質のような詰物(吸音材ともいう)7が充填さ
れ、この吸音材7によってテーパ部に入射した音線のエ
ネルギーの一部を吸音する。くさびの先端部にテーパを
付ける理由について、図4を参照して以下に説明する。
FIG. 3 is a block diagram showing another embodiment of the present invention. FIG. 3A is a side sectional view and FIG. 3B is a top view thereof. Note that the reference numerals assigned to the respective units are the same as those in FIG.
That is, this embodiment is characterized in that the tip of the wedge is tapered, as is apparent from FIG.
The space between the tapered portion and the case 5 is filled with a rubber-like filler (also referred to as a sound absorbing material) 7 as in the case of FIG. Absorbs part of the sound. The reason why the tip of the wedge is tapered will be described below with reference to FIG.

【0013】図4はくさび先端部のテーパを120度に
した例である。この図において、送受波器内の超音波振
動子3から発射した音線uおよびtは送受波器内の壁4
Cで反射し、受信側の送受波器2bに向かう超音波の伝
播方向とは逆向きとなり、符号A2で示す領域で同図
(ロ)の上面図における音線の角度が±30度以内であ
れば、全て音線は受信側の送受波器2bに向かう超音波
の伝播方向とは逆向きとなる。また、同図(ロ)の上面
図における音線の角度が±30度以内であれば、符号A
1,A3で示す領域の音線だけが受信側の送受波器2b
に向かうことになり、送信の見掛けの伝播指向性が向上
し、配管の回り込み波の発生が少なくなって受信波のS
/Nが向上する。
FIG. 4 shows an example in which the taper at the tip of the wedge is set to 120 degrees. In this figure, sound rays u and t emitted from the ultrasonic transducer 3 in the transducer are on the wall 4 in the transducer.
C, the direction of propagation of the ultrasonic wave toward the transmitter / receiver 2b on the receiving side is opposite to the propagation direction of the ultrasonic wave, and the angle of the sound ray in the top view of FIG. If so, all the sound rays are in the opposite direction to the propagation direction of the ultrasonic wave toward the transducer 2b on the receiving side. If the angle of the sound ray in the top view of FIG.
Only the sound ray in the area indicated by 1, A3 is the transducer 2b on the receiving side.
, The apparent propagation directivity of the transmission is improved, and the generation of the wraparound wave in the pipe is reduced, and the S of the received wave is reduced.
/ N is improved.

【0014】図5にくさび先端部のテーパを90度にす
るとともに、テーパの中心位置をずらした例を示す。こ
の場合は、図5(ロ)の上面図での音線の角度が±45
度以内であれば、符号A1,A3で示す領域の音線だけ
が受信側の送受波器2bへと向かうことになり、超音波
振動子3から発射される超音波の指向性が良くない場合
でも、良好な送受信が可能となる。その他の点は図2ま
たは図4の場合と同様なので、詳細は省略する。
FIG. 5 shows an example in which the taper at the tip of the wedge is set to 90 degrees and the center position of the taper is shifted. In this case, the angle of the sound ray in the top view of FIG.
Within this range, only the sound rays in the areas indicated by the reference signs A1 and A3 are directed to the transmitter / receiver 2b on the receiving side, and the directivity of the ultrasonic waves emitted from the ultrasonic transducer 3 is not good. However, good transmission and reception are possible. The other points are the same as those in FIG. 2 or FIG.

【0015】くさびの先端部にテーパを付ける場合、超
音波振動子とテーパ部との間の距離を考慮することによ
り、より確実に超音波振動子に反射音線が入るのを避け
ることができる。図6はこのことを説明するためのもの
で、Lが超音波振動子3とテーパ先端部(送受波器の反
射壁4C)との間の距離を示している。すなわち、図の
θをサイドローブの発生角度に設定すると、超音波振動
子3の音線の発射角度の大半はサイドローブの発生角度
以下であることから、送受波器内での超音波振動子の多
重反射を大幅に低減することができる。なお、距離Lと
θとの間には、次式のような関係がある。 L=d・〔Tanθr+Tan(2θr−θ)〕/〔1−Tanθ・Tan( 2θr−θ)〕 …(1) ここに、θrは反射壁4Cの設定角度、dは超音波振動
子の外径寸法を示し、2θr>θとする。
In the case where the tip of the wedge is tapered, it is possible to more reliably avoid the reflected sound ray from entering the ultrasonic vibrator by considering the distance between the ultrasonic vibrator and the tapered portion. . FIG. 6 illustrates this, and L indicates the distance between the ultrasonic transducer 3 and the tapered tip (the reflecting wall 4C of the transducer). That is, if θ in the figure is set to the side lobe generation angle, most of the sound ray emission angles of the ultrasonic vibrator 3 are equal to or smaller than the side lobe generation angle, and thus the ultrasonic vibrator in the transducer is used. Can be greatly reduced. Note that there is a relationship as shown in the following equation between the distance L and θ. L = d · [Tan θr + Tan (2θr−θ)] / [1−Tan θ · Tan (2θr−θ)] (1) where θr is the set angle of the reflecting wall 4C, and d is the outer diameter of the ultrasonic transducer. Indicates the dimensions, and 2θr> θ.

【0016】サイドローブの発生角度θは、超音波振動
子の外径寸法dによって異なり、図7に示すような関係
がある。同図の符号Bは指向性を示し、第1種ベッセル
関数で示される。また、Zはθ,超音波振動子の外径寸
法d,くさび中の超音波の波長λなどを用いて、図中に
示す式から計算される。また、その指向性Bは例えば図
8に示すような特性となる。同図の符号Sdpはサイド
ローブを示す。つまり、(1)式に示す超音波振動子3
とテーパ先端部との距離Lは、超音波振動子3の外径寸
法dから図8を参照してサイドローブの発生角度θを求
め、この角度θから(1)式の演算をすることにより得
ることができる。
The side lobe occurrence angle θ differs depending on the outer diameter d of the ultrasonic transducer, and has a relationship as shown in FIG. A symbol B in the figure indicates directivity and is represented by a Bessel function of the first kind. Z is calculated from the equation shown in the figure using θ, the outer diameter d of the ultrasonic transducer, the wavelength λ of the ultrasonic wave in the wedge, and the like. Further, the directivity B has a characteristic as shown in FIG. 8, for example. The symbol Sdp in the figure indicates a side lobe. That is, the ultrasonic transducer 3 shown in the equation (1)
The distance L between the tapered tip and the taper tip is obtained by calculating the side lobe generation angle θ from the outer diameter dimension d of the ultrasonic transducer 3 with reference to FIG. 8, and calculating the equation (1) from this angle θ. Obtainable.

【0017】[0017]

【発明の効果】この発明によれば、超音波振動子が取り
付けられるくさびの配管長軸方向の断面形状を分割円ま
たは分割楕円とするか、もしくはくさびの先端部にテー
パを形成するようにしたので、受信波の見掛け上の伝播
指向性が向上して配管の回り込み波の発生が少なくなる
とともに、送受波器内での多重反射が減少して配管の回
り込み波の尾引きが少なくなり、その結果、受信波のS
/Nが向上し、測定精度が向上する利点が得られる。
According to the present invention, the cross section of the wedge to which the ultrasonic vibrator is attached in the longitudinal direction of the pipe is formed as a divided circle or a divided ellipse, or a taper is formed at the tip of the wedge. Therefore, the apparent propagation directivity of the received wave is improved, and the generation of the wraparound wave of the pipe is reduced, and the multiple reflection in the transmitter / receiver is reduced, so that the trailing of the wraparound wave of the pipe is reduced, and the As a result, S of the received wave
/ N is improved and the measurement accuracy is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例を示す構成図である。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】図1の作用を説明するための説明図である。FIG. 2 is an explanatory diagram for explaining an operation of FIG. 1;

【図3】この発明の他の実施例を示す構成図である。FIG. 3 is a configuration diagram showing another embodiment of the present invention.

【図4】図3で、くさび先端部のテーパを120度にし
た場合の作用を説明するための説明図である。
FIG. 4 is an explanatory diagram for explaining the operation when the taper of the wedge tip is set to 120 degrees in FIG. 3;

【図5】図3で、くさび先端部のテーパを90度にする
とともに、テーパの中心位置をずらした場合の作用を説
明するための説明図である。
FIG. 5 is an explanatory diagram for explaining the operation when the taper of the wedge tip is set to 90 degrees and the center position of the taper is shifted in FIG. 3;

【図6】超音波振動子とテーパ部との間の距離を説明す
るための説明図である。
FIG. 6 is an explanatory diagram for explaining a distance between an ultrasonic transducer and a tapered portion.

【図7】超音波振動子の指向性を説明するための説明図
である。
FIG. 7 is an explanatory diagram for explaining directivity of an ultrasonic transducer.

【図8】サイドローブの発生角度と超音波振動子の外径
寸法との関係を説明するための説明図である。
FIG. 8 is an explanatory diagram for explaining a relationship between a generation angle of a side lobe and an outer diameter of an ultrasonic transducer.

【図9】超音波流量計の従来例を示す概要図である。FIG. 9 is a schematic diagram showing a conventional example of an ultrasonic flowmeter.

【図10】超音波流量計の他の従来例を示す概要図図で
ある。
FIG. 10 is a schematic diagram showing another conventional example of an ultrasonic flowmeter.

【図11】従来の送受波器の一例を示す構成図である。FIG. 11 is a configuration diagram illustrating an example of a conventional transducer.

【図12】配管における回り込み波を説明するための斜
視図である。
FIG. 12 is a perspective view for explaining a loop wave in a pipe.

【図13】配管における直接受波と回り込み波とを説明
するための説明図である。
FIG. 13 is an explanatory diagram for explaining a direct reception wave and a loop wave in a pipe.

【図14】直接受波と回り込み波との関係を説明するた
めの波形図である。
FIG. 14 is a waveform diagram for explaining the relationship between a direct reception wave and a loop wave.

【図15】従来の送受波器における超音波振動子より発
射される超音波の伝播態様を説明するための説明図であ
る。
FIG. 15 is an explanatory diagram for explaining a propagation mode of an ultrasonic wave emitted from an ultrasonic transducer in a conventional transducer.

【符号の説明】[Explanation of symbols]

1…配管、2a,2b…超音波送受波器、3…超音波振
動子、4…くさび、4A…くさび曲部、4B…超音波振
動子の取付面、5…ケース、6…ケーブル、7…吸音材
(ゴム質の詰物)、10…音響カップリング材、15…
管内壁面、16…管外壁面、20…流体。
DESCRIPTION OF SYMBOLS 1 ... Piping, 2a, 2b ... Ultrasonic transducer, 3 ... Ultrasonic transducer, 4 ... Wedge, 4A ... Wedge bending part, 4B ... Ultrasonic transducer mounting surface, 5 ... Case, 6 ... Cable, 7 ... Sound absorbing material (rubber filling), 10 ... Acoustic coupling material, 15 ...
Pipe inner wall surface, 16: Pipe outer wall surface, 20: Fluid.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 超音波振動子とこれが接着されるくさび
とを備え超音波の送信,受信が可能な1対の送受波器
を、配管の外壁面に互いに位置をずらして対向配置し、
上流側の超音波振動子から下流側の超音波振動子までの
音波の伝播時間と、下流側の超音波振動子から上流側の
超音波振動子までの音波の伝播時間との差から流体の流
速または流量を測定する透過式超音波流量計において、 前記1対の送受波器の少なくとも一方におけるくさびの
配管長軸方向の断面形状を、数分の1の分割円または分
割楕円状とすることを特徴とする透過式超音波流量計。
1. A pair of transducers comprising an ultrasonic transducer and a wedge to which the ultrasonic transducer is adhered and capable of transmitting and receiving ultrasonic waves, are arranged opposite to each other on the outer wall surface of the pipe so as to face each other,
The difference between the propagation time of the sound wave from the ultrasonic transducer on the upstream side to the ultrasonic transducer on the downstream side and the propagation time of the sound wave from the ultrasonic transducer on the downstream side to the ultrasonic transducer on the upstream side In a transmission ultrasonic flowmeter for measuring a flow velocity or a flow rate, a cross-sectional shape of a wedge in at least one of the pair of transducers in a longitudinal axis direction of a wedge is a fraction circle or a division ellipse. A transmission type ultrasonic flowmeter characterized by the above.
【請求項2】 超音波振動子とこれが接着されるくさび
とを備え超音波の送信,受信が可能な1対の送受波器
を、配管の外壁面に互いに位置をずらして対向配置し、
上流側の超音波振動子から下流側の超音波振動子までの
音波の伝播時間と、下流側の超音波振動子から上流側の
超音波振動子までの音波の伝播時間との差から流体の流
速または流量を測定する透過式超音波流量計において、 前記1対の送受波器の少なくとも一方におけるくさびの
先端部にテーパを付してなることを特徴とする透過式超
音波流量計。
2. A pair of transducers comprising an ultrasonic vibrator and a wedge to which the ultrasonic vibrator is bonded and capable of transmitting and receiving ultrasonic waves are arranged opposite to each other on the outer wall surface of the pipe so as to be shifted from each other,
The difference between the propagation time of the sound wave from the ultrasonic transducer on the upstream side to the ultrasonic transducer on the downstream side and the propagation time of the sound wave from the ultrasonic transducer on the downstream side to the ultrasonic transducer on the upstream side A transmission ultrasonic flowmeter for measuring a flow velocity or a flow rate, wherein a tip of a wedge in at least one of the pair of transducers is tapered.
JP4119369A 1992-05-13 1992-05-13 Transmission ultrasonic flowmeter Expired - Fee Related JP3013596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4119369A JP3013596B2 (en) 1992-05-13 1992-05-13 Transmission ultrasonic flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4119369A JP3013596B2 (en) 1992-05-13 1992-05-13 Transmission ultrasonic flowmeter

Publications (2)

Publication Number Publication Date
JPH05312611A JPH05312611A (en) 1993-11-22
JP3013596B2 true JP3013596B2 (en) 2000-02-28

Family

ID=14759801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4119369A Expired - Fee Related JP3013596B2 (en) 1992-05-13 1992-05-13 Transmission ultrasonic flowmeter

Country Status (1)

Country Link
JP (1) JP3013596B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005064288A1 (en) * 2003-12-26 2005-07-14 The Tokyo Electric Power Company, Incorporated Ultrasonic flowmeter, wedge for ultrasonic flowmeter, method for setting ultrasonic transmitting/receiving unit, and ultrasonic transmitting/receiving unit

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005057888A1 (en) * 2005-12-02 2007-06-06 Endress + Hauser Flowtec Ag Device for determining and / or monitoring the volume or mass flow of a medium through a pipeline
JP5373218B1 (en) * 2013-04-22 2013-12-18 東京計装株式会社 Ultrasonic flow meter
DE102015120099B4 (en) * 2015-11-19 2024-02-22 GAMPT mbH Gesellschaft für Angewandte Medizinische Physik und Technik Ultrasonic probe for detecting foreign structures in fluids

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005064288A1 (en) * 2003-12-26 2005-07-14 The Tokyo Electric Power Company, Incorporated Ultrasonic flowmeter, wedge for ultrasonic flowmeter, method for setting ultrasonic transmitting/receiving unit, and ultrasonic transmitting/receiving unit
JPWO2005064288A1 (en) * 2003-12-26 2007-07-19 東京電力株式会社 Ultrasonic flow meter, wedge for ultrasonic flow meter, setting method of ultrasonic transmission / reception unit and ultrasonic transmission / reception unit
JP4827007B2 (en) * 2003-12-26 2011-11-30 東京電力株式会社 Ultrasonic flow meter

Also Published As

Publication number Publication date
JPH05312611A (en) 1993-11-22

Similar Documents

Publication Publication Date Title
CN110199179B (en) Ultrasonic flowmeter and method for detecting a throughflow parameter
JPH0734344Y2 (en) Clamp type ultrasonic flowmeter
US4930358A (en) Method of and apparatus for measuring flow velocity by using ultrasonic waves
JPH05506092A (en) Improvement of ultrasonic gas/liquid flow meter
US7077012B2 (en) Wedge and wedge unit for use in ultrasonic doppler flow meter
JP5971428B2 (en) Fluid measuring device
JP3761399B2 (en) Ultrasonic flow meter
JP3890698B2 (en) Flow measuring device
JP3013596B2 (en) Transmission ultrasonic flowmeter
RU2708904C1 (en) Method and system for ultrasonic overhead flow measurement and body for measurement
JP2004157101A (en) Ultrasonic flowmeter
JP3570315B2 (en) Ultrasonic flow meter and gas meter using it
JP2002236042A (en) Flowmeter
JP3328505B2 (en) Ultrasonic flow meter
JP3583114B2 (en) Ultrasonic flow velocity measuring device
JPH09287989A (en) Ultrasonic flowmeter
JP4368591B2 (en) Ultrasonic flow meter
JP3535625B2 (en) Ultrasonic current meter
JP2505647Y2 (en) Ultrasonic flow meter
JPS631217Y2 (en)
JPH10170318A (en) Ultrasonic flow-velocity measuring apparatus
JP2693000B2 (en) Ultrasonic transducer
JPH06103206B2 (en) Ultrasonic velocity measuring method and apparatus
JPH0716977Y2 (en) Ultrasonic probe and ultrasonic flowmeter using the same
JP2685590B2 (en) Ultrasound transceiver

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees